Advanced Complex fractional Ostrowski inequalities

George A. Anastassiou
Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152, U.S.A.
ganastss@memphis.edu

Abstract

Here we present very general and advanced fractional complex analytic inequalities of the Ostrowski type.

2010 Mathematics Subject Classification : 26D10, 26D15, 30A10.
Keywords and phrases: Complex inequalities, fractional inequalities, Ostrowski inequalities.

1 Introduction

Here we follow [5].
Suppose γ is a smooth path parametrized by $z(t), t \in[a, b]$ and f is a complex function which is continuous on γ. Put $z(a)=u$ and $z(b)=w$ with $u, w \in \mathbb{C}$. We define the integral of f on $\gamma_{u, w}=\gamma$ as

$$
\begin{equation*}
\int_{\gamma} f(z) d z=\int_{\gamma_{u, w}} f(z) d z:=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t \tag{1}
\end{equation*}
$$

We observe that the actual choice of parametrization of γ does not matter.
This definition immediately extends to paths that are piecewise smooth. Suppose γ is parametrized by $z(t), t \in[a, b]$, which is differentiable on the intervals $[a, c]$ and $[c, b]$, then assuming that f is continuous on γ we define

$$
\begin{equation*}
\int_{\gamma_{u, w}} f(z) d z:=\int_{\gamma_{u, v}} f(z) d z+\int_{\gamma_{v, w}} f(z) d z \tag{2}
\end{equation*}
$$

where $v:=z(c)$. This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length

$$
\begin{equation*}
\int_{\gamma_{u, w}} f(z)|d z|:=\int_{a}^{b} f(z(t))\left|z^{\prime}(t)\right| d t \tag{3}
\end{equation*}
$$

1
and the length of the curve γ is then

$$
\begin{equation*}
l(\gamma)=\int_{\gamma_{u, w}}|d z|:=\int_{a}^{b}\left|z^{\prime}(t)\right| d t \tag{4}
\end{equation*}
$$

Let f and g be holomorphic in G, and open domain and suppose $\gamma \subset G$ is a piecewise smooth path from $z(a)=u$ to $z(b)=w$. Then we have the integration by parts formula

$$
\begin{equation*}
\int_{\gamma_{u, w}} f(z) g^{\prime}(z) d z=f(w) g(w)-f(u) g(u)-\int_{\gamma_{u, w}} f^{\prime}(z) g(z) d z \tag{5}
\end{equation*}
$$

We recall also the triangle inequality for the complex integral, namely

$$
\begin{equation*}
\left|\int_{\gamma} f(z) d z\right| \leq \int_{\gamma}|f(z)||d z| \leq\|f\|_{\gamma, \infty} l(\gamma) \tag{6}
\end{equation*}
$$

where $\|f\|_{\gamma, \infty}:=\sup _{z \in \gamma}|f(z)|$.
We also define the p-norm with $p \geq 1$ by

$$
\|f\|_{\gamma, p}:=\left(\int_{\gamma}|f(z)|^{p}|d z|\right)^{\frac{1}{p}}
$$

For $p=1$ we have

$$
\|f\|_{\gamma, 1}:=\int_{\gamma}|f(z)||d z|
$$

If $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, then by Hölder's inequality we have

$$
\begin{equation*}
\|f\|_{\gamma, 1} \leq[l(\gamma)]^{\frac{1}{q}}\|f\|_{\gamma, p} \tag{7}
\end{equation*}
$$

A motivation to our work follows: These are two complex Opial type inequalities.

Theorem 1 ([5]) Let f be analytic in G, a domain of complex numbers and suppose $\gamma \subset G$ is a smooth path parametrized by $z(t), t \in[a, b]$ from $z(a)=u$ to $z(b)=w$ and $z^{\prime}(t) \neq 0$ for $t \in(a, b)$.
(i) If $f(u)=0$ or $f(w)=0$, then

$$
\begin{align*}
\int_{\gamma}\left|f(z) f^{\prime}(z)\right||d z| \leq(& \left.\int_{\gamma} l\left(\gamma_{u, z}\right)\left|f^{\prime}(z)\right|^{2}|d z|\right)^{\frac{1}{2}}\left(\int_{\gamma} l\left(\gamma_{z, w}\right)\left|f^{\prime}(z)\right|^{2}|d z|\right)^{\frac{1}{2}} \\
& \leq \frac{1}{2} l\left(\gamma_{u, w}\right) \int_{\gamma}\left|f^{\prime}(z)\right|^{2}|d z| \tag{8}
\end{align*}
$$

(ii) If $f(u)=f(w)=0$, then

$$
\int_{\gamma}\left|f(z) f^{\prime}(z)\right||d z| \leq
$$

$$
\begin{gather*}
\frac{1}{2}\left[\int_{\gamma}\left(l\left(\gamma_{u, w}\right)-\left|l\left(\gamma_{u, z}\right)-l\left(\gamma_{z, w}\right)\right|\right)\left|f^{\prime}(z)\right|^{2}|d z|\right]^{\frac{1}{2}} \tag{9}\\
{\left[\int_{\gamma}\left|l\left(\gamma_{u, z}\right)-l\left(\gamma_{z, w}\right)\right|\left|f^{\prime}(z)\right|^{2}|d z|\right]^{\frac{1}{2}}} \\
\leq \frac{1}{4} l\left(\gamma_{u, w}\right) \int_{\gamma}\left|f^{\prime}(z)\right|^{2}|d z|
\end{gather*}
$$

In this article we utilize on \mathbb{C} the results of [1] related to Ostrowski type inequalities for general Banach space valued functions. So we produce here advanced and general complex Ostrowski type inequalities.

2 Background

Here we follow [1].
We need
Definition $2([1])$ Let $[a, b] \subset \mathbb{R},(X,\|\cdot\|)$ a Banach space, $g \in C^{1}([a, b])$ and increasing, $f \in C([a, b], X), \nu>0$.

We define the left Riemann-Liouville generalized fractional Bochner integral operator

$$
\begin{equation*}
\left(J_{a ; g}^{\nu} f\right)(x):=\frac{1}{\Gamma(\nu)} \int_{a}^{x}(g(x)-g(z))^{\nu-1} g^{\prime}(z) f(z) d z \tag{10}
\end{equation*}
$$

$\forall x \in[a, b]$, where Γ is the gamma function.
The last integral is of Bochner type ([6]). Since $f \in C([a, b], X)$, then $f \in L_{\infty}([a, b], X)$. By $([1])$ we get that $\left(J_{a ; g}^{\nu} f\right) \in C([a, b], X)$. Above we set $J_{a ; g}^{0} f:=f$ and see that $\left(J_{a ; g}^{\nu} f\right)(a)=0$.

We mention
Theorem 3 ([1]) Let all as in Definition 2. Let $m, n>0$ and $f \in C([a, b], X)$. Then

$$
\begin{equation*}
J_{a ; g}^{m} J_{a ; g}^{n} f=J_{a ; g}^{m+n} f=J_{a ; g}^{n} J_{a ; g}^{m} f \tag{11}
\end{equation*}
$$

We need
Definition $4([1])$ Let $[a, b] \subset \mathbb{R},(X,\|\cdot\|)$ a Banach space, $g \in C^{1}([a, b])$ and increasing, $f \in C([a, b], X), \nu>0$.

We define the right Riemann-Liouville generalized fractional Bochner integral operator

$$
\begin{equation*}
\left(J_{b-; g}^{\nu} f\right)(x):=\frac{1}{\Gamma(\nu)} \int_{x}^{b}(g(z)-g(x))^{\nu-1} g^{\prime}(z) f(z) d z \tag{12}
\end{equation*}
$$

$\forall x \in[a, b]$, where Γ is the gamma function.

The last integral is of Bochner type. Since $f \in C([a, b], X)$, then $f \in$ $L_{\infty}([a, b], X)$. By ([1]) we get that $\left(J_{b-; g}^{\nu} f\right) \in C([a, b], X)$. Above we set $J_{b-; g}^{0} f:=f$ and see that $\left(J_{b-; g}^{\nu} f\right)(b)=0$.

We mention
Theorem 5 ([1]) Let all as in Definition 4. Let $\alpha, \beta>0$ and $f \in C([a, b], X)$. Then

$$
\begin{equation*}
\left(J_{b-; g}^{\alpha} J_{b-; g}^{\beta} f\right)(x)=\left(J_{b-; g}^{\alpha+\beta} f\right)(x)=\left(J_{b-; g}^{\beta} J_{b-; g}^{\alpha} f\right)(x), \tag{13}
\end{equation*}
$$

$\forall x \in[a, b]$.
We need
Definition 6 ([1]) Let $\alpha>0,\lceil\alpha\rceil=n$, $\lceil\cdot\rceil$ the ceiling of the number. Let $f \in C^{n}([a, b], X)$, where $[a, b] \subset \mathbb{R}$, and $(X,\|\cdot\|)$ is a Banach space. Let $g \in$ $C^{1}([a, b])$, strictly increasing, such that $g^{-1} \in C^{n}([g(a), g(b)])$.

We define the left generalized g-fractional derivative X-valued of f of order α as follows:

$$
\begin{equation*}
\left(D_{a+; g}^{\alpha} f\right)(x):=\frac{1}{\Gamma(n-\alpha)} \int_{a}^{x}(g(x)-g(t))^{n-\alpha-1} g^{\prime}(t)\left(f \circ g^{-1}\right)^{(n)}(g(t)) d t \tag{14}
\end{equation*}
$$

$\forall x \in[a, b]$. The last integral is of Bochner type.
Derivatives for vector valued functions are defined according to [8], p. 83, similar to numerical ones.

If $\alpha \notin \mathbb{N}$, by [1], we have that $\left(D_{a+; g}^{\alpha} f\right) \in C([a, b], X)$.
We see that

$$
\begin{equation*}
\left(J_{a ; g}^{n-\alpha}\left(\left(f \circ g^{-1}\right)^{(n)} \circ g\right)\right)(x)=\left(D_{a+; g}^{\alpha} f\right)(x), \quad \forall x \in[a, b] \tag{15}
\end{equation*}
$$

We set

$$
\begin{align*}
D_{a+; g}^{n} f(x): & =\left(\left(f \circ g^{-1}\right)^{n} \circ g\right)(x) \in C([a, b], X), \quad n \in \mathbb{N} \tag{16}\\
& D_{a+; g}^{0} f(x)=f(x), \quad \forall x \in[a, b]
\end{align*}
$$

When $g=i d$, then

$$
\begin{equation*}
D_{a+; g}^{\alpha} f=D_{a+; i d}^{\alpha} f=D_{* a}^{\alpha} f \tag{17}
\end{equation*}
$$

the usual left X-valued Caputo fractional derivative, see [2].
We need
Definition 7 ([1]) Let $\alpha>0,\lceil\alpha\rceil=n,\lceil\cdot\rceil$ the ceiling of the number. Let $f \in C^{n}([a, b], X)$, where $[a, b] \subset \mathbb{R}$, and $(X,\|\cdot\|)$ is a Banach space. Let $g \in$ $C^{1}([a, b])$, strictly increasing, such that $g^{-1} \in C^{n}([g(a), g(b)])$.

We define the right generalized g-fractional derivative X-valued of f of order α as follows:

$$
\begin{equation*}
\left(D_{b-; g}^{\alpha} f\right)(x):=\frac{(-1)^{n}}{\Gamma(n-\alpha)} \int_{x}^{b}(g(t)-g(x))^{n-\alpha-1} g^{\prime}(t)\left(f \circ g^{-1}\right)^{(n)}(g(t)) d t \tag{18}
\end{equation*}
$$

$\forall x \in[a, b]$. The last integral is of Bochner type.
If $\alpha \notin \mathbb{N}$, by [1], we have that $\left(D_{b-; g}^{\alpha} f\right) \in C([a, b], X)$.
We see that

$$
\begin{equation*}
J_{b-; g}^{n-\alpha}\left((-1)^{n}\left(f \circ g^{-1}\right)^{(n)} \circ g\right)(x)=\left(D_{b-; g}^{\alpha} f\right)(x), \quad a \leq x \leq b \tag{19}
\end{equation*}
$$

We set

$$
\begin{gather*}
D_{b-; g}^{n} f(x):=(-1)^{n}\left(\left(f \circ g^{-1}\right)^{n} \circ g\right)(x) \in C([a, b], X), \quad n \in \mathbb{N}, \tag{20}\\
D_{b-; g}^{0} f(x):=f(x), \quad \forall x \in[a, b]
\end{gather*}
$$

When $g=i d$, then

$$
\begin{equation*}
D_{b-; g}^{\alpha} f(x)=D_{b-; i d}^{\alpha} f(x)=D_{b-}^{\alpha} f \tag{21}
\end{equation*}
$$

the usual right X-valued Caputo fractional derivative, see [3], [4].
We mention the following general left fractional Taylor's formula:
Theorem 8 ([1]) Let $\alpha>0$, $n=\lceil\alpha\rceil$, and $f \in C^{n}([a, b], X)$, where $[a, b] \subset \mathbb{R}$ and $(X,\|\cdot\|)$ is a Banach space. Let $g \in C^{1}([a, b])$, strictly increasing, such that $g^{-1} \in C^{n}([g(a), g(b)]), a \leq x \leq b$. Then

$$
\begin{gather*}
f(x)=f(a)+\sum_{i=1}^{n-1} \frac{(g(x)-g(a))^{i}}{i!}\left(f \circ g^{-1}\right)^{(i)}(g(a))+ \\
\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(g(x)-g(t))^{\alpha-1} g^{\prime}(t)\left(D_{a+; g}^{\alpha} f\right)(t) d t= \\
f(a)+\sum_{i=1}^{n-1} \frac{(g(x)-g(a))^{i}}{i!}\left(f \circ g^{-1}\right)^{(i)}(g(a))+ \tag{22}\\
\frac{1}{\Gamma(\alpha)} \int_{g(a)}^{g(x)}(g(x)-z)^{\alpha-1}\left(\left(D_{a+; g}^{\alpha} f\right) \circ g^{-1}\right)(z) d z .
\end{gather*}
$$

We also mention the following general right fractional Taylor's formula:
Theorem 9 ([1]) Let $\alpha>0, n=\lceil\alpha\rceil$, and $f \in C^{n}([a, b], X)$, where $[a, b] \subset \mathbb{R}$ and $(X,\|\cdot\|)$ is a Banach space. Let $g \in C^{1}([a, b])$, strictly increasing, such that $g^{-1} \in C^{n}([g(a), g(b)]), a \leq x \leq b$. Then

$$
f(x)=f(b)+\sum_{i=1}^{n-1} \frac{(g(x)-g(b))^{i}}{i!}\left(f \circ g^{-1}\right)^{(i)}(g(b))+
$$

$$
\begin{align*}
& \frac{1}{\Gamma(\alpha)} \int_{x}^{b}(g(t)-g(x))^{\alpha-1} g^{\prime}(t)\left(D_{b-; g}^{\alpha} f\right)(t) d t= \\
& f(b)+\sum_{i=1}^{n-1} \frac{(g(x)-g(b))^{i}}{i!}\left(f \circ g^{-1}\right)^{(i)}(g(b))+ \tag{23}\\
& \frac{1}{\Gamma(\alpha)} \int_{g(x)}^{g(b)}(z-g(x))^{\alpha-1}\left(\left(D_{b-; g}^{\alpha} f\right) \circ g^{-1}\right)(z) d z
\end{align*}
$$

From Theorem 8 when $0<\alpha \leq 1$, we get that

$$
\begin{gather*}
\left(I_{a+; g}^{\alpha} D_{a+; g}^{\alpha} f\right)(x)=f(x)-f(a)= \\
\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(g(x)-g(t))^{\alpha-1} g^{\prime}(t)\left(D_{a+; g}^{\alpha} f\right)(t) d t= \tag{24}\\
\frac{1}{\Gamma(\alpha)} \int_{g(a)}^{g(x)}(g(x)-z)^{\alpha-1}\left(\left(D_{a+; g}^{\alpha} f\right) \circ g^{-1}\right)(z) d z,
\end{gather*}
$$

and by Theorem 9 when $0<\alpha \leq 1$ we get

$$
\begin{gather*}
\left(I_{b-; g}^{\alpha} D_{b-; g}^{\alpha} f\right)(x)=f(x)-f(b)= \\
\frac{1}{\Gamma(\alpha)} \int_{x}^{b}(g(t)-g(x))^{\alpha-1} g^{\prime}(t)\left(D_{b-; g}^{\alpha} f\right)(t) d t= \tag{25}\\
\frac{1}{\Gamma(\alpha)} \int_{g(x)}^{g(b)}(z-g(x))^{\alpha-1}\left(\left(D_{b-; g}^{\alpha} f\right) \circ g^{-1}\right)(z) d z,
\end{gather*}
$$

all $a \leq x \leq b$.
Above we considered $f \in C^{1}([a, b], X), g \in C^{1}([a, b])$, strictly increasing, such that $g^{-1} \in C^{1}([g(a), g(b)])$.

Denote by

$$
\begin{equation*}
D_{a+; g}^{n \alpha}:=D_{a+; g}^{\alpha} D_{a+; g}^{\alpha} \cdots D_{a+; g}^{\alpha} \quad(n \text { times }), n \in \mathbb{N} . \tag{26}
\end{equation*}
$$

Also denote by

$$
\begin{equation*}
I_{a+; g}^{n \alpha}:=I_{a+; g}^{\alpha} I_{a+; g}^{\alpha} \ldots I_{a+; g}^{\alpha} \quad(n \text { times }), \tag{27}
\end{equation*}
$$

and remind

$$
\begin{equation*}
\left(I_{a+; g}^{\alpha} g\right)(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(g(x)-g(t))^{\alpha-1} g^{\prime}(t) f(t) d t, \quad x \geq a . \tag{28}
\end{equation*}
$$

By convention $I_{a+; g}^{0}=D_{a+; g}^{0}=I$ (identity operator).
We mention the following g-left generalized modified X-valued Taylor's formula.

Theorem 10 ([1]) Let $0<\alpha \leq 1, n \in \mathbb{N}, f \in C^{1}([a, b], X), g \in C^{1}([a, b])$, strictly increasing, such that $g^{-1} \in C^{1}([g(a), g(b)])$. Let $F_{k}:=D_{a+; g}^{k \alpha} f, k=$ $1, \ldots, n$, that fulfill $F_{k} \in C^{1}([a, b], X)$, and $F_{n+1} \in C([a, b], X)$.

Then

$$
\begin{gather*}
f(x)=\sum_{i=0}^{n} \frac{(g(x)-g(a))^{i \alpha}}{\Gamma(i \alpha+1)}\left(D_{a+; g}^{i \alpha} f\right)(a)+ \\
\frac{1}{\Gamma((n+1) \alpha)} \int_{a}^{x}(g(x)-g(t))^{(n+1) \alpha-1} g^{\prime}(t)\left(D_{a+; g}^{(n+1) \alpha} f\right)(t) d t \tag{29}
\end{gather*}
$$

$\forall x \in[a, b]$.
Denote by

$$
\begin{equation*}
D_{b-; g}^{n \alpha}:=D_{b-; g}^{\alpha} D_{b-; g}^{\alpha} \ldots D_{b-; g}^{\alpha} \quad(n \text { times }), n \in \mathbb{N} . \tag{30}
\end{equation*}
$$

Also denote by

$$
\begin{equation*}
I_{b-; g}^{n \alpha}:=I_{b-; g}^{\alpha} I_{b-; g}^{\alpha} \ldots I_{b-; g}^{\alpha} \quad(n \text { times }), \tag{31}
\end{equation*}
$$

and remind

$$
\begin{equation*}
\left(I_{b-; g}^{\alpha} f\right)(x)=\frac{1}{\Gamma(\alpha)} \int_{x}^{b}(g(t)-g(x))^{\alpha-1} g^{\prime}(t) f(t) d t, \quad x \leq b \tag{32}
\end{equation*}
$$

We also mention the following g-right generalized modified X-valued Taylor's formula.

Theorem 11 ([1]) Let $f \in C^{1}([a, b], X), g \in C^{1}([a, b])$, strictly increasing, such that $g^{-1} \in C^{1}([g(a), g(b)])$. Suppose that $F_{k}:=D_{b-; g}^{k \alpha} f, k=1, \ldots, n$, fulfill $F_{k} \in C^{1}([a, b], X)$, and $F_{n+1} \in C([a, b], X)$, where $0<\alpha \leq 1, n \in \mathbb{N}$.

Then

$$
\begin{align*}
& \qquad f(x)=\sum_{i=0}^{n} \frac{(g(b)-g(x))^{i \alpha}}{\Gamma(i \alpha+1)}\left(D_{b-; g}^{i \alpha} f\right)(b)+ \\
& \frac{1}{\Gamma((n+1) \alpha)} \int_{x}^{b}(g(t)-g(x))^{(n+1) \alpha-1} g^{\prime}(t)\left(D_{b-; g}^{(n+1) \alpha} f\right)(t) d t \tag{33}\\
& \forall x \in[a, b] .
\end{align*}
$$

Next we refer to a related generalized fractional Ostrowski type inequality:
Theorem 12 ([1]) Let $g \in C^{1}([a, b])$ and strictly increasing, such that $g^{-1} \in$ $C^{1}([g(a), g(b)])$, and $0<\alpha<1, n \in \mathbb{N}, f \in C^{1}([a, b], X)$, where $(X,\|\cdot\|)$ is a Banach space. Let $x_{0} \in[a, b]$ be fixed. Assume that $F_{k}^{x_{0}}:=D_{x_{0}-; g}^{k \alpha} f$, for $k=1, \ldots, n$, fulfill $F_{k}^{x_{0}} \in C^{1}([a, b], X)$ and $F_{n+1}^{x_{0}} \in C\left(\left[a, x_{0}\right], X\right)$ and $\left(D_{x_{0}-; g}^{i \alpha} f\right)\left(x_{0}\right)=0, i=1, \ldots, n$.

Similarly, we assume that $G_{k}^{x_{0}}:=D_{x_{0}+; g}^{k \alpha} f$, for $k=1, \ldots, n$, fulfill $G_{k}^{x_{0}} \in$ $C^{1}\left(\left[x_{0}, b\right], X\right)$ and $G_{n+1}^{x_{0}} \in C\left(\left[x_{0}, b\right], X\right)$ and $\left(D_{x_{0}+; g}^{i \alpha} f\right)\left(x_{0}\right)=0, i=1, \ldots, n$.

Then

$$
\begin{align*}
& \left\|\frac{1}{b-a} \int_{a}^{b} f(x) d x-f\left(x_{0}\right)\right\| \leq \frac{1}{(b-a) \Gamma((n+1) \alpha+1)} \\
& \quad\left\{\left(g(b)-g\left(x_{0}\right)\right)^{(n+1) \alpha}\left(b-x_{0}\right)\left\|D_{x_{0}+; g}^{(n+1) \alpha} f\right\|_{\infty,\left[x_{0}, b\right]}+\right. \\
& \left.\quad\left(g\left(x_{0}\right)-g(a)\right)^{(n+1) \alpha}\left(x_{0}-a\right)\left\|D_{x_{0}-; g}^{(n+1) \alpha} f\right\|_{\infty,\left[a, x_{0}\right]}\right\} \tag{34}
\end{align*}
$$

We mention
Remark 13 Some examples for g follow:

$$
\begin{align*}
& g(x)=x, \quad x \in[a, b] \\
& g(x)=e^{x}, \quad x \in[a, b] \subset \mathbb{R} \tag{35}
\end{align*}
$$

also

$$
\begin{align*}
& g(x)=\sin x \\
& g(x)=\tan x, \text { when } x \in[a, b]:=\left[-\frac{\pi}{2}+\varepsilon, \frac{\pi}{2}-\varepsilon\right], \varepsilon>0 \text { small, } \tag{36}
\end{align*}
$$

and

$$
\begin{equation*}
g(x)=\cos x, \text { when } x \in[a, b]:=[\pi+\varepsilon, 2 \pi-\varepsilon], \varepsilon>0 \text { small. } \tag{37}
\end{equation*}
$$

Above all g 's are strictly increasing, $g \in C^{1}([a, b])$, and $g^{-1} \in C^{n}([g(a), g(b)])$, for any $n \in \mathbb{N}$.

Applications od Theorem 12 follow:
We give the following exponential Ostrowski type fractional inequality:
Theorem 14 ([1]) Let $0<\alpha<1, n \in \mathbb{N}, f \in C^{1}([a, b], X)$, where $(X,\|\cdot\|)$ is a Banach space, $x_{0} \in[a, b]$. Assume that $F_{k}^{x_{0}}:=D_{x_{0}-; e^{t}}^{k \alpha} f$, for $k=1, \ldots, n$, fulfill $F_{k}^{x_{0}} \in C^{1}\left(\left[a, x_{0}\right], X\right)$ and $F_{n+1}^{x_{0}} \in C\left(\left[a, x_{0}\right], X\right)$ and $\left(D_{x_{0}-; e^{t}}^{i \alpha} f\right)\left(x_{0}\right)=0$, $i=1, \ldots, n$.

Similarly, we assume that $G_{k}^{x_{0}}:=D_{x_{0}+; e^{t}}^{k \alpha} f$, for $k=1, \ldots, n$, fulfill $G_{k}^{x_{0}} \in$ $C^{1}\left(\left[x_{0}, b\right], X\right)$ and $G_{n+1}^{x_{0}} \in C\left(\left[x_{0}, b\right], X\right)$ and $\left(D_{x_{0}+; e^{t}}^{i \alpha} f\right)\left(x_{0}\right)=0, i=1, \ldots, n$.

Then

$$
\begin{align*}
& \left\|\frac{1}{b-a} \int_{a}^{b} f(x) d x-f\left(x_{0}\right)\right\| \leq \frac{1}{(b-a) \Gamma((n+1) \alpha+1)} \tag{38}\\
& \quad\left\{\left(e^{b}-e^{x_{0}}\right)^{(n+1) \alpha}\left(b-x_{0}\right)\left\|D_{x_{0}+; e^{t}}^{(n+1) \alpha} f\right\|_{\infty,\left[x_{0}, b\right]}+\right. \\
& \left.\quad\left(e^{x_{0}}-e^{a}\right)^{(n+1) \alpha}\left(x_{0}-a\right)\left\|D_{x_{0}-; e^{t}}^{(n+1) \alpha} f\right\|_{\infty,\left[a, x_{0}\right]}\right\}
\end{align*}
$$

We finish this section with the following trigonometric Ostrowski type fractional inequality:

Theorem 15 ([1]) Let $0<\alpha<1$, $n \in \mathbb{N}, f \in C^{1}([\pi+\varepsilon, 2 \pi-\varepsilon], X), \varepsilon>0$ small, where $(X,\|\cdot\|)$ is a Banach space, $x_{0} \in[\pi+\varepsilon, 2 \pi-\varepsilon]$. Assume that $F_{k}^{x_{0}}:=D_{x_{0}-; \cos }^{k \alpha} f$, for $k=1, \ldots, n$, fulfill $F_{k}^{x_{0}} \in C^{1}\left(\left[\pi+\varepsilon, x_{0}\right], X\right)$ and $F_{n+1}^{x_{0}} \in$ $C\left(\left[\pi+\varepsilon, x_{0}\right], X\right)$ and $\left(D_{x_{0}-; \cos }^{i \alpha} f\right)\left(x_{0}\right)=0, i=1, \ldots, n$.

Similarly, we assume that $G_{k}^{x_{0}}:=D_{x_{0}+; \cos }^{k \alpha} f$, for $k=1, \ldots, n$, fulfill $G_{k}^{x_{0}} \in$ $C^{1}\left(\left[x_{0}, 2 \pi-\varepsilon\right], X\right)$ and $G_{n+1}^{x_{0}} \in C\left(\left[x_{0}, 2 \pi-\varepsilon\right], X\right)$ and $\left(D_{x_{0}+; \cos }^{i \alpha} f\right)\left(x_{0}\right)=0$, $i=1, \ldots, n$.

Then

$$
\begin{align*}
& \quad\left\|\frac{1}{\pi-2 \varepsilon} \int_{\pi+\varepsilon}^{2 \pi-\varepsilon} f(x) d x-f\left(x_{0}\right)\right\| \leq \frac{1}{(\pi-2 \varepsilon) \Gamma((n+1) \alpha+1)} . \\
& \left\{\left(\cos (2 \pi-\varepsilon)-\cos x_{0}\right)^{(n+1) \alpha}\left(2 \pi-\varepsilon-x_{0}\right)\left\|D_{x_{0}+; \cos }^{(n+1) \alpha} f\right\|_{\infty,\left[x_{0}, 2 \pi-\varepsilon\right]}+\right. \\
& \left.\left(\cos x_{0}-\cos (\pi+\varepsilon)\right)^{(n+1) \alpha}\left(x_{0}-\pi-\varepsilon\right)\left\|D_{x_{0}-; \cos }^{(n+1) \alpha}\right\|_{\infty,\left[\pi+\varepsilon, x_{0}\right]}\right\} \tag{39}
\end{align*}
$$

Important results of this background: Theorems 12, 14, 15 next are applied for $X=\mathbb{C}$, the Banach space of complex numbers with $\|\cdot\|=|\cdot|$, the absolute value.

3 Main Results

We start with some history of the topic of Ostrowski type inequalities:
In 1938, A. Ostrowski [7], proved the following inequality concerning the distance between the integral mean $\frac{1}{b-a} \int_{a}^{b} f(t) d t$ and the value $f(x), x \in[a, b]$.

Theorem 16 (Ostrowski, $1938[7]$) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b) such that $f^{\prime}:(a, b) \rightarrow \mathbb{R}$ is bounded on (a, b), i.e., $\left\|f^{\prime}\right\|_{\infty}:=\sup _{t \in(a, b)}\left|f^{\prime}(t)\right|<\infty$. Then

$$
\begin{equation*}
\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \leq\left[\frac{1}{4}+\left(\frac{x-\frac{a+b}{2}}{b-a}\right)^{2}\right]\left\|f^{\prime}\right\|_{\infty}(b-a) \tag{40}
\end{equation*}
$$

for all $x \in[a, b]$ and the constant $\frac{1}{4}$ is the ebst possible.
We present the following advanced generalized fractional \mathbb{C}-Ostrowski type inequalities:

Theorem 17 Let $g \in C^{1}([a, b])$ and strictly increasing, such that $g^{-1} \in C^{1}([g(a), g(b)])$, and $0<\alpha<1, n \in \mathbb{N}, h \in C^{1}([a, b], \mathbb{C})$. Let $x_{0} \in[a, b]$ be fixed. Assume that $F_{k}^{x_{0}}:=D_{x_{0}-; g}^{k \alpha} h$, for $k=1, \ldots, n$, fulfill $F_{k}^{x_{0}} \in C^{1}([a, b], \mathbb{C})$ and $F_{n+1}^{x_{0}} \in C\left(\left[a, x_{0}\right], \mathbb{C}\right)$ and $\left(D_{x_{0}-; g}^{i \alpha} h\right)\left(x_{0}\right)=0, i=1, \ldots, n$.

Similarly, we assume that $G_{k}^{x_{0}}:=D_{x_{0}+; g}^{k \alpha} h$, for $k=1, \ldots, n$, fulfill $G_{k}^{x_{0}} \in$ $C^{1}\left(\left[x_{0}, b\right], \mathbb{C}\right)$ and $G_{n+1}^{x_{0}} \in C\left(\left[x_{0}, b\right], \mathbb{C}\right)$ and $\left(D_{x_{0}+; g}^{i \alpha} h\right)\left(x_{0}\right)=0, i=1, \ldots, n$.

Then

$$
\begin{align*}
& \left|\frac{1}{b-a} \int_{a}^{b} h(x) d x-h\left(x_{0}\right)\right| \leq \frac{1}{(b-a) \Gamma((n+1) \alpha+1)} \tag{41}\\
& \left\{\left(g(b)-g\left(x_{0}\right)\right)^{(n+1) \alpha}\left(b-x_{0}\right)\left\|D_{x_{0}+; g}^{(n+1) \alpha} h\right\|_{\infty,\left[x_{0}, b\right]}+\right. \\
& \left.\quad\left(g\left(x_{0}\right)-g(a)\right)^{(n+1) \alpha}\left(x_{0}-a\right)\left\|D_{x_{0}-; g}^{(n+1) \alpha} h\right\|_{\infty,\left[a, x_{0}\right]}\right\}
\end{align*}
$$

Proof. By Theorem 12.
Theorem 18 Let $0<\alpha<1$, $n \in \mathbb{N}$, $h \in C^{1}([a, b], \mathbb{C})$, $x_{0} \in[a, b]$. Assume that $F_{k}^{x_{0}}:=D_{x_{0}-; e^{t}}^{k \alpha} h$, for $k=1, \ldots, n$, fulfill $F_{k}^{x_{0}} \in C^{1}\left(\left[a, x_{0}\right], \mathbb{C}\right)$ and $F_{n+1}^{x_{0}} \in$ $C\left(\left[a, x_{0}\right], \mathbb{C}\right)$ and $\left(D_{x_{0}-; e^{t}}^{i \alpha} h\right)\left(x_{0}\right)=0, i=1, \ldots, n$.

Similarly, we assume that $G_{k}^{x_{0}}:=D_{x_{0}+; e^{t}}^{k \alpha} h$, for $k=1, \ldots, n$, fulfill $G_{k}^{x_{0}} \in$ $C^{1}\left(\left[x_{0}, b\right], \mathbb{C}\right)$ and $G_{n+1}^{x_{0}} \in C\left(\left[x_{0}, b\right], \mathbb{C}\right)$ and $\left(D_{x_{0}+; e^{t}}^{i \alpha} h\right)\left(x_{0}\right)=0, i=1, \ldots, n$.

Then

$$
\begin{gather*}
\left|\frac{1}{b-a} \int_{a}^{b} h(x) d x-h\left(x_{0}\right)\right| \leq \frac{1}{(b-a) \Gamma((n+1) \alpha+1)} \tag{42}\\
\left\{\left(e^{b}-e^{x_{0}}\right)^{(n+1) \alpha}\left(b-x_{0}\right)\left\|D_{x_{0}+; e^{t}}^{(n+1) \alpha} h\right\|_{\infty,\left[x_{0}, b\right]}+\right. \\
\left.\quad\left(e^{x_{0}}-e^{a}\right)^{(n+1) \alpha}\left(x_{0}-a\right)\left\|D_{x_{0}-; e^{t}}^{(n+1) \alpha} h\right\|_{\infty,\left[a, x_{0}\right]}\right\}
\end{gather*}
$$

Proof. By Theorem 14.
Theorem 19 Let $0<\alpha<1, n \in \mathbb{N}, h \in C^{1}([\pi+\varepsilon, 2 \pi-\varepsilon], \mathbb{C}), \varepsilon>0$ small, $x_{0} \in[\pi+\varepsilon, 2 \pi-\varepsilon]$. Assume that $F_{k}^{x_{0}}:=D_{x_{0}-; \cos }^{k \alpha} h$, for $k=1, \ldots, n$, fulfill $F_{k}^{x_{0}} \in C^{1}\left(\left[\pi+\varepsilon, x_{0}\right], \mathbb{C}\right)$ and $F_{n+1}^{x_{0}} \in C\left(\left[\pi+\varepsilon, x_{0}\right], \mathbb{C}\right)$ and $\left(D_{x_{0}-; \cos }^{i \alpha} h\right)\left(x_{0}\right)=$ $0, i=1, \ldots, n$.

Similarly, we assume that $G_{k}^{x_{0}}:=D_{x_{0}+; \cos }^{k \alpha} h$, for $k=1, \ldots, n$, fulfill $G_{k}^{x_{0}} \in$ $C^{1}\left(\left[x_{0}, 2 \pi-\varepsilon\right], \mathbb{C}\right)$ and $G_{n+1}^{x_{0}} \in C\left(\left[x_{0}, 2 \pi-\varepsilon\right], \mathbb{C}\right)$ and $\left(D_{x_{0}+; \cos }^{i \alpha} h\right)\left(x_{0}\right)=0$, $i=1, \ldots, n$.

Then

$$
\begin{align*}
& \quad\left|\frac{1}{\pi-2 \varepsilon} \int_{\pi+\varepsilon}^{2 \pi-\varepsilon} h(x) d x-h\left(x_{0}\right)\right| \leq \frac{1}{(\pi-2 \varepsilon) \Gamma((n+1) \alpha+1)} \tag{43}\\
& \left\{\left(\cos (2 \pi-\varepsilon)-\cos x_{0}\right)^{(n+1) \alpha}\left(2 \pi-\varepsilon-x_{0}\right)\left\|D_{x_{0}+; \cos }^{(n+1) \alpha} h\right\|_{\infty,\left[x_{0}, 2 \pi-\varepsilon\right]}+\right. \\
& \left.\quad\left(\cos x_{0}-\cos (\pi+\varepsilon)\right)^{(n+1) \alpha}\left(x_{0}-\pi-\varepsilon\right)\left\|D_{x_{0}-; \cos }^{(n+1) \alpha} h\right\|_{\infty,\left[\pi+\varepsilon, x_{0}\right]}\right\}
\end{align*}
$$

Proof. By Theorem 15.
From now on $f(z), z(t), t \in(a, b), \gamma$ will be as in section 1. Introduction. Put $z(a)=u, z(b)=w$ and $z(c)=v$, where $u, w, v \in \mathbb{C}$, with $c \in[a, b]$.

We will use here $h(t):=f(z(t)) z^{\prime}(t), t \in[a, b]$.
In that case we will have

$$
\begin{align*}
& \left|\frac{1}{b-a} \int_{a}^{b} h(t) d t-h(c)\right|=\left|\frac{1}{b-a} \int_{a}^{b} f(z(t)) z^{\prime}(t) d t-f(z(c)) z^{\prime}(c)\right| \stackrel{(1)}{=} \\
& \left|\frac{1}{b-a} \int_{\gamma_{u, w}} f(z) d z-f(v) z^{\prime}(c)\right| \stackrel{(1)}{=}\left|\frac{1}{b-a} \int_{\gamma} f(z) d z-f(v) z^{\prime}(c)\right| \tag{44}
\end{align*}
$$

where $\gamma_{u, w}=\gamma$.
We have the following advanced generalized fractional complete \mathbb{C}-Ostrowski type inequalities:

Theorem 20 Let $g \in C^{1}([a, b])$ and strictly increasing, such that $g^{-1} \in C^{1}([g(a), g(b)])$, and $0<\alpha<1, n \in \mathbb{N}$, $f(z(\cdot)) z^{\prime}(\cdot) \in C^{1}([a, b], \mathbb{C})$. Let $c \in[a, b]$ be fixed. Assume that $F_{k}^{c}:=D_{c-; g}^{k \alpha}\left(f(z(\cdot)) z^{\prime}(\cdot)\right)$, for $k=1, \ldots, n$, fulfill $F_{k}^{c} \in C^{1}([a, b], \mathbb{C})$ and $F_{n+1}^{c} \in C([a, c], \mathbb{C})$ and $\left(D_{c-; g}^{i \alpha}\left(f(z(\cdot)) z^{\prime}(\cdot)\right)\right)(c)=0, i=1, \ldots, n$.

Similarly, we assume that $G_{k}^{c}:=D_{c+; g}^{k \alpha}\left(f(z(\cdot)) z^{\prime}(\cdot)\right)$, for $k=1, \ldots, n$, fulfill $G_{k}^{c} \in C^{1}([c, b], \mathbb{C})$ and $G_{n+1}^{c} \in C([c, b], \mathbb{C})$ and $\left(D_{c+; g}^{i \alpha}\left(f(z(\cdot)) z^{\prime}(\cdot)\right)\right)(c)=0$, $i=1, \ldots, n$.

Then

$$
\begin{align*}
& \left|\frac{1}{b-a} \int_{\gamma_{u, w}} f(z) d z-f(v) z^{\prime}(c)\right| \leq \frac{1}{(b-a) \Gamma((n+1) \alpha+1)} \tag{45}\\
& \left\{(g(b)-g(c))^{(n+1) \alpha}(b-c)\left\|D_{c+; g}^{(n+1) \alpha}\left(f(z(\cdot)) z^{\prime}(\cdot)\right)\right\|_{\infty,[c, b]}+\right. \\
& \left.(g(c)-g(a))^{(n+1) \alpha}(c-a)\left\|D_{c-; g}^{(n+1) \alpha}\left(f(z(\cdot)) z^{\prime}(\cdot)\right)\right\|_{\infty,[a, c]}\right\}
\end{align*}
$$

Proof. By Theorem 17.
We continue with

Theorem 21 Let $0<\alpha<1$, $n \in \mathbb{N}, f(z(\cdot)) z^{\prime}(\cdot) \in C^{1}([a, b], \mathbb{C}), c \in$ $[a, b]$. Assume that $F_{k}^{c}:=D_{c-; e^{t}}^{k \alpha}\left(f(z(\cdot)) z^{\prime}(\cdot)\right)$, for $k=1, \ldots, n$, fulfill $F_{k}^{c} \in$ $C^{1}([a, c], \mathbb{C})$ and $F_{n+1}^{c} \in C([a, c], \mathbb{C})$ and $\left(D_{c-; e^{t}}^{i \alpha}\left(f(z(\cdot)) z^{\prime}(\cdot)\right)\right)(c)=0$, $i=1, \ldots, n$.

Similarly, we assume that $G_{k}^{c}:=D_{c+; e^{t}}^{k \alpha}\left(f(z(\cdot)) z^{\prime}(\cdot)\right)$, for $k=1, \ldots, n$, fulfill $G_{k}^{c} \in C^{1}([c, b], \mathbb{C})$ and $G_{n+1}^{c} \in C([c, b], \mathbb{C})$ and $\left(D_{c+; e^{t}}^{i \alpha}\left(f(z(\cdot)) z^{\prime}(\cdot)\right)\right)(c)=0$, $i=1, \ldots, n$.

Then

$$
\begin{align*}
& \left|\frac{1}{b-a} \int_{\gamma_{u, w}} f(z) d z-f(v) z^{\prime}(c)\right| \leq \frac{1}{(b-a) \Gamma((n+1) \alpha+1)} \tag{46}\\
& \quad\left\{\left(e^{b}-e^{c}\right)^{(n+1) \alpha}(b-c)\left\|D_{c+; e^{t}}^{(n+1) \alpha}\left(f(z(\cdot)) z^{\prime}(\cdot)\right)\right\|_{\infty,[c, b]}+\right. \\
& \left.\quad\left(e^{c}-e^{a}\right)^{(n+1) \alpha}(c-a)\left\|D_{c-; e^{t}}^{(n+1) \alpha}\left(f(z(\cdot)) z^{\prime}(\cdot)\right)\right\|_{\infty,[a, c]}\right\}
\end{align*}
$$

Proof. By Theorem 18.
Finally and additionally, we choose that $a=\pi+\varepsilon, b=2 \pi-\varepsilon$, where $\varepsilon>0$ is small, and $c \in[\pi+\varepsilon, 2 \pi-\varepsilon]$. So here it is $z(\pi+\varepsilon)=u, z(2 \pi-\varepsilon)=w$ and $z(c)=v$, where $u, w, u \in \mathbb{C}$.

We present
Theorem 22 Let $0<\alpha<1$, $n \in \mathbb{N}, f(z(\cdot)) z^{\prime}(\cdot) \in C^{1}([\pi+\varepsilon, 2 \pi-\varepsilon], \mathbb{C})$, $\varepsilon>0$ small, $c \in[\pi+\varepsilon, 2 \pi-\varepsilon]$. Assume that $F_{k}^{c}:=D_{c-; \cos }^{k \alpha}\left(f(z(\cdot)) z^{\prime}(\cdot)\right)$, for $k=1, \ldots, n$, fulfill $F_{k}^{c} \in C^{1}([\pi+\varepsilon, c], \mathbb{C})$ and $F_{n+1}^{c} \in C([\pi+\varepsilon, c], \mathbb{C})$ and $\left(D_{c-; \cos }^{i \alpha}\left(f(z(\cdot)) z^{\prime}(\cdot)\right)\right)(c)=0, i=1, \ldots, n$.

Similarly, we assume that $G_{k}^{c}:=D_{c+; \cos }^{k \alpha}\left(f(z(\cdot)) z^{\prime}(\cdot)\right)$, for $k=1, \ldots, n$, fulfill $G_{k}^{c} \in C^{1}([c, 2 \pi-\varepsilon], \mathbb{C})$ and $G_{n+1}^{c} \in C([c, 2 \pi-\varepsilon], \mathbb{C})$ and $\left(D_{c+; \cos }^{i \alpha}\left(f(z(\cdot)) z^{\prime}(\cdot)\right)\right)(c)=0, i=1, \ldots, n$.

Then
$\left|\frac{1}{\pi-2 \varepsilon} \int_{\gamma_{u, w}} f(z) d z-f(v) z^{\prime}(c)\right| \leq \frac{1}{(\pi-2 \varepsilon) \Gamma((n+1) \alpha+1)}$.

$$
\begin{aligned}
& \left\{(\cos (2 \pi-\varepsilon)-\cos c)^{(n+1) \alpha}(2 \pi-\varepsilon-c)\left\|D_{c+; \cos }^{(n+1) \alpha}\left(f(z(\cdot)) z^{\prime}(\cdot)\right)\right\|_{\infty,[c, 2 \pi-\varepsilon]}+\right. \\
& \left.\quad(\cos c-\cos (\pi+\varepsilon))^{(n+1) \alpha}(c-\pi-\varepsilon)\left\|D_{c-; \cos }^{(n+1) \alpha}\left(f(z(\cdot)) z^{\prime}(\cdot)\right)\right\|_{\infty,[\pi+\varepsilon, c]}\right\}
\end{aligned}
$$

Proof. By Theorem 19.

References

[1] G.A. Anastassiou, Principles of General Fractional Analysis for Banach space valued functions, Bulletin of Allahabad Math. Soc., 32 (1) (2017), 71-145.
[2] G.A. Anastassiou, A strong Fractional Calculus Theory for Banach space valued functions, Nonlinear Functional Analysis and Applications, 22 (3) (2017), 495-524.
[3] G.A. Anastassiou, Strong Right Fractional Calculus for Banach space valued functions, Revista Proyecciones, 36(1) (2017), 149-186.
[4] G.A. Anastassiou, Strong mixed and generalized fractional calculus for Banach space valued functions, Mat. Vesnik, 69 (3) (2017), 176-191.
[5] S.S. Dragomir, An extension of Opial's inequality to the complex integral, RGMIA Res. Rep. Coll. 22 (2019), Art 9, 9 pp., rgmia.org/v22.php.
[6] J. Mikusinski, The Bochner integral, Academic Press, New York, 1978.
[7] A.M. Ostrowski, On an integral inequality, Aequat. Math. 4 (1970), 358-373.
[8] G.E. Shilov, Elementary Functional Analysis, Dover Publications, Inc., New York, 1996.

