# REVERSES AND REFINEMENTS OF FIRST FÉJER'S INEQUALITY FOR TWICE DIFFERENTIABLE CONVEX FUNCTIONS 

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

$$
\begin{aligned}
& \text { Abstract. In this paper we provide upper and lower bounds for the first } \\
& \text { Féjer's difference } \\
& \qquad \int_{a}^{b} p(t) f(t) d t-f\left(\frac{a+b}{2}\right) \int_{a}^{b} p(t) d t \\
& \text { in the case of twice differentiable convex functions under various assumptions } \\
& \text { for the second derivative } f^{\prime \prime} \text { and } p:[a, b] \rightarrow[0, \infty) \text { a Lebesgue integrable and } \\
& \text { symmetric function on }[a, b] \text {. }
\end{aligned}
$$

## 1. Introduction

The following inequality holds for any convex function $f$ defined on $\mathbb{R}$

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \frac{f(a)+f(b)}{2}, \quad a, b \in \mathbb{R}, a<b \tag{1.1}
\end{equation*}
$$

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [29]). But this result was nowhere mentioned in the mathematical literature and was not widely known as Hermite's result.
E. F. Beckenbach, a leading expert on the history and the theory of convex functions, wrote that this inequality was proven by J. Hadamard in 1893 [23]. In 1974, D. S. Mitrinović found Hermite's note in Mathesis [29]. Since (1.1) was known as Hadamard's inequality, the inequality is now commonly referred as the HermiteHadamard inequality. For a monograph devoted to this result see [27]. The recent survey paper [26] provides other related results.

Let $f:[a, b] \rightarrow \mathbb{R}$ be a convex function on $[a, b]$ and assume that $f_{+}^{\prime}(a)$ and $f_{-}^{\prime}(b)$ are finite. We recall the following improvement and reverse inequality for the first Hermite-Hadamard result that has been established in [24]

$$
\begin{align*}
0 & \leq \frac{1}{8}\left[f_{+}^{\prime}\left(\frac{a+b}{2}\right)-f_{-}^{\prime}\left(\frac{a+b}{2}\right)\right](b-a)  \tag{1.2}\\
& \leq \frac{1}{b-a} \int_{a}^{b} f(t) d t-f\left(\frac{a+b}{2}\right) \leq \frac{1}{8}(b-a)\left[f_{-}^{\prime}(b)-f_{+}^{\prime}(a)\right] .
\end{align*}
$$

[^0]The following inequality that provides a reverse and improvement of the second Hermite-Hadamard result has been obtained in [25]

$$
\begin{align*}
0 & \leq \frac{1}{8}\left[f_{+}^{\prime}\left(\frac{a+b}{2}\right)-f_{-}^{\prime}\left(\frac{a+b}{2}\right)\right](b-a)  \tag{1.3}\\
& \leq \frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \frac{1}{8}(b-a)\left[f_{-}^{\prime}(b)-f_{+}^{\prime}(a)\right]
\end{align*}
$$

The constant $\frac{1}{8}$ is best possible in both (1.2) and (1.3).
In 1906, Féjer [28], while studying trigonometric polynomials, obtained inequalities which generalize that of Hermite \& Hadamard:

Theorem 1. Consider the integral $\int_{a}^{b} f(t) p(t) d t$, where $f$ is a convex function in the interval $(a, b)$ and $p$ is a positive function in the same interval such that

$$
p(a+t)=p(b-t), \quad 0 \leq t \leq \frac{1}{2}(b-a)
$$

i.e., $y=p(t)$ is a symmetric curve with respect to the straight line which contains the point $\left(\frac{1}{2}(a+b), 0\right)$ and is normal to the $t$-axis. Under those conditions the following inequalities are valid:

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} p(t) d t \leq \int_{a}^{b} f(t) p(t) d t \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} p(t) d t \tag{1.4}
\end{equation*}
$$

If $f$ is concave on $(a, b)$, then the inequalities reverse in (1.4).
We have the following refinement and reverse of Fejer's first inequality:
Theorem 2. Let $f$ be a convex function on $I$ and $a, b \in I$, with $a<b$. If $p$ : $[a, b] \rightarrow[0, \infty)$ is Lebesgue integrable and symmetric, namely $p(b+a-t)=p(t)$ for all $t \in[a, b]$, then

$$
\begin{align*}
0 & \leq \frac{1}{2} \int_{a}^{b}\left|t-\frac{a+b}{2}\right| p(t) d t\left[f_{+}^{\prime}\left(\frac{a+b}{2}\right)-f_{-}^{\prime}\left(\frac{a+b}{2}\right)\right]  \tag{1.5}\\
& \leq \int_{a}^{b} p(t) f(t) d t-\left(\int_{a}^{b} p(t) d t\right) f\left(\frac{a+b}{2}\right) \\
& \leq \frac{1}{2} \int_{a}^{b}\left|t-\frac{a+b}{2}\right| p(t) d t\left[f_{-}^{\prime}(b)-f_{+}^{\prime}(a)\right]
\end{align*}
$$

The following theorem is well known in the literature as Taylor's formula or Taylor's theorem with the integral remainder.

Theorem 3. Let $I \subset \mathbb{R}$ be a closed interval, $a \in I$ and let $n$ be a positive integer. If $f: I \longrightarrow \mathbb{C}$ is such that the $n$-derivative $f^{(n)}$ is absolutely continuous on $I$, then for each $x \in I$

$$
\begin{equation*}
f(x)=T_{n}(f ; a, x)+R_{n}(f ; a, x), \tag{1.6}
\end{equation*}
$$

where $T_{n}(f ; c, y)$ is Taylor's polynomial, i.e.,

$$
\begin{equation*}
T_{n}(f ; a, x):=\sum_{k=0}^{n} \frac{(x-a)^{k}}{k!} f^{(k)}(a) \tag{1.7}
\end{equation*}
$$

Note that $f^{(0)}:=f$ and $0!:=1$ and the remainder is given by

$$
\begin{equation*}
R_{n}(f ; a, x):=\frac{1}{n!} \int_{a}^{x}(x-t)^{n} f^{(n+1)}(t) d t \tag{1.8}
\end{equation*}
$$

A simple proof of this theorem can be achieved by mathematical induction using the integration by parts formula in the Lebesgue integral.

For related results, see [1]-[5], [10]-[13], [17]-[18] and [21].
For any integrable function $h$ on an interval and any distinct numbers $c, d$ in that interval, we have, by the change of variable $t=(1-s) c+s d, s \in[0,1]$ that

$$
\int_{c}^{d} h(t) d t=(d-c) \int_{0}^{1} h((1-s) c+s d) d s
$$

Therefore,

$$
\begin{aligned}
& \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} d t \\
& =(x-a) \int_{0}^{1} f^{(n+1)}((1-s) a+s x)(x-(1-s) a-s x)^{n} d s \\
& =(x-a)^{n+1} \int_{0}^{1} f^{(n+1)}((1-s) a+s x)(1-s)^{n} d s .
\end{aligned}
$$

The identity (1.6) can then be written as

$$
\begin{align*}
f(x) & =\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(a)(x-a)^{k}  \tag{1.9}\\
& +\frac{1}{n!}(x-a)^{n+1} \int_{0}^{1} f^{(n+1)}((1-s) a+s x)(1-s)^{n} d s
\end{align*}
$$

for all $x, a \in I$.
In this paper we provide upper and lower bounds for the first Féjer's difference

$$
\int_{a}^{b} p(t) f(t) d t-f\left(\frac{a+b}{2}\right) \int_{a}^{b} p(t) d t
$$

in the case of twice differentiable convex functions under various assumptions for the second derivative $f^{\prime \prime}$ and $p:[a, b] \rightarrow[0, \infty)$ a Lebesgue integrable and symmetric function on $[a, b]$.

## 2. Main Results

We have:
Theorem 4. Let $f$ be a twice differentiable convex function on $I$ and $a, b \in I$, with $a<b$. If $p:[a, b] \rightarrow[0, \infty)$ is Lebesgue integrable and symmetric, namely
$p(b+a-t)=p(t)$ for all $t \in[a, b]$, then

$$
\begin{align*}
0 & \leq \inf _{t \in[a, b]}\left(\int_{0}^{1} f^{\prime \prime}\left((1-s) \frac{a+b}{2}+s t\right)(1-s) d s\right)  \tag{2.1}\\
& \times \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t \\
& \leq \int_{a}^{b} p(t) f(t) d t-f\left(\frac{a+b}{2}\right) \int_{a}^{b} p(t) d t \\
& \leq \sup _{t \in[a, b]}\left(\int_{0}^{1} f^{\prime \prime}\left((1-s) \frac{a+b}{2}+s t\right)(1-s) d s\right) \\
& \times \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t .
\end{align*}
$$

In particular, if $p \equiv 1$, then

$$
\begin{align*}
0 & \leq \frac{1}{12}(b-a)^{3} \inf _{t \in[a, b]}\left(\int_{0}^{1} f^{\prime \prime}\left((1-s) \frac{a+b}{2}+s t\right)(1-s) d s\right)  \tag{2.2}\\
& \leq \int_{a}^{b} f(t) d t-f\left(\frac{a+b}{2}\right)(b-a) \\
& \leq \frac{1}{12}(b-a)^{3} \sup _{t \in[a, b]}\left(\int_{0}^{1} f^{\prime \prime}\left((1-s) \frac{a+b}{2}+s t\right)(1-s) d s\right)
\end{align*}
$$

Proof. We have from (1.9) for $n=2$ that

$$
f(x)=f(c)+f^{\prime}(c)(x-c)+(x-c)^{2} \int_{0}^{1} f^{\prime \prime}((1-s) c+s x)(1-s) d s
$$

for all $x, c \in[a, b]$, where $f$ is such that $f^{\prime}$ is absolutely continuos on $[a, b]$.
If we replace $c$ with $\frac{a+b}{2}$ and $x$ with $t$, then we get

$$
\begin{align*}
f(t) & =f\left(\frac{a+b}{2}\right)+f^{\prime}\left(\frac{a+b}{2}\right)\left(t-\frac{a+b}{2}\right)  \tag{2.3}\\
& +\left(t-\frac{a+b}{2}\right)^{2} \int_{0}^{1} f^{\prime \prime}\left((1-s) \frac{a+b}{2}+s t\right)(1-s) d s
\end{align*}
$$

for all $t \in[a, b]$.
If we multiply (2.3) with $p(t) \geq 0$ and integrate, then we get

$$
\begin{align*}
& \int_{a}^{b} p(t) f(t) d t  \tag{2.4}\\
& =f\left(\frac{a+b}{2}\right) \int_{a}^{b} p(t) d t+f^{\prime}\left(\frac{a+b}{2}\right) \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right) d t \\
& +\int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2}\left(\int_{0}^{1} f^{\prime \prime}\left((1-s) \frac{a+b}{2}+s t\right)(1-s) d s\right) d t
\end{align*}
$$

Since the function $p(t)\left(t-\frac{a+b}{2}\right)$ is asymmetric on $[a, b]$, hence

$$
\int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right) d t=0
$$

and by (2.4) we get

$$
\begin{align*}
& \int_{a}^{b} p(t) f(t) d t-f\left(\frac{a+b}{2}\right) \int_{a}^{b} p(t) d t  \tag{2.5}\\
& =\int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2}\left(\int_{0}^{1} f^{\prime \prime}\left((1-s) \frac{a+b}{2}+s t\right)(1-s) d s\right) d t .
\end{align*}
$$

Observe that for all $t \in[a, b]$ we have

$$
\begin{aligned}
0 & \leq \inf _{t \in[a, b]}\left(\int_{0}^{1} f^{\prime \prime}\left((1-s) \frac{a+b}{2}+s t\right)(1-s) d s\right) \\
& \leq \int_{0}^{1} f^{\prime \prime}\left((1-s) \frac{a+b}{2}+s t\right)(1-s) d s \\
& \leq \sup _{t \in[a, b]}\left(\int_{0}^{1} f^{\prime \prime}\left((1-s) \frac{a+b}{2}+s t\right)(1-s) d s\right)
\end{aligned}
$$

and by the equality (2.5) we get (2.1).
Since

$$
\int_{a}^{b}\left(t-\frac{a+b}{2}\right)^{2} d t=\frac{1}{12}(b-a)^{3}
$$

hence by (2.1) we get (2.2).

Corollary 1. With the assumptions of Theorem 4 and if there exists the constants $\Gamma>\gamma>0$ such that $\Gamma \geq f^{\prime \prime}(x) \geq \gamma$ for almost every $x \in(a, b)$, then

$$
\begin{align*}
0 & \leq \frac{1}{2} \gamma \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t \leq \int_{a}^{b} p(t) f(t) d t-f\left(\frac{a+b}{2}\right) \int_{a}^{b} p(t) d t  \tag{2.6}\\
& \leq \frac{1}{2} \Gamma \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t
\end{align*}
$$

and

$$
\begin{equation*}
0 \leq \frac{1}{24}(b-a)^{3} \gamma \leq \int_{a}^{b} f(t) d t-f\left(\frac{a+b}{2}\right)(b-a) \leq \frac{1}{24} \Gamma(b-a)^{3} \tag{2.7}
\end{equation*}
$$

Proof. From (2.1) we get

$$
\begin{aligned}
0 & \leq \gamma\left(\int_{0}^{1}(1-s) d s\right) \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t \\
& \leq \int_{a}^{b} p(t) f(t) d t-\left(\int_{a}^{b} p(t) d t\right) f\left(\frac{a+b}{2}\right) \\
& \leq \Gamma\left(\int_{0}^{1}(1-s) d s\right) \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t
\end{aligned}
$$

which is equivalent to (2.6).

Corollary 2. With the assumptions of Theorem 4 and if $f^{\prime \prime}$ is monotonic nondecreasing on $(a, b)$, then

$$
\begin{align*}
0 & \leq \frac{2}{b-a}\left[\frac{2}{b-a}\left(f(a)-f\left(\frac{a+b}{2}\right)\right)+f^{\prime}\left(\frac{a+b}{2}\right)\right]  \tag{2.8}\\
& \times \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t \\
& \leq \int_{a}^{b} p(t) f(t) d t-f\left(\frac{a+b}{2}\right) \int_{a}^{b} p(t) d t \\
& \leq \frac{2}{b-a}\left[\frac{2}{b-a}\left(f(b)-f\left(\frac{a+b}{2}\right)\right)-f^{\prime}\left(\frac{a+b}{2}\right)\right] \\
& \times \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t
\end{align*}
$$

and

$$
\begin{align*}
0 & \leq \frac{1}{6}\left[\frac{2}{b-a}\left(f(a)-f\left(\frac{a+b}{2}\right)\right)+f^{\prime}\left(\frac{a+b}{2}\right)\right](b-a)^{2}  \tag{2.9}\\
& \leq \int_{a}^{b} f(t) d t-f\left(\frac{a+b}{2}\right)(b-a) \\
& \leq \frac{1}{6}\left[\frac{2}{b-a}\left(f(b)-f\left(\frac{a+b}{2}\right)\right)-f^{\prime}\left(\frac{a+b}{2}\right)\right](b-a)^{2} .
\end{align*}
$$

Proof. Observe that, by the monotonicity of $f^{\prime \prime}$, we have for all $t \in[a, b]$

$$
\begin{aligned}
& \int_{0}^{1} f^{\prime \prime}\left((1-s) \frac{a+b}{2}+s t\right)(1-s) d s \\
& \geq \int_{0}^{1} f^{\prime \prime}\left((1-s) \frac{a+b}{2}+s a\right)(1-s) d s \\
& =\int_{0}^{1} f^{\prime \prime}\left(\frac{a+b}{2}-s \frac{b-a}{2}\right)(1-s) d s \\
& =-\frac{2}{b-a} \int_{0}^{1}(1-s) d\left(f^{\prime}\left(\frac{a+b}{2}-s \frac{b-a}{2}\right)\right) \\
& =-\frac{2}{b-a}\left[\left.(1-s) f^{\prime}\left(\frac{a+b}{2}-s \frac{b-a}{2}\right)\right|_{0} ^{1}+\int_{0}^{1} f^{\prime}\left(\frac{a+b}{2}-s \frac{b-a}{2}\right) d s\right] \\
& =-\frac{2}{b-a}\left[\int_{0}^{1} f^{\prime}\left(\frac{a+b}{2}-s \frac{b-a}{2}\right) d s-f^{\prime}\left(\frac{a+b}{2}\right)\right] \\
& \quad=-\frac{2}{b-a}\left[-\frac{2}{b-a} \int_{0}^{1} d f\left(\frac{a+b}{2}-s \frac{b-a}{2}\right)-f^{\prime}\left(\frac{a+b}{2}\right)\right] \\
& \quad=-\frac{2}{b-a}\left[-\frac{2}{b-a}\left[\left.f\left(\frac{a+b}{2}-s \frac{b-a}{2}\right)\right|_{0} ^{1}\right]-f^{\prime}\left(\frac{a+b}{2}\right)\right] \\
& =\frac{2}{b-a}\left[f^{\prime}\left(\frac{a+b}{2}\right)+\frac{2}{b-a}\left(f(a)-f\left(\frac{a+b}{2}\right)\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{0}^{1} f^{\prime \prime}\left((1-s) \frac{a+b}{2}+s t\right)(1-s) d s \\
& \leq \int_{0}^{1} f^{\prime \prime}\left((1-s) \frac{a+b}{2}+s b\right)(1-s) d s \\
& =\int_{0}^{1} f^{\prime \prime}\left(\frac{a+b}{2}+s \frac{b-a}{2}\right)(1-s) d s \\
& =\frac{2}{b-a} \int_{0}^{1}(1-s) d f^{\prime}\left(\frac{a+b}{2}+s \frac{b-a}{2}\right) \\
& =\frac{2}{b-a}\left[\left.(1-s) f^{\prime}\left(\frac{a+b}{2}+s \frac{b-a}{2}\right)\right|_{0} ^{1}+\int_{0}^{1} f^{\prime}\left(\frac{a+b}{2}+s \frac{b-a}{2}\right) d s\right] \\
& =\frac{2}{b-a}\left[\int_{0}^{1} f^{\prime}\left(\frac{a+b}{2}+s \frac{b-a}{2}\right) d s-f^{\prime}\left(\frac{a+b}{2}\right)\right] \\
& =\frac{2}{b-a}\left[\frac{2}{b-a} \int_{0}^{1} d f\left(\frac{a+b}{2}+s \frac{b-a}{2}\right)-f^{\prime}\left(\frac{a+b}{2}\right)\right] \\
& =\frac{2}{b-a}\left[\frac{2}{b-a}\left[\left.f\left(\frac{a+b}{2}+s \frac{b-a}{2}\right)\right|_{0} ^{1}\right]-f^{\prime}\left(\frac{a+b}{2}\right)\right] \\
& =\frac{2}{b-a}\left[\frac{2}{b-a}\left(f(b)-f\left(\frac{a+b}{2}\right)\right)-f^{\prime}\left(\frac{a+b}{2}\right)\right]
\end{aligned}
$$

Therefore, by (2.1) we get (2.8).

Corollary 3. With the assumptions of Theorem 4 and if $f^{\prime \prime}$ is convex on $(a, b)$, then

$$
\begin{align*}
0 & \leq \frac{1}{2} \inf _{t \in[a, b]} f^{\prime \prime}\left(\frac{a+b+t}{3}\right) \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t  \tag{2.10}\\
& \leq \int_{a}^{b} p(t) f(t) d t-f\left(\frac{a+b}{2}\right) \int_{a}^{b} p(t) d t \\
& \leq \frac{1}{3}\left(f^{\prime \prime}\left(\frac{a+b}{2}\right)+\frac{1}{2} \sup _{t \in[a, b]} f^{\prime \prime}(t)\right) \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t
\end{align*}
$$

In particular, if $p \equiv 1$, then

$$
\begin{align*}
0 & \leq \frac{1}{24}(b-a)^{3} \inf _{t \in[a, b]} f\left(\frac{a+b+t}{3}\right)  \tag{2.11}\\
& \leq \int_{a}^{b} f(t) d t-f\left(\frac{a+b}{2}\right)(b-a) \\
& \leq \frac{1}{36}(b-a)^{3}\left(f^{\prime \prime}\left(\frac{a+b}{2}\right)+\frac{1}{2} \sup _{t \in[a, b]} f^{\prime \prime}(t)\right) .
\end{align*}
$$

Proof. If $f^{\prime \prime}$ is convex on $(a, b)$, then by Jensen's integral inequality we have for $t \in[a, b]$ that

$$
\begin{aligned}
& \int_{0}^{1} f^{\prime \prime}\left((1-s) \frac{a+b}{2}+s t\right)(1-s) d s \\
& \geq \int_{0}^{1}(1-s) d s f^{\prime \prime}\left(\frac{\int_{0}^{1}\left[(1-s) \frac{a+b}{2}+s t\right](1-s) d s}{\int_{0}^{1}(1-s) d s}\right) \\
& =\frac{1}{2} f^{\prime \prime}\left(\frac{\frac{a+b}{2} \int_{0}^{1}(1-s)^{2} d s+t \int_{0}^{1} s(1-s) d s}{\frac{1}{2}}\right) \\
& =\frac{1}{2} f^{\prime \prime}\left(\frac{\frac{a+b}{6}+\frac{t}{6}}{\frac{1}{2}}\right)=\frac{1}{2} f^{\prime \prime}\left(\frac{a+b+t}{3}\right)
\end{aligned}
$$

Also, by the convexity of $f^{\prime \prime}$ we have

$$
\begin{aligned}
& \int_{0}^{1} f^{\prime \prime}\left((1-s) \frac{a+b}{2}+s t\right)(1-s) d s \\
& \leq \int_{0}^{1}\left[(1-s) f^{\prime \prime}\left(\frac{a+b}{2}\right)+s f^{\prime \prime}(t)\right](1-s) d s \\
& =\frac{1}{3} f^{\prime \prime}\left(\frac{a+b}{2}\right)+\frac{1}{6} f^{\prime \prime}(t)
\end{aligned}
$$

for $t \in[a, b]$.
Therefore, by (2.1) we get (2.10).

We also have:
Theorem 5. Let $f$ be a twice differentiable convex function on $I$ and $a, b \in I$, with $a<b$ while $p:[a, b] \rightarrow[0, \infty)$ is Lebesgue integrable and symmetric. If $f^{\prime \prime}$ is convex on $[a, b]$, then

$$
\begin{align*}
0 & \leq \frac{1}{2} f^{\prime \prime}\left(\frac{a+b}{2}\right) \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t  \tag{2.12}\\
& \leq \int_{a}^{b} p(t) f(t) d t-f\left(\frac{a+b}{2}\right) \int_{a}^{b} p(t) d t \\
& \leq \frac{1}{3}\left[f^{\prime \prime}\left(\frac{a+b}{2}\right)+\frac{f^{\prime \prime}(a)+f^{\prime \prime}(b)}{4}\right]_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t .
\end{align*}
$$

In particular, we have

$$
\begin{align*}
0 & \leq \frac{1}{24} f^{\prime \prime}\left(\frac{a+b}{2}\right)(b-a)^{3}  \tag{2.13}\\
& \leq \int_{a}^{b} f(t) d t-f\left(\frac{a+b}{2}\right)(b-a) \\
& \leq \frac{1}{36}\left[f^{\prime \prime}\left(\frac{a+b}{2}\right)+\frac{f^{\prime \prime}(a)+f^{\prime \prime}(b)}{4}\right](b-a)^{3} .
\end{align*}
$$

Proof. From (2.5) and Fubini theorem we have

$$
\begin{align*}
& \int_{a}^{b} p(t) f(t) d t-f\left(\frac{a+b}{2}\right) \int_{a}^{b} p(t) d t  \tag{2.14}\\
& =\int_{0}^{1}\left(\int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} f^{\prime \prime}\left((1-s) \frac{a+b}{2}+s t\right) d t\right)(1-s) d s \\
& =K
\end{align*}
$$

Since for all $s \in[0,1]$ the function $[a, b] \ni t \mapsto f^{\prime \prime}\left((1-s) \frac{a+b}{2}+s t\right)$ is convex and the function $[a, b] \ni t \mapsto p(t)\left(t-\frac{a+b}{2}\right)^{2}$ is symmetric on $[a, b]$, then by Féjer inequality we have

$$
\begin{align*}
& f^{\prime \prime}\left(\frac{a+b}{2}\right) \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t  \tag{2.15}\\
& =f^{\prime \prime}\left((1-s) \frac{a+b}{2}+s \frac{a+b}{2}\right) \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t \\
& \leq \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} f^{\prime \prime}\left((1-s) \frac{a+b}{2}+s t\right) d t \\
& \leq \frac{f^{\prime \prime}\left((1-s) \frac{a+b}{2}+s a\right)+f^{\prime \prime}\left((1-s) \frac{a+b}{2}+s b\right)}{2} \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t \\
& \leq\left[(1-s) f^{\prime \prime}\left(\frac{a+b}{2}\right)+s \frac{f^{\prime \prime}(a)+f^{\prime \prime}(b)}{2}\right] \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t
\end{align*}
$$

If we multiply $(2.15)$ by $(1-s)$ and integrate, then we get

$$
\begin{aligned}
& f^{\prime \prime}\left(\frac{a+b}{2}\right) \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t \int_{0}^{1}(1-s) d s \\
& \leq K \\
& \leq\left[f^{\prime \prime}\left(\frac{a+b}{2}\right) \int_{0}^{1}(1-s)^{2} d s+\frac{f^{\prime \prime}(a)+f^{\prime \prime}(b)}{2} \int_{0}^{1}(1-s) s d s\right] \\
& \times \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t \\
& =\left[\frac{1}{3} f^{\prime \prime}\left(\frac{a+b}{2}\right)+\frac{f^{\prime \prime}(a)+f^{\prime \prime}(b)}{12}\right] \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t
\end{aligned}
$$

which is equivalent to (2.12).

## 3. An Example for Symmetric Functions

Consider the symmetric function $p(t)=\left|t-\frac{a+b}{2}\right|, t \in[a, b]$. Observe that

$$
\int_{a}^{b} p(t) d t=\int_{a}^{b}\left|t-\frac{a+b}{2}\right| d t=\frac{1}{4}(b-a)^{2}
$$

and

$$
\begin{aligned}
\int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t & =\int_{a}^{b}\left|t-\frac{a+b}{2}\right|\left(t-\frac{a+b}{2}\right)^{2} d t \\
& =\int_{\frac{a+b}{2}}^{b}\left(t-\frac{a+b}{2}\right)^{3} d t=\frac{1}{32}(b-a)^{4}
\end{aligned}
$$

Let $f$ be a twice differentiable convex function on $I$ and $a, b \in I$, with $a<b$, then by (2.1) we get

$$
\begin{align*}
0 & \leq \frac{1}{32}(b-a)^{4} \inf _{t \in[a, b]}\left(\int_{0}^{1} f^{\prime \prime}\left((1-s) \frac{a+b}{2}+s t\right)(1-s) d s\right)  \tag{3.1}\\
& \leq \int_{a}^{b}\left|t-\frac{a+b}{2}\right| f(t) d t-\frac{1}{4} f\left(\frac{a+b}{2}\right)(b-a)^{2} \\
& \leq \frac{1}{32}(b-a)^{4} \sup _{t \in[a, b]}\left(\int_{0}^{1} f^{\prime \prime}\left((1-s) \frac{a+b}{2}+s t\right)(1-s) d s\right)
\end{align*}
$$

If there exists the constants $\Gamma>\gamma>0$ such that $\Gamma \geq f^{\prime \prime}(x) \geq \gamma$ for almost every $x \in(a, b)$, then by (2.6)

$$
\begin{align*}
0 & \leq \frac{1}{64} \gamma(b-a)^{4} \leq \int_{a}^{b}\left|t-\frac{a+b}{2}\right| f(t) d t-\frac{1}{4} f\left(\frac{a+b}{2}\right)(b-a)^{2}  \tag{3.2}\\
& \leq \frac{1}{64} \Gamma(b-a)^{4}
\end{align*}
$$

If $f^{\prime \prime}$ is monotonic nondecreasing on $(a, b)$, then by $(2.8)$

$$
\begin{align*}
0 & \leq \frac{1}{32}\left[\frac{2}{b-a}\left(f(a)-f\left(\frac{a+b}{2}\right)\right)+f^{\prime}\left(\frac{a+b}{2}\right)\right](b-a)^{3}  \tag{3.3}\\
& \leq \int_{a}^{b}\left|t-\frac{a+b}{2}\right| f(t) d t-\frac{1}{4} f\left(\frac{a+b}{2}\right)(b-a)^{2} \\
& \leq \frac{1}{32}\left[\frac{2}{b-a}\left(f(b)-f\left(\frac{a+b}{2}\right)\right)-f^{\prime}\left(\frac{a+b}{2}\right)\right](b-a)^{3}
\end{align*}
$$

If $f^{\prime \prime}$ is convex on $(a, b)$, then by (2.10)

$$
\begin{align*}
0 & \leq \frac{1}{64} \inf _{t \in[a, b]} f^{\prime \prime}\left(\frac{a+b+t}{3}\right)(b-a)^{4}  \tag{3.4}\\
& \leq \int_{a}^{b}\left|t-\frac{a+b}{2}\right| f(t) d t-\frac{1}{4} f\left(\frac{a+b}{2}\right)(b-a)^{2} \\
& \leq \frac{1}{96}\left(f^{\prime \prime}\left(\frac{a+b}{2}\right)+\frac{1}{2} \sup _{t \in[a, b]} f^{\prime \prime}(t)\right)(b-a)^{4} .
\end{align*}
$$

Finally, if $f^{\prime \prime}$ is convex on $(a, b)$, then by (2.12) we get

$$
\begin{align*}
0 & \leq \frac{1}{64} f^{\prime \prime}\left(\frac{a+b}{2}\right)(b-a)^{4}  \tag{3.5}\\
& \leq \int_{a}^{b}\left|t-\frac{a+b}{2}\right| f(t) d t-\frac{1}{4} f\left(\frac{a+b}{2}\right)(b-a)^{2} \\
& \leq \frac{1}{96}\left[f^{\prime \prime}\left(\frac{a+b}{2}\right)+\frac{f^{\prime \prime}(a)+f^{\prime \prime}(b)}{4}\right](b-a)^{4} .
\end{align*}
$$

## 4. Examples for Exponential and Logarithm

We consider the exponential function $f(x)=\exp (\alpha x), x \in \mathbb{R}$. We have $f^{\prime \prime}(x)=$ $\alpha^{2} \exp (\alpha x)$, which shows that $f^{\prime \prime}$ is also convex. Also

$$
\begin{aligned}
E_{1}(\alpha ; a, b) & :=\alpha^{2}\left\{\begin{aligned}
\exp (\alpha a), \alpha<0 \\
\exp (\alpha b) \alpha>0
\end{aligned}\right. \\
& \leq f^{\prime \prime}(x) \\
& \leq \alpha^{2}\left\{\begin{array}{r}
\exp (\alpha a), \alpha<0 \\
\exp (\alpha b), \alpha>0
\end{array}:=E_{2}(\alpha ; a, b)\right.
\end{aligned}
$$

for $x \in[a, b]$.
From the inequality (2.6) we get

$$
\begin{align*}
0 & \leq \frac{1}{2} E_{1}(\alpha ; a, b) \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t  \tag{4.1}\\
& \leq \int_{a}^{b} p(t) \exp (\alpha t) d t-\exp \left[\alpha\left(\frac{a+b}{2}\right)\right] \int_{a}^{b} p(t) d t \\
& \leq \frac{1}{2} E_{2}(\alpha ; a, b) \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t
\end{align*}
$$

where $p:[a, b] \rightarrow[0, \infty)$ is Lebesgue integrable and symmetric on $[a, b]$.
From the inequality (2.12) we get

$$
\begin{align*}
0 & \leq \frac{1}{2} \alpha^{2} \exp \left(\alpha\left(\frac{a+b}{2}\right)\right) \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t  \tag{4.2}\\
& \leq \int_{a}^{b} p(t) \exp (\alpha t) d t-\exp \left[\alpha\left(\frac{a+b}{2}\right)\right] \int_{a}^{b} p(t) d t \\
& \leq \frac{1}{3} \alpha^{2}\left[\exp \left(\alpha\left(\frac{a+b}{2}\right)\right)+\frac{\exp (\alpha a)+\exp (\alpha b)}{4}\right] \\
& \times \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t
\end{align*}
$$

where $p:[a, b] \rightarrow[0, \infty)$ is Lebesgue integrable and symmetric on $[a, b]$.
Now, consider the function $f(t):=-\ln t, t \in[a, b] \subset(0, \infty)$. This is convex and $f^{\prime \prime}(t)=\frac{1}{t^{2}}$, which is also convex on $[a, b]$.

By the inequality (2.6) we have

$$
\begin{align*}
0 & \leq \frac{1}{2 b^{2}} \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t  \tag{4.3}\\
& \leq \ln \left(\frac{a+b}{2}\right) \int_{a}^{b} p(t) d t-\int_{a}^{b} p(t) \ln t d t \\
& \leq \frac{1}{2 a^{2}} \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t
\end{align*}
$$

where $p:[a, b] \rightarrow[0, \infty)$ is Lebesgue integrable and symmetric on $[a, b]$.
From the inequality (2.12) we have

$$
\begin{align*}
0 & \leq \frac{2}{(a+b)^{2}} \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t  \tag{4.4}\\
& \leq \ln \left(\frac{a+b}{2}\right) \int_{a}^{b} p(t) d t-\int_{a}^{b} p(t) \ln t d t \\
& \leq \frac{1}{3}\left[\frac{4}{(a+b)^{2}}+\frac{a^{2}+b^{2}}{4 a^{2} b^{2}}\right] \int_{a}^{b} p(t)\left(t-\frac{a+b}{2}\right)^{2} d t
\end{align*}
$$

where $p:[a, b] \rightarrow[0, \infty)$ is Lebesgue integrable and symmetric on $[a, b]$.

## References

[1] M. Akkouchi, Improvements of some integral inequalities of H. Gauchman involving Taylor's remainder. Divulg. Mat. 11 (2003), no. 2, 115-120.
[2] G. A. Anastassiou, Taylor-Widder representation formulae and Ostrowski, Grüss, integral means and Csiszar type inequalities. Comput. Math. Appl. 54 (2007), no. 1, 9-23.
[3] G. A. Anastassiou, Ostrowski type inequalities over balls and shells via a Taylor-Widder formula. J. Inequal. Pure Appl. Math. 8 (2007), no. 4, Article 106, 13 pp.
[4] S. S. Dragomir, New estimation of the remainder in Taylor's formula using Grüss' type inequalities and applications. Math. Inequal. Appl. 2 (1999), no. 2, 183-193.
[5] S. S. Dragomir and H. B. Thompson, A two points Taylor's formula for the generalised Riemann integral. Demonstratio Math. 43 (2010), no. 4, 827-840.
[6] S. S. Dragomir, A Note on Young's Inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 126. [http://rgmia.org/papers/v18/v18a126.pdf].
[7] S. S. Dragomir, A note on new refinements and reverses of Young's inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 131. [http://rgmia.org/papers/v18/v18a131.pdf].
[8] S. Furuichi, On refined Young inequalities and reverse inequalities, J. Math. Inequal., 5 (2011), 21-31.
[9] S. Furuichi and N. Minculete, Alternative reverse inequalities for Young's inequality, J. Math Inequal. 5 (2011), Number 4, 595-600.
[10] H. Gauchman, Some integral inequalities involving Taylor's remainder. I. J. Inequal. Pure Appl. Math. 3 (2002), no. 2, Article 26, 9 pp. (electronic).
[11] H. Gauchman, Some integral inequalities involving Taylor's remainder. II. J. Inequal. Pure Appl. Math. 4 (2003), no. 1, Article 1, 5 pp. (electronic).
[12] D.-Y. Hwang, Improvements of some integral inequalities involving Taylor's remainder. J. Appl. Math. Comput. 16 (2004), no. 1-2, 151-163.
[13] A. I. Kechriniotis and N. D. Assimakis, Generalizations of the trapezoid inequalities based on a new mean value theorem for the remainder in Taylor's formula. J. Inequal. Pure Appl. Math. 7 (2006), no. 3, Article 90, 13 pp. (electronic).
[14] F. Kittaneh and Y. Manasrah, Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl., 361 (2010), 262-269
[15] F. Kittaneh and Y. Manasrah, Reverse Young and Heinz inequalities for matrices, Linear Multilinear Algebra., 59 (2011), 1031-1037.
[16] W. Liao, J. Wu and J. Zhao, New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, Taiwanese J. Math. 19 (2015), No. 2, pp. 467-479.
[17] Z. Liu, Note on inequalities involving integral Taylor's remainder. J. Inequal. Pure Appl. Math. 6 (2005), no. 3, Article 72, 6 pp. (electronic).
[18] W. Liu and Q. Zhang, Some new error inequalities for a Taylor-like formula. J. Comput. Anal. Appl. 15 (2013), no. 6, 1158-1164.
[19] W. Specht, Zer Theorie der elementaren Mittel, Math. Z., 74 (1960), pp. 91-98.
[20] M. Tominaga, Specht's ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 583-588.
[21] N. Ujević, Error inequalities for a Taylor-like formula. Cubo 10 (2008), no. 1, 11-18.
[22] G. Zuo, G. Shi and M. Fujii, Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5 (2011), 551-556.
[23] E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54 (1948), 439-460.
[24] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), No. 2, Article 31. [Online https://www.emis.de/journals/JIPAM/article183.html?sid=183].
[25] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), No. 3, Article 35. [Online https://www.emis.de/journals/JIPAM/article187.html?sid=187].
[26] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results. Aust. J. Math. Anal. Appl. 14 (2017), no. 1, Art. 1, 283 pp. [Online http://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P1.tex].
[27] S. S. Dragomir and C. E. M. Pearce, Selected Topics on HermiteHadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online http://rgmia.org/monographs/hermite_hadamard.html].
[28] L. Féjer, Über die Fourierreihen, II, (In Hungarian). Math. Naturwiss, Anz. Ungar. Akad. Wiss., 24 (1906), 369-390.
[29] D. S. Mitrinović and I. B. Lacković, Hermite and convexity, Aequationes Math. 28 (1985), 229-232.
[30] A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, 1973.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the WitwaterSrand, Johannesburg, South Africa.


[^0]:    1991 Mathematics Subject Classification. 26D15, 26D10.
    Key words and phrases. Convex functions, Integral inequalities, Hermite-Hadamard inequality, Féjer's inequalities.

