REVERSES AND REFINEMENTS OF FIRST FEJER’S
INEQUALITY FOR TWICE DIFFERENTIABLE CONVEX
FUNCTIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we provide upper and lower bounds for the first

Féjer’s difference
b b
[r0rwa-r(“50) [owa

in the case of twice differentiable convex functions under various assumptions
for the second derivative f’/ and p : [a,b] — [0, 00) a Lebesgue integrable and
symmetric function on [a, b].

1. INTRODUCTION

The following inequality holds for any convex function f defined on R
()< _ f0)+10)

2 )
It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [29]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of convex
functions, wrote that this inequality was proven by J. Hadamard in 1893 [23]. In
1974, D. S. Mitrinovi¢ found Hermite’s note in Mathesis [29]. Since (1.1) was known
as Hadamard’s inequality, the inequality is now commonly referred as the Hermite-
Hadamard inequality. For a monograph devoted to this result see [27]. The recent
survey paper [26] provides other related results.

Let f : [a,b] — R be a convex function on [a,b] and assume that f) (a) and
fL (b) are finite. We recall the following improvement and reverse inequality for
the first Hermite-Hadamard result that has been established in [24]

(12) o<y [h (552) - (5| oo

<ot [rwa-r(“F) <to-0 o - ).

a, beR, a<b.
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The following inequality that provides a reverse and improvement of the second
Hermite-Hadamard result has been obtained in [25]

(1.3) 0<:;[ﬁ(“;b) 7 <a+b)} (b—a)
f()2 —a/f

The constant § is best possible in both (1.2) and (1.3).
In 1906, Féjer [28], while studying trigonometric polynomials, obtained inequal-
ities which generalize that of Hermite & Hadamard:

—a) [fL(b) = f} (a)].

OO\H

Theorem 1. Consider the integral f: f (&) p(t)dt, where f is a convex function in
the interval (a,b) and p is a positive function in the same interval such that

platt=pb-1), 0<t<(b-a),
,Y=Dp (t) 18 a symmetric curve with respect to the straight line which contains

the point (3 (a+1b),0) and is normal to the t-axis. Under those conditions the
following inequalities are valid:

(1.4) f(‘”b)/ dt</ F)p(t)dt < f(a>;f(b) /abp(t)dt.

If f is concave on (a,b), then the inequalities reverse in (1.4).

We have the following refinement and reverse of Fejer’s first inequality:

Theorem 2. Let f be a convexr function on I and a, b € I, with a < b. If p :
[a,b] — [0,00) is Lebesgue integrable and symmetric, namely p(b+a —t) = p(t)

for allt € [a,b], then
b b b b
w) oy [ b=t waln () -1 ()]

g/abpu)f(t)dt (pr(i)d’f)f(a;b)

b
<3/ P70~ 1 @)

The following theorem is well known in the literature as Taylor’s formula or Tay-
lor’s theorem with the integral remainder.

b
tiaJr

Theorem 3. Let I C R be a closed interval, a € I and let n be a positive integer.
If f: T — C is such that the n-derivative f™ is absolutely continuous on I, then
for each x €1

(1.6) (@) =T, (f;a,2) + Rn (f;0,),
where T,, (f;c,y) is Taylor’s polynomial, i.e.,

(1.7) n(fia,x) Z f(k) (a).

k=0
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Note that f© := f and 0! := 1 and the remainder is given by

(1.8) Ry (fia,z) = % / " -ty f (1)

A simple proof of this theorem can be achieved by mathematical induction using
the integration by parts formula in the Lebesgue integral.

For related results, see [1]-[5], [10]-[13], [17]-[18] and [21].

For any integrable function h on an interval and any distinct numbers ¢, d in
that interval, we have, by the change of variable t = (1 — s) ¢ + sd, s € [0,1] that

d 1
/h(t)dt:(d—c)/ h((1—s)c+ sd) ds.
c 0

Therefore,

/ " () (@ o)

a

=(r—a lf(" 1) —s)a+sz)(x—(1—s)a—sz)"ds
( )/0 ((1 ) )( (1 ) ) d
—(r—a n+1 ! (n+1) ((1 — s) a -+ sa:) (1 — S)n ds

( ) /of .

The identity (1.6) can then be written as
n

19 f@=Y /M@ -a)
k=0

1 1
+ ] (z—a)"™ [ FOY (1= s)a+sz)(1—s)"ds
- 0

for all z, a € I.
In this paper we provide upper and lower bounds for the first Féjer’s difference

[rwswa-r(“50) [pwa

in the case of twice differentiable convex functions under various assumptions for the
second derivative f” and p : [a,b] — [0,00) a Lebesgue integrable and symmetric
function on [a, b].

2. MAIN RESULTS

‘We have:

Theorem 4. Let f be a twice differentiable convex function on I and a, b € I,
with a < b. If p : [a,b] — [0,00) is Lebesque integrable and symmetric, namely
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pb+a—t)=p(t) for allt € [a,b], then

(2.1) 0< it (/Olf” ((1—3)‘2”)+ t> (1—s)ds>
x/abp(t) (ta;_b)th
g/abp(t)f(t)dt—f<a;b> /abp(t)dt
<am ([ (005t ea)u-na)
x/abp(t) (t—a;b)zdt.

In particular, if p =1, then

(22)  0<-=(b—a)? inf (/Olf"<(1s)“;b+ t>(1s)d>

t€la,b]

rwa-1(*537)6-a)

(bfa)?’tz*}g)b] (/Olf” ((13)“;b+st> (ls)ds>.

Proof. We have from (1.9) for n = 2 that

<

<

5"‘?\_5

F@) = F(©+F () @—c)+(@—c) /f” St sz) (1— s)ds

for all z, ¢ € [a,b], where f is such that f’ is absolutely continuos on [a, b].
If we replace ¢ with %2 and z with ¢, then we get

(2.3) f(t):f<a;rb>+f/(a;b> (t_a;b>

2
—&-(t—a;b) /Of”((l—s)a;b—l—st)(l—s)ds
for all ¢ € [a,b].

If we multiply (2.3) with p(¢) > 0 and integrate, then we get

ey [posoa
(“ib)/bp et (57) [0 (= 55)

(- “b) < Olf” ((1—3)“;b+st> (l—s)ds>dt.

Since the function p (¢) (t — 2£2) is asymmetric on [a, b], hence

/abp(t) <ta;b)dt0
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and by (2.4) we get

@) [rwswa-r(50) [pwa

/abp(t) (ta;b)Q(/olf” <(15)a;rb+3t) (ls)ds>dt.

Observe that for all ¢ € [a,b] we have

! b
Ogtéﬁﬁb] </0 i ((1—8)(1—2'_ +st> (1—s)ds>

g/olf” ((1—s)a2+b+st) (1—s)ds

v, _atb B
Stzl[ﬁ](/of ((1 s) 5 +5t>(1 S)dS)

and by the equality (2.5) we get (2.1).

Since
b a—+ b 2 1 5
t— dt = b—

hence by (2.1) we get (2.2). O

Corollary 1. With the assumptions of Theorem 4 and if there exists the constants
' >~ >0 such that T > f" (z) >~ for almost every z € (a,b), then

(2.6) OS;’y/abp(t) (t—a;—b>2dt§/jp(t)f(t)dt—f(a;b) /abp(t)dt
1
2

and

a+b

b
(2.7) 0§214(b—a)3~y§/af(t)dt—f< )(b—a)gilF(b—a)g.

Proof. From (2.1) we get

O§’y</01(1—s)ds> /abp(t) <t—a;rb>2dt

which is equivalent to (2.6). O
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Corollary 2. With the assumptions of Theorem 4 and if f" is monotonic nonde-
creasing on (a,b), then

e e (59 (2
/ ( a+b)
franas 1) fros
Sb—a[bfa(f“)—f(a?b))—f’(aa”ﬂ
x/abp(t) (t—a;b)th

and

2 osi[Z (r@-r () ()] 00

1
5
gff(t)dt—f(“gb)(b—a)

52 (s (23)-r (3 oo

Proof. Observe that, by the monotonicity of f”, we have for all ¢ € [a, b]

/Olf“((1s)“2“’+st>(1s)ds

z/olf” <(1s)‘12+b+sa) (1—s)ds

/Olf,,<a;rb5b2a>(15)ds

ool

:_bfa l(l_s)f,<a—2&—b_sb;a> :+/01f,<a;b_8b;a>d81

[ () e (5]
() (2]
:_bza[_bz f<a—2i-b_sb;a> j_f,<a+b)

2 a

|
el (43 s (s ()

IN

S|

()

[\]
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and
1f” (1—3)a+b+st>(1—s)ds
0 2
1 ot
1 _ b _ d
§/0f<(1 ) —|—)(1 s)ds
Yo (a+D b—a
:/of ( 5 55 )(1—s)ds
! b, b
:bfa/o (1- )df’(a;— + 2“)
2 ,(a+b b—a\l|" Vo (a+b b—a
b—a[(l)f<2 2>0+/0f<2 52)4
2 L (a+b b—a ,(a+b
Snal (et ()
2 2 ! a+b b—a ,(a+b
“b-a b—a/o df( y T >_f( 2 )]
2 2 a+b b—a\l|' ,(a+b
“b-a b—a[f< 2 T >01_f< 2 )
2 2 a+b ,[a+b
ialima 0 (7)) ()]
Therefore, by (2.1) we get (2.8). O

Corollary 3. With the assumptions of Theorem 4 and if f" is convex on (a,b),
then

1. L, (a+b+t) [° a+b\’
(210) Ogitelﬁf:b]f <3>/a p(t) (t— D) ) dt

b b

Cowrrwa-r(57) [ rwa

1( ., (a+bd 1 " b a+b\’
§3<f (4 )+2t231?b]f <t>>/ap<t> (- 25")

In particular, if p =1, then

(2.11) Og%l(b—af inf f(M)

INA
—~
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Proof. If f" is convex on (a,b), then by Jensen’s integral inequality we have for

t € [a,b] that
/lf” <(1—s)a+b+st> (1—s)ds
0 2

2/1(1S)dsf'/<fo [(1-s) a+b+5ﬂ (1—s)ds)
0

fo (1—s)ds

_lf” (“Q'H’fol (l—s)2ds+tfols(1—s)ds>

= 1
2 2
_ Ly atb 4 ¢ _ L (atbtt
2 i 2 3 '
Also, by the convexity of f” we have

/Olf”<(1_s)a;rb+st)(1—s)ds
</01 [(1—3)1‘ (a;b)+ f”()} (1-s)ds

1,,(a+d 1.,
=3 () + 0

for ¢t € [a,b].
Therefore, by (2.1) we get (2.10). O

We also have:

Theorem 5. Let f be a twice differentiable convex function on I and a, b € I, with
a < b while p : [a,b] — [0,00) is Lebesgue integrable and symmetric. If f is convex
on [a,b], then

b 2
(2.12) 0<;f”(a;b>/Gp(t) (t—a;_b) dt
b a
[ rora-( ;")/ p(t)dt
1[7.,(a+b 1" (a) a+b\?
sl () H ] [0 (25
In particular, we have

(2.13) 0< 2—14f” (a;b> b —a)®

S/abf(t)dt—f<a;rb)(b—a)

L () L0 e

IN

IN
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Proof. From (2.5) and Fubini theorem we have

e [poroa-r(“5) [vow

:/01 (/abp(t) (t—a;b>2f” ((1—s)a;rb+st)dt> (1—s)ds

=K.

Since for all s € [0,1] the function [a,b] 3 ¢t — f” ((1—s) 2 + st) is convex

and the function [a,b] 3> ¢t — p(t) (t — 252
inequality we have

(2.15) f’/(a;b)/abp(t) (t—a;_b>2dt
— <(1—8)a;b+sa;b>/abp(t) (t—a;b)th
< [vo <ta;b>2f” (=95 st)at

(1= a+b " _ a+b b b b 2
1A s)2+wii(( +s%/p ( ¢;>ﬁ

< [(1—s>f"(“;b)+sf"<“>;f"<q/abp(t) (t—“‘gb)th.

If we multiply (2.15) by (1 — s) and integrate, then we get

f"<“;b> /abp(t) (ta;rb>2dt/01(ls)ds

<K

x/ab () (ta;b)th

:{ <a-2u)>+f”(a)1+2f”(b)]/a"p(t) (t_a—Qf—b>2dt7

f
1
3
which is equivalent to (2.12). O

: )2 is symmetric on [a,b], then by Féjer

p
7f”

3. AN EXAMPLE FOR SYMMETRIC FUNCTIONS

Consider the symmetric function p (t) = |t — “T“’| , t € [a,b]. Observe that

/abp@mt/:

b
tiaJr

‘dti(ba)Q
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and

2
ta+b‘ (ta+b) i

b 2 b
a+b
/Gp(t)<t 5 > dt—/a 5 B
b 3
o a+b - 1 4
—/Ler (t_ B ) dt—@(b a) .

2

Let f be a twice differentiable convex function on I and a, b € I, with a < b, then
by (2.1) we get

1
<g0-0' g, ([ (02955 e 0.

If there exists the constants I' > v > 0 such that T' > f” () > ~ for almost
every z € (a,b), then by (2.6)

b
G2 0=gab-a's [

t—a;b'f(t)dt—if (“‘2”)> (b—a)?

1 4
< — — .
< 64F(b a)

If " is monotonic nondecreasing on (a,b), then by (2.8)

6y osg [t (re-r(%50) < s (%50)] e- o
</ab t—a;b‘f(t)dt—if<a;rb> (b a)?
o3 5o

If " is convex on (a,b), then by (2.10)

I a+b+t A
. < = A0 - —
(3-4) 0<%,/ ( 3 >(b @)
b
a+b 1,./a+b 2
< _ _ _
_/a t—— ‘f(t)dt 4f( 5 )(b a)

1 " a+b 1 " 4
96<f < 9 )+2t:h11¥”b]f (t))(ba).
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Finally, if f” is convex on (a,b), then by (2.12) we get

1 17 a+b 4
(35) 0< s (2) (b a)
b
< [le-23 roa- 31 (55) 0=

IN

L] (20) 4 L O oy

4. EXAMPLES FOR EXPONENTIAL AND LOGARITHM

We consider the exponential function f (z) = exp (ax), z € R. We have f” (z) =
a? exp (ax) , which shows that f” is also convex. Also

exp (aa), <0
Ei (a;a,b) := o?
exp (ab) @ >0

< f' (@)
exp (aa), a <0
<a? = Fs (o a,b)
exp (ab), >0
for z € [a,b].
From the inequality (2.6) we get
1 b b\?
(4.1) 0§§E1 (oz;cub)/ p(t) (t_a;‘ ) dt

b a+b

p (1) exp (at) dt — exp {a (2>] /abp(t) dt
< %EQ (a;a,b)/abp(t) (t a;b>2dt,

where p : [a,b] — [0,00) is Lebesgue integrable and symmetric on [a, b] .
From the inequality (2.12) we get

(4.2) 0<;a2exp<a(a—2~_b)>/;p(t) (t—a;—b)th
/abp(t) exp (at) dt — exp {a (a;b)] /abp(t) dt
%oﬂ {exp (a (a—;b)) sy (oza)l—exp (ab)}

X/abp(t) (ta;b>2dt,

where p : [a,b] — [0, 00) is Lebesgue integrable and symmetric on [a, b] .
Now, consider the function f (¢) := —1Int, ¢t € [a,b] C (0,00) . This is convex and

f" (t) = %, which is also convex on [a, D] .

IA
—

IN

IN
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By the inequality (2.6) we have

(4.3) 0<222/abp(t)<t—a;b)2dt

<In (a;b> /abp(t)dt—/abp(t)lntdt

b 2
po) (- 457 )

< —
2a2 J,

where p : [a,b] — [0,00) is Lebesgue integrable and symmetric on [a, b] .
From the inequality (2.12) we have

(4.4) ogmjbf/abp(t)e—“;bfdt

<In <a—2|—b> /abp(t)dt/abp(t)lntdt

1 4 a? + b? b a+b\’
<z t)(t— dt
S5 | (@r? | AP /ap()< 2 > ’

where p : [a,b] — [0,00) is Lebesgue integrable and symmetric on [a, b] .
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