AN INTEGRAL REPRESENTATION OF THE REMAINDER IN
TAYLOR’S EXPANSION FORMULA FOR ANALYTIC
FUNCTIONS ON BANACH ALGEBRAS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we establish an integral representation of the remain-
der in Taylor’s expansion formula for analytic functions of elements in Banach
algebras when the functions are defined on convex domains. Error bounds are
provided and some examples for the complex exponential in Banach algebras
are also given.

1. INTRODUCTION

Let f : D C C — C be an analytic function on the convex domain D and y,
x € D, then we have the following Taylor’s expansion with integral remainder is
valid

LY f@)=> /M@ w-2
k=0
1 n+1 ! (n+1) n
+o -2 SN = s)z + syl (1 —5)" ds
- 0
for n > 0, see for instance [24].
Consider the function f(z) = Log(z) where Log(z) = In|z| + ¢ Arg(z) and
Arg(z) is such that —7 < Arg(z) < w. Log is called the "principal branch" of

the complex logarithmic function. The function f is analytic on all of C, :=
C\{z+iy:2 <0, y=0} and

(=D (k- 1)!

% , k>1, ze€ Cy.
z

f® (z) =

Using the representation (1.1) we then have

n k—1 k
(1.2)  Log(z) =Log () + ) S <Z . x)

k T
k=1

(1—5)"ds
1—3s)z+ sz]

n+1

1
(1) (2 — ) / g

for all z, x € C; with (1 — s)z + sz € Cy for s € [0,1].
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2 S.S. DRAGOMIR

Consider the complex exponential function f (z) = exp (2), then by (1.1) we get

(1.3) exp(z) =exp(x —(z —x)
k:O

+ % (z— )"t /o (1—3s)"exp[(1 —s)x+ sz]ds

for all z, x € C.

For various inequalities related to Taylor’s expansions for real functions see [1]-
[3], [8] and [16]-][23].

In order to extend Taylor’s formula for function defined on Banach algebras, we
need the following preparations.

Let B be an algebra. An algebra norm on B is a map ||-|| : B—[0,c0) such that
(B,|I-]) is a normed space, and, further: ||ab|| < |la| ||b|| for any a,b € B. The
normed algebra (B, ||-||) is a Banach algebra if ||-|| is a complete norm. We assume
that the Banach algebra is unital, this means that B has an identity 1 and that
1 = 1.

Let B be a unital algebra. An element a € B is invertible if there exists an
element b € B with ab = ba = 1. The element b is unique; it is called the inverse of
a and written ! or . The set of invertible elements of B is denoted by Inv (B).
If a,b € Inv (B) then ab € Inv (B) and (ab)™" = b~la L.

For a unital Banach algebra we also have:

(i) If a € B and lim, o [|a”||"/™ < 1, then 1 — a € Inv (B);
(ii) {a € B: |1 0| <1} C Inv(B);
(iii) Inv(B) is an open subset of B;

v)

(i

For simplicity, we denote z1, where z € C and 1 is the identity of B, by z. The
resolvent set of a € B is defined by

pla) ={z€C: z—aclnv(B)};

The map Inv (B) 3 a — a~! € Inv (B) is continuous.

the spectrum of a is o (a) , the complement of p (a) in C, and the resolvent function
of ais Ry : p(a) — Inv(B), Ry (2) := (z —a)~". For each z,w € p(a) we have the
identity

We also have that
oa) C{zeC: |z|<]|al}.
The spectral radius of a is defined as
v(a) =sup{|z|:z€0(a)}.
Let B a unital Banach algebra and a € B. Then
(i) The resolvent set p (a) is open in C;

(ii) For any bounded linear functionals A : B —C, the function Ao R, is analytic
on p(a);

(iii) The spectrum o (a) is compact and nonempty in G;

(iv) For each n € N and r > v (a), we have a" = 5= flﬁ\—r £ (€ —a)t de;

(v) We have v (a) = lim,, ||an||1/n .



A REPRESENTATION OF THE REMAINDER IN TAYLOR’S EXPANSION 3

Let B be a unital Banach algebra, @ € B and G be a domain of C with o (a) C G.
If f: G — C is analytic on G, we define an element f (a) in B by

(1.4) = 57 [ HO €0 e

where § C G is taken to be close rectifiable curve in G and such that o (a) C ins (),
the inside of 4.

It is well known (see for instance [6, pp. 201-204]) that f (a) does not depend
on the choice of § and the Spectral Mapping Theorem (SMT)

(1.5) o (f(a)) = f(o(a))

holds.

Let $ol(a) be the set of all the functions that are analytic in a neighborhood
of o (a). Note that $ol(a) is an algebra where if f, g € $ol(a) and f and g have
domains D (f) and D (g), then fg and f + ¢ have domain D (f) N D (g). $Hol(a) is
not, however a Banach algebra.

The following result is known as the Riesz Functional Calculus Theorem [6, .
201-203]:

Theorem 1. Let B a unital Banach algebra and a € B.

(a) The map f — f(a) of Hol(a) — B is an algebra homomorphism.
(b) If [ (2) = Yoy ar2”® has radius of convergence r > v (a), then f € $Hol (a)
and f(a) = Y7o, aa®.
(c¢) If f(2) =1, then f(a) = 1.
() If f(2) =z for all z, f(a) =a
(e) If f, f1, ey fr... are analytic on G, o (a) C G and f,, (2) — f (2) uniformly
on compact subsets of G, then ||fn (a) — f (a)|| — 0 as n — oo.
(f) The Riesz Functional Calculus is unique and if a, b are commuting elements
in B and f € $Hol(a), then f(a)b=>bf (a).
For some recent norm inequalities for functions on Banach algebras, see [4]-[5]
and [9]-[15].
In this paper we establish an integral representation of the remainder in Taylor’s
expansion formula for analytic functions of elements in Banach algebras when the

functions are defined on convex domains. Error bounds are provided and some
examples for the complex exponential in Banach algebras are also given.

2. SOME IDENTITIES
We have:

Theorem 2. Let B be a unital Banach algebra, a € B and G be a convex domain
of C with o (a) C G. If f : G — C is analytic on G, then for all A\ € G andn >0
we have

21) f@)=3 17" ()@

+—=(a—N""" /U1 FOY (1= s) A+ sa) (1 — s)" ds.
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Proof. Assume that 6 C G is taken to be close rectifiable curve in G and such that
o (a) C ins(0) . By using the analytic functional calculus (1.4) and the representa-
tion (1.1) we have for all A € G that

22 f@=5s [ (Z 270 () <§—A>’“> (€~ o) dg

k=0
1 1
n! 274 Ky

(€ - N ( / O () A €] (1 8)" ds) (6—a) " de
= ; S0 (217” /5 €=V E-a) d€>

n 1 (1 / € - )\)n+1 FOFED (1= s) X+ s€] (€ — a)*l dg) (1—s)"ds,

nl Jo \2mi J;

where for the last equality we used Fubini’s theorem.
Using the functional calculus for the analytic functions G 3 £ — (€ — )\)]C eC
and G 3 & — (€ = N)"T' FOHD [(1 = 5) A + s¢] € C we have

1 2 —1 50 k
7 €V €0 dE= (@)
and
1 _
ami [, €NV A -9 A+ se] (€ —a)7 e
=(a— X" O [(1 - 5) XA+ sq],
then by (2.2) we get the desired result (2.1). O

Corollary 1. With the assumptions of Theorem 2 and if b € B, then we have the
perturbed formula

(23) f@)=3 /M )@=+ (0= 2"

P (n+1)!

+ % (a— )" /01 [f("“) ((1—s) A+ sa) — b} (1—5)"ds.

Proof. We have

1 n+1 ! n n
a(af)\)Jr/o £ (1= ) A+ sa) = b] (1= )" ds
= % (a - A)”“/0 FOD (L= 8) A+ sa) (1— 5)" ds
—%(a—)\)"“b/o (1—s)"ds
1 n+1 ! n+1 n 1 el
== a=N" /0 FOED (1= ) At sa) (1= 8)" ds = oy (a = 0",

and by (2.1) we get (2.3). O
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Remark 1. Under the assumptions of Theorem 2 and if we take various particular
values for b we can get the following particular equalities of interest

(24) f(a)= io %f(k) () (a — )\)k + = i o (a— )\)n+1 f(n+1) (a)
+ % (a )\)'n+1/0 |:f(n+1) ((1—8) A+ sa) — f( D) (a)} (1—s)"ds,
n+1 1 .
(25) fla)=) PN (=N
k=0 "

oyt ety (At
= k! (n+1)!(a NS H( 2 >

st | 1 (s - g0 (AR - o as

and

@7 Fa)=3 5/ 0 @A
k=0

1
(a— 2" / FOHD (1= 1) A + 7a) dr
0

1 n+1
+ ﬁ (CL— )\)

(n+1)!

! (n+1) s sa) — ' (n+1) —r Ta)dr —s)"ds.
x/o[f (1= ) A+ s0) = [ £ (1 =) At rayar| (1= s)"d

Let a € B with ¢ (a) C G where G is a convex domain in
Cr:=C\{z+iy:2<0, y=0}.

The function f (z) = Log (z) is analytic in G and by using the functional calculus
(1.4) we can define the element

28) Loga = 5 [ Log () (€~ )" e

where 6 C G is taken to be close rectifiable curve in G and such that o (a) C ins ().
Now, by using some of the above identities for the Log function, we can state
for A € G and n > 1 that

oL (-t k
29) Loga = Log\+ —(a— A
(2.9) Log g ; F (@

1
+ (—=1)" (af)\)"H/O (1 —s)A4sa) "' (1—5)"ds,
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)kfl

— (-1 ko (=D" ntl  —n—1
2.10) Loga = Log\ + —(a— )"+ a— A\ a "
210) Loga=LogA+ 32 =G (e= "+ (0=

(=) (a— N /01 [((1 —§)A+sa) - a—"—l} (1 s)"ds,

and

n+1(_ )k—l A
2.11 Loga = Log A + ——(a— A
(2.11) g g ; o ( )

F (=) (a— )" /1 [((1 —$)A+sa)" - A‘”‘l] (1—s)"ds,

0

provided (1 — s) A + sa is invertible for all s € [0, 1].

For n = 0 the sum-term above must be dropped.

If we use some of the general equalities above for the exponential function, we
have

(2.12) expa= exp)\z % (a— )"
k=0 """

+ % (a— )" /0 exp ((1—8) A+ sa)(1—s)"ds.

"1 :
(2.13) expa =expA Z o (a—NF + (a—N""expa

= k! (n+41)!

1
+ % (a—X\)" /o [exp (1 — 8) A+ sa) — exp (a)] (1 — )" ds,

and
n+1

(2.14) expa=-expA Z o (a— )"
k=0

+ % (a— A)"“/O [exp ((1 — s) A+ sa) —exp A (1 — s)" ds,

foralla € B, A€ C and n > 0.

3. NORM INEQUALITIES

We start with the following basic result:

Theorem 3. Let B be a unital Banach algebra, a € B and G be a convex domain
of C with o (a) C G. If f : G — C is analytic on G, then for all A\ € G andn >0
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we have

(3.1) Hf (@)= 32 2 f® ) (a2
k=0 "

< Lha [ - s sa @ - o

T SUPse(0,1] | £ (1= 5) A+ sa)|

1/p
1 , 1 (n+1) P )
< —lla— A (nqn+1)1/q (fo | f (1= s)A+sa)||"ds
n where p, q > 1 with % —|— =1

Jo 1£0 (1= ) A+ sa)|| ds.

Proof. Using the equality (2.1) we have

(32) Hf (@)~ 3 27O () (- X"
k=0

A /01 FOD (1= $) A+ sa) (1 —s)"ds

a— A)TL-’rl

/1 FOHD (1= s) A+ sa) (1 —s)" ds
0

1 n 1 " .
< apla=Ar [ =9 as s @ -9 ds =4

which proves the first inequality in (3.1).
Using Holder’s integral inequality we have

/anﬂ) )\+saH (1—s)"ds

SUPe[0,1] ||f( ) (1 —s) A+ sa )| fol (1—5)"ds

(F 70 (@ =) a+ sl as) ™" (i @ - ™ as) "
where p, q>1with%—|—%:1

IN

max,eo,1) {(1—5)"} fol [ £ D (1= 5) A+ sa)|| ds
g1 SUPse(0,1] Hf("ﬂ) (1 =) A+ sa)

(n+1) P 1/p
(nqn+1)1/q (fo Hf (1 —s)A+ Sa)H ds)
where p, ¢ > 1 with 1 —|— = =1

fol Hf(n-l—l) (T=9)A+ sa)H ds,

which together with (3.2) gives the desired result.
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Let a € B and G be a convex domain of C with o (a) C G and A € G. We define
Gro :={(1—t)X+ta | with t € [0,1]}. We observe that G , is a convex subset
in B for every A € G.

For two distinct elements u, v in the Banach algebra B we say that the func-
tion g : G, — B belongs to the class A, , (Gx,q) if it satisfies the boundedness
condition

u—+v

(3.3) Hg((l—t))\—f—ta)— S%Hv—u”

for all ¢ € [0,1]. We write g € Ay, (Ga,q) - This definition is an extension to Banach
algebras valued functions of the scalar case, see [7].

We say that the function ¢ : G , — B is Lipschitzian on G , with the constant
Ly g >0, if for all z, y € G, we have

lg (@) =g Wl < Laallz =yl
This is equivalent to
(3.4) lg (L =t)A+ta) —g((1 = s) A+ sa)|| < Laa [t = s|[la— Al

for all ¢, s € [0,1]. We write this by g € Lip;,  (Gra)-

Assume that h : G — C is an analytic function on G. Fort € [0,1] and A € G, the
auxiliary function hy » defined on G by hy » (§) := h ((1 —t) A+ t£) is also analytic
and using the analytic functional calculus (1.1) for the element a € B, we can define

(3.5) h((1=t) A +ta) := hy (a) = ﬁ / hix (€) (6 —a)™' dg
- ;m/vh«l—wﬂt@(g—a)ldg.

We say that the scalar function h € A, , (G),) if its extension h: Gxro. — B
satisfies the boundedness condition (3.3). Also, we say that the scalar function
h € Lipr, (Grq) if its extension h : Gy, — B satisfies the Lipschitz condition
(3.4).

Theorem 4. Let B be a unital Banach algebra, a € B and G be a convexr domain of
C with o (a) C G. If f : G — C is analytic on G, A € G, n > 0 and there exists two
distinct elements u,,, v, in the Banach algebra B such that f("t1) e Ay, v, (Gra),
then

n+1 Un + Up
2

(@a=2)

1
(3.6) Hf(a) T A i reny

1 n+1
< a- — v .
< gyl A e =
Proof. Using the equality (2.3) we have
G| 1 Uy, + 0
_ 7(]4;))\ _)\k_ _)\nJrln n
P =3 IO W @A e A
1 ! n t+ Vn n
:ﬁ(a—)\)"ﬂ/ [f(”+1)((1—s))\+sa)—u T (1- 5" ds.
! 0
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By taking the norm and using the fact that f("+1) € A, , (Gx..) we have

pardd (n+1)! 2
= % (a— A" /1 [f(”“) (1= )+ sa) — Un, ; Un:| (18" ds
: 0
1 n+1 ! 1) Uy, + U n
SEH(G—)\) H‘/o {f(f“r (1=98)A+sa)— 5 }(1_5) ds

1 ! n n n
< jlla—A\I"H/ Hﬂnﬂ) (1= ) A+ sa) — 20l gym g
n! o
1 n+1 ! n 1 n41
S olla= A lun — vl [ (A =9)"ds = 50— [la = A" [lun — vall,
2n! 0 2(n+1)!
which proves the desired inequality (3.6). O

We also have:

Theorem 5. Let B be a unital Banach algebra, a € B and G be a convexr domain
of C with o (a) C G. If f : G — C is analytic on G, A € G, n > 0 and there exists
Lyan >0 such that f+1) ¢ Lipr, .. (Gra), then

n

1

(37) '|f (a) — Z Ef(k) ()\) (CL _ A)k _ m (CL _ )\)n+1 f(n+1) (CL)
k=0 " :
< T 2)nl lla = M"** Lxan.
- 1 (k) k 1 n+2
(3.8) Fla)=> 5P W) @-N" < e = A" Laan,
k=0 " :
. Hf N L e R A H
k=0 :
< o= X" KoL
where
_ 1 . 1 n+1 1 . 1 n -
ton+2 _<2) _2(rL+1)[_<2H’n—’
and

n

(310) Hf (@)~ 3 7 ® () (- X"

k=0

1
(a— )" /0 FOD (1= 7) N+ 7a) dr

(n+1)!

n n+2
<o————rclla—A Lyxan, n>1.
— 2(n+2)| ||ll H )\, 5 n -
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Proof. Using equality (2.4) and the fact that f(*t1 ¢ Lipy, . (Gra) we have

Y 1 1 n+1 n
Hﬂa)—Zk!f““) (A) (a—A)k—m(a—,\) 1 pnt) ()

< Ly / |70 (1= ) A+ sa) = £ ()] | (1= )" ds

1 1
la— A" Ly o / 11— $) A+ sa—af| (1 — )" ds
0

1 " 1 n
P Lm,n/ (1— sy ds =
0

A
n!

| ||a - L)\,CL,YH

(n+2)n!

which proves (3.7).
From (2.5) we have

n+1 1

7@)= 3 P ) (=N

k=0

1 n ! n n n
< = lla=A| +1/0 7040 (1= ) A+ sa) = FOFD )| (1= 9)" ds

1 1
< o= A" Ly [0 = 9) A sa = Al (1= )" ds
n! 0
1

1 n ! n 1 n 0
= Ljla— A" Lm,n/ s(1—s)"ds = — fla— A" Lm,n/ (1—s)s"ds
n. () n. ()

1 io 1 1 1 i
= — —)\ L an — = _)\ L a,mns
= A Ly (2 = ) = g o= M

which proves (3.8).
Using (2.6) we have

"1 1 n . A+a

(3.11) Hf(a)—Zf(’“) (A)(a—k)k—m(a—m +L p(nt1) (2 )
1 n+1 !
<= []

1 n 1

< E”a_)\” i L)\,a,n/o

1 n+2 !
— e = A" Ly
n. 0

f(71,+1) (1= 8) A+ sa) — f(n+1) (A;—a) H (1- s)” ds

(1—3))\+sa—)\;—aH(1—s)"ds

s—;'(l—s)"ds.
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Now, observe that
1
s — =

1 1 1
s— = (l—s)"ds:/

[ k-4 -3
12 /4 1 1

:/ <—s> S"ds—i—/ (s—) s"ds
0 2 1/2 2

O @, 1 1
n—+1 n-+ 2 n+2 2n+1

[ )
el
-

s"ds

n+2

and by (3.11) we get (3.9).
Using the representation (2.7) we have

(3.12) Hf OEDY %f(k) () (a—N)F
k=0
(n +1 1)! (a — )\)n+1/0 U =) A+ Ta)dr

1 1
< — lla= A"
n.

FOHY (1= s) X + sa) — /1 FOY (A=) N4 ra)dr| (1 —s)"ds
0

1
X/
0

1
= —fla— """
n!

1 1
(D) (1= s) A — O (1 =7)A d —s)"d
X/o /O[f (1=8)A+sa)—f ((1—71) —I—Ta)} 7| (1 —s)"ds
< 2 fla— A"
[ @Ak s0) = £ (1= )3 k)| 1 s
< a )\||n+1L)\an//H1—s))\—i—sa—((1—T)>\+Ta)||(1—s) dsdr

= ﬁ la— A" L)\,a,n/ / |7 — 5| (1 —5)" dsdr =: B
: 0 0
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Now, observe that

//|T—s\ (1= s)" dsdr
:/0 </0 (r—s)(1—s)" ds)dT—f—// (s—7)(1— )" dsdr =T,
Since

/OT(T—s)u—s)"ds:—nil/OT(T—S (-]

+/ — nﬂ ds}
0
01

]- - n+1

=-— (r—s)(1

1 (1 - s)"*?

-
n+1 n+2

1| 1-r)"2 -1
= — -
n+1 n+2 0
1l [—@mrr-a-n"P 4
n+1 n+2
and
1 1 1
/T(S—T)(l—s)nds:—n+1/T(T—s [ — n“}
N ]. n+1 n+1
= n+1{(7 s)(1 / ds
1 (1— 52| 1 (1)t
on+1 n+ 2 oon+1l a2
then

/OT(T—S)(l—3)"ds+/71(s—7)(1—s)"ds

_ 1 _(7’L+2)T—(1_T)n+2+1 ) (1—7)”“

= n+1 n -+ 2 _n+1 Y

1 . o

:m[(”JJ)T*U*ﬂ R [ § +]

mrDmry T ,
which implies that
R S NP 1 nt2

Tn_(n+1)(n+2)/° (T (n+1)(n+2) K 2 1)]

C2(n+1)(n+2)’
and by (3.12) we get the desired result (3.10).
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4. EXAMPLES FOR THE EXPONENTIAL FUNCTION

Using the inequality (3.1) for the exponential function we get

(4.1) expa—exp)\z%(a—)\)k

1 it [ n
<l = A [ exp (1= 8) A+ sa)] (L 5)" ds
: 0

1 supgeroy lexp (1= s) A+ sa)|

1/p
_ P
< i, la— A"+ CUEEL (fo lexp (1= )2+ sa)l ds)
n. wherep7q>1w1thp+a—1

I llexp (1 = $) A + sa)|| ds,

for all @ € Band A € C.
Observe that for all @ € Band A € C and s € [0, 1]

exp (1 —s) A+ sa) = exp[(1 — s) A exp (sa),
which gives
(4.2) llexp ((1 — s) A + sa)||
= lexp [(1 — ) A]| [lexp (sa) || = exp[(1 — 5) Re A] [|exp (sa)

<exp[(l —s)ReAexp(s|al) =exp[(1—s)ReA+s]a].

Using the first inequality in (4.1) and (4.2) we get

(4.3) |lexpa —exp A Z o (a—A)
k=0
1 ni1 1 n
< EHG_/\” / exp[(1 —s)ReA+s]lal] (1 —s)"ds.
: 0
If we put

1
/exp [(1—s)ReA+s]al]](1—s)"ds
0

1 1
/ exp[sReA+ (1 —s)|lal|] s"ds = / exp [|la|| + s (Re A — ||a||)] s"ds
0 0
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then by using the integration by parts and assuming that Re A # ||a|| we have

1
/'apwm+samAfHMM§wS
0
1 1
=———— [ s"d(exp][|la]| + s (Re X —|la|)])
e lall + 5 (Re A — fal)]
_ 1
_Re/\—||a|\

1
X {S”eXp[llallJrS(Re/\ IIGII)HE*TI/0 s""Lexp [lall + s (Re A — |a]))] dS}

1 1
=_———— |exp(Re)) — n/ s"Lexp(|lal + s (Re X — [|a]])] ds] ,
e [~ e =7
which gives the recursive relation
1
4.4 E,(\a)=— Re\) — nEp_1 (\a)], n>1
(4.4 () = gy [0 (ReA) =y (L)
with
exp (Re A) — exp (|laf|)
4. Ey (A a) = .
( 5) 0( 70’) Re)\—HaH
If Re A = |a|, then
1
E,(M\a)= 1P lal -

Therefore, for any a € B and A € C we have

1
expa—exp)\zg (a—NF
k=0 "

(4.6)

) L f FaOva) i ReA £ Jall,
< —lla=A
n! 1

w1 exp [lal] if Red = fla]|,

where E,, (), a) is defined by (4.4) and (4.5).
Since

sup exp[(1 —s)ReX + s]la]|] < exp[max{Re,|al}],
s€[0,1]

hence by the first branch in the second inequality in (4.1) we get for n > 0 that

1

(4.7) < m

lla =A™ exp [max {Re A, [la]|}]

1
expa—exp)\zy (a— )"
k=0 """

for any @ € B and X\ € C.
Similar inequalities can be also stated by employing the other general bounds
established above for analytic functions. The details are omitted.
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