NORM INEQUALITIES FOR THE ERROR IN APPROXIMATING ANALYTIC FUNCTIONS IN BANACH ALGEBRAS BY COMPLEX CHORDS

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. Let \mathcal{B} be a unital Banach algebra, $a \in \mathcal{B}$, G be a convex domain of \mathbb{C} with $\sigma(a) \subset G$, $\alpha, \beta \in G$, $\alpha \neq \beta$ and $f: G \to \mathbb{C}$ is analytic on G. By using the analytic functional calculus in \mathcal{B} we can define the errors in approximating analytic functions in Banach algebras by complex chords as follows

$$\Phi_{f}(a;\alpha,\beta) := \frac{f(\alpha)(\beta-a) + f(\beta)(a-\alpha)}{\beta-\alpha} - f(a)$$

and

$$\widetilde{\Phi}_{f}\left(a;\alpha,\beta\right):=\frac{f\left(\alpha\right)\left(a-\alpha\right)+f\left(\beta\right)\left(\beta-a\right)}{\beta-\alpha}-f\left(a\right)$$

In this paper we provide some norm inequalities involving the functions $\Phi_f(a; \alpha, \beta)$ and $\tilde{\Phi}_f(a; \alpha, \beta)$ defined above.

1. INTRODUCTION

Consider a function $f : [a, b] \to \mathbb{R}$ and assume that it is bounded on [a, b]. The chord that connects its end points A = (a, f(a)) and B = (b, f(b)) has the equation

$$d_f: [a,b] \to \mathbb{R}, \quad d_f(x) = \frac{1}{b-a} [f(a)(b-x) + f(b)(x-a)].$$

In [7], we introduced the error in approximating the value of the function f(x) by $d_f(x)$ with $x \in [a, b]$ by $\Phi_f(x)$, i.e., $\Phi_f(x)$ is defined by:

(1.1)
$$\Phi_f(x) := \frac{b-x}{b-a} \cdot f(a) + \frac{x-a}{b-a} \cdot f(b) - f(x).$$

The following simple result, which provides a sharp upper bound for the case of bounded functions, has been stated in [6] as an intermediate result needed to obtain a Grüss type inequality:

If $f : [a, b] \to \mathbb{R}$ is a bounded function with $-\infty < m \le f(x) \le M < \infty$ for any $x \in [a, b]$, then

$$|\Phi_f(x)| \le M - m$$

The multiplicative constant 1 in front of M - m cannot be replaced by a smaller quantity.

The case of convex functions has been considered in [6] in order to prove another Grüss type inequality:

RGMIA Res. Rep. Coll. 22 (2019), Art. 26, 14 pp. Received 28/02/19

¹⁹⁹¹ Mathematics Subject Classification. 47A63; 47A99.

Key words and phrases. Banach algebras, Ostrowski inequality, Norm inequalities, Analytic functional calculus.

If $f:[a,b] \to \mathbb{R}$ is a convex function on [a,b], then

(1.3)
$$0 \le \Phi_f(x) \le \frac{(b-x)(x-a)}{b-a} \left[f'_-(b) - f'_+(a) \right] \le \frac{1}{4} (b-a) \left[f'_-(b) - f'_+(a) \right]$$

for any $x \in [a, b]$.

If the lateral derivatives $f'_{-}(b)$ and $f'_{+}(a)$ are finite, then the second inequality and the constant $\frac{1}{4}$ are sharp.

The following estimation result holds [7]:

Theorem 1. If $f : [a, b] \to \mathbb{R}$ is of bounded variation, then

(1.4)
$$|\Phi_{f}(x)| \leq \left(\frac{b-x}{b-a}\right) \cdot \bigvee_{a}^{x} (f) + \left(\frac{x-a}{b-a}\right) \cdot \bigvee_{x}^{b} (f) \\ \leq \begin{cases} \left[\frac{1}{2} + \left|\frac{x-\frac{a+b}{2}}{b-a}\right|\right] \bigvee_{a}^{b} (f); \\ \left[\left(\frac{b-x}{b-a}\right)^{p} + \left(\frac{x-a}{b-a}\right)^{p}\right]^{\frac{1}{p}} \left[(\bigvee_{a}^{x} (f))^{q} + \left(\bigvee_{x}^{b} (f)\right)^{q}\right]^{\frac{1}{q}} \\ if \ p > 1, \ \frac{1}{p} + \frac{1}{q} = 1; \\ \frac{1}{2} \bigvee_{a}^{b} (f) + \frac{1}{2} \left|\bigvee_{a}^{x} (f) - \bigvee_{x}^{b} (f)\right|. \end{cases}$$

The first inequality in (1.4) is sharp. The constant $\frac{1}{2}$ is best possible in the first and third branches.

Corollary 1. If $f : [a,b] \to \mathbb{R}$ is L_1 -Lipschitzian on [a,x] and L_2 -Lipschitzian on [x,b], $L_1, L_2 > 0$, then

(1.5)
$$|\Phi_f(x)| \le \frac{(b-x)(x-a)}{b-a} (L_1 + L_2) \le \frac{1}{4} (b-a) (L_1 + L_2)$$

for any $x \in [a, b]$.

In particular, if f is L-Lipschitzian on [a, b], then

(1.6)
$$|\Phi_f(x)| \le \frac{2(b-x)(x-a)}{b-a}L \le \frac{1}{2}(b-a)L.$$

The constants $\frac{1}{4}$, 2 and $\frac{1}{2}$ are best possible.

When more information on the derivative of the function is available, then we can state the following results as well [7]:

Theorem 2. Assume that $f : [a,b] \to \mathbb{R}$ is absolutely continuous on [a,b]. If f' is of bounded variation on [a,b], then

(1.7)
$$|\Phi_f(x)| \le \frac{(x-a)(b-x)}{b-a} \cdot \bigvee_a^b (f') \le \frac{1}{4}(b-a) \bigvee_a^b (f'),$$

where $\bigvee_{a}^{b}(f')$ denotes the total variation of f' on [a, b].

The inequalities are sharp and the constant $\frac{1}{4}$ is best possible.

In order to extend some of these results for functions defined on Banach algebras, we need the following preparation.

Let \mathcal{B} be an algebra. An algebra norm on \mathcal{B} is a map $\|\cdot\| : \mathcal{B} \to [0, \infty)$ such that $(\mathcal{B}, \|\cdot\|)$ is a normed space, and, further: $\|ab\| \leq \|a\| \|b\|$ for any $a, b \in \mathcal{B}$. The normed algebra $(\mathcal{B}, \|\cdot\|)$ is a Banach algebra if $\|\cdot\|$ is a complete norm. We assume

2

Let \mathcal{B} be a unital algebra. An element $a \in \mathcal{B}$ is *invertible* if there exists an element $b \in \mathcal{B}$ with ab = ba = 1. The element b is unique; it is called the *inverse* of a and written a^{-1} or $\frac{1}{a}$. The set of invertible elements of \mathcal{B} is denoted by Inv (\mathcal{B}). If $a, b \in \text{Inv}(\mathcal{B})$ then $ab \in \text{Inv}(\mathcal{B})$ and $(ab)^{-1} = b^{-1}a^{-1}$.

For a unital Banach algebra we also have:

- (i) If $a \in \mathcal{B}$ and $\lim_{n \to \infty} ||a^n||^{1/n} < 1$, then $1 a \in \text{Inv}(\mathcal{B})$;
- (ii) $\{a \in \mathcal{B}: \|1 b\| < 1\} \subset \operatorname{Inv}(\mathcal{B});$
- (iii) $Inv(\mathcal{B})$ is an open subset of \mathcal{B} ;
- (iv) The map $\operatorname{Inv}(\mathcal{B}) \ni a \longmapsto a^{-1} \in \operatorname{Inv}(\mathcal{B})$ is continuous.

For simplicity, we denote z1, where $z \in \mathbb{C}$ and 1 is the identity of \mathcal{B} , by z. The resolvent set of $a \in \mathcal{B}$ is defined by

$$\rho(a) := \{ z \in \mathbb{C} : z - a \in \operatorname{Inv}(\mathcal{B}) \}$$

the spectrum of a is $\sigma(a)$, the complement of $\rho(a)$ in \mathbb{C} , and the resolvent function of a is $R_a : \rho(a) \to \text{Inv}(\mathcal{B}), R_a(z) := (z-a)^{-1}$. For each $z, w \in \rho(a)$ we have the identity

$$R_{a}(w) - R_{a}(z) = (z - w) R_{a}(z) R_{a}(w)$$

We also have that

$$\sigma(a) \subset \{z \in \mathbb{C} : |z| \le ||a||\}.$$

The *spectral radius* of a is defined as

$$\nu\left(a\right) = \sup\left\{\left|z\right| : z \in \sigma\left(a\right)\right\}.$$

Let \mathcal{B} a unital Banach algebra and $a \in \mathcal{B}$. Then

- (i) The resolvent set $\rho(a)$ is open in \mathbb{C} ;
- (ii) For any bounded linear functionals $\lambda : \mathcal{B} \to \mathbb{C}$, the function $\lambda \circ R_a$ is analytic on $\rho(a)$;
- (iii) The spectrum $\sigma(a)$ is compact and nonempty in \mathbb{C} ;
- (iv) For each $n \in \mathbb{N}$ and $r > \nu(a)$, we have $a^n = \frac{1}{2\pi i} \int_{|\xi|=r} \xi^n (\xi a)^{-1} d\xi$;
- (v) We have $\nu(a) = \lim_{n \to \infty} \|a^n\|^{1/n}$.

Let \mathcal{B} be a unital Banach algebra, $a \in \mathcal{B}$ and G be a domain of \mathbb{C} with $\sigma(a) \subset G$. If $f: G \to \mathbb{C}$ is analytic on G, we define an element f(a) in \mathcal{B} by

(1.8)
$$f(a) := \frac{1}{2\pi i} \int_{\delta} f(\xi) \left(\xi - a\right)^{-1} d\xi,$$

where $\delta \subset G$ is taken to be close rectifiable curve in G and such that $\sigma(a) \subset \operatorname{ins}(\delta)$, the inside of δ .

It is well known (see for instance [3, pp. 201-204]) that f(a) does not depend on the choice of δ and the *Spectral Mapping Theorem* (SMT)

(1.9)
$$\sigma(f(a)) = f(\sigma(a))$$

holds.

Let $\mathfrak{Hol}(a)$ be the set of all the functions that are analytic in a neighborhood of $\sigma(a)$. Note that $\mathfrak{Hol}(a)$ is an algebra where if $f, g \in \mathfrak{Hol}(a)$ and f and g have domains D(f) and D(g), then fg and f + g have domain $D(f) \cap D(g)$. $\mathfrak{Hol}(a)$ is not, however a Banach algebra.

S. S. DRAGOMIR

The following result is known as the *Riesz Functional Calculus Theorem* [3, p. 201-203]:

Theorem 3. Let \mathcal{B} a unital Banach algebra and $a \in \mathcal{B}$.

- (a) The map $f \mapsto f(a)$ of $\mathfrak{Hol}(a) \to \mathcal{B}$ is an algebra homomorphism.
- (a) The map $f(x) = \sum_{k=0}^{\infty} \alpha_k z^k$ has radius of convergence $r > \nu(a)$, then $f \in \mathfrak{Hol}(a)$ and $f(a) = \sum_{k=0}^{\infty} \alpha_k a^k$.
- (c) If $f(z) \equiv 1$, then f(a) = 1.
- (d) If f(z) = z for all z, f(a) = a.
- (e) If $f, f_1, ..., f_n...$ are analytic on $G, \sigma(a) \subset G$ and $f_n(z) \to f(z)$ uniformly on compact subsets of G, then $||f_n(a) - f(a)|| \to 0$ as $n \to \infty$.
- (f) The Riesz Functional Calculus is unique and if a, b are commuting elements in \mathcal{B} and $f \in \mathfrak{Hol}(a)$, then f(a)b = bf(a).

For some recent norm inequalities for functions on Banach algebras, see [1]-[2] and [10]-[16].

Let \mathcal{B} be a unital Banach algebra, $a \in \mathcal{B}$ and G be a convex domain of \mathbb{C} with $\sigma(a) \subset G$. If $f: G \to \mathbb{C}$ is analytic on G and $\alpha, \beta \in G$ with $\alpha \neq \beta$, then we can define the errors in approximating analytic functions in Banach algebras by complex chords as follows

$$\Phi_f(a;\alpha,\beta) := \frac{f(\alpha)(\beta-a) + f(\beta)(a-\alpha)}{\beta-\alpha} - f(a)$$

and

4

$$\widetilde{\Phi}_{f}\left(a;\alpha,\beta\right) := \frac{f\left(\alpha\right)\left(a-\alpha\right) + f\left(\beta\right)\left(\beta-a\right)}{\beta-\alpha} - f\left(a\right).$$

Motivated by the above results, in this paper we provide some norm inequalities involving the functions $\Phi_f(a; \alpha, \beta)$ and $\widetilde{\Phi}_f(a; \alpha, \beta)$ defined above.

2. Some Identities

We have the following simple identities:

Theorem 4. Let \mathcal{B} be a unital Banach algebra, $a \in \mathcal{B}$ and G be a convex domain of \mathbb{C} with $\sigma(a) \subset G$. If $f: G \to \mathbb{C}$ is analytic on G, then for all $\alpha, \beta \in G$ with $\alpha \neq \beta$, we have

$$(2.1) \quad \widetilde{\Phi}_f(a;\alpha,\beta) = \frac{1}{\beta-\alpha} \left(\beta-a\right)^2 \int_0^1 f'\left((1-t)a+t\beta\right) dt \\ -\frac{1}{\beta-\alpha} \left(a-\alpha\right)^2 \int_0^1 f'\left((1-t)a+t\alpha\right) dt$$

and

(2.2)
$$\Phi_f(a;\alpha,\beta) = \frac{(\beta-a)(a-\alpha)}{\beta-\alpha} \int_0^1 \left[f'\left((1-t)a+t\beta\right) - f'\left((1-t)a+t\alpha\right) \right] dt.$$

Proof. Due to the convexity of D, for any $\xi, \nu \in D$ we can define the function $\varphi_{\xi,\nu} : [0,1] \to \mathbb{R}$ by $\varphi_{\xi,\nu}(t) := f((1-t)\xi + t\nu)$. The function $\varphi_{\xi,\nu}$ is differentiable on (0,1) and

$$\frac{d\varphi_{\xi,\nu}(t)}{dt} = (\nu - \xi) f'((1 - t)\xi + t\nu) \text{ for } t \in (0, 1).$$

We have

$$f(\nu) - f(\xi) = \varphi_{\xi,\nu}(1) - \varphi_{\xi,\nu}(0) = \int_0^1 \frac{d\varphi_{\xi,\nu}(t)}{dt} dt$$
$$= (\nu - \xi) \int_0^1 f'((1 - t)\xi + t\nu) dt$$

namely

(2.3)
$$f(\nu) = f(\xi) + (\nu - \xi) \int_0^1 f'((1 - t)\xi + t\nu) dt$$

for any $\xi, \nu \in D$.

Therefore, by (2.3) we get

(2.4)
$$f(\alpha) = f(\xi) + (\alpha - \xi) \int_0^1 f'((1 - t)\xi + t\alpha) dt$$

and

(2.5)
$$f(\beta) = f(\xi) + (\beta - \xi) \int_0^1 f'((1-t)\xi + t\beta) dt$$

for any $\xi \in D$.

If we multiply (2.4) and (2.5) by λ and $1 - \lambda$ and add, we get the following identity that is of interest in itself

(2.6)
$$\lambda f(\alpha) + (1-\lambda) f(\beta) - f(\xi)$$
$$= \lambda (\alpha - \xi) \int_0^1 f'((1-t)\xi + t\alpha) dt + (1-\lambda) (\beta - \xi) \int_0^1 f'((1-t)\xi + t\beta) dt$$

for any $\xi \in D$. If we take $\lambda = \frac{\xi - \alpha}{\beta - \alpha}$, then $1 - \lambda = \frac{\beta - \xi}{\beta - \alpha}$ and by (2.6) we get

(2.7)
$$\frac{\xi - \alpha}{\beta - \alpha} f(\alpha) + \frac{\beta - \xi}{\beta - \alpha} f(\beta) - f(\xi) = \frac{(\beta - \xi)^2}{\beta - \alpha} \int_0^1 f'((1 - t)\xi + t\beta) dt - \frac{(\xi - \alpha)^2}{\beta - \alpha} \int_0^1 f'((1 - t)\xi + t\alpha) dt,$$

for any $\xi \in D$. Also, if we take $\lambda = \frac{\beta - \xi}{\beta - \alpha}$, then $1 - \lambda = \frac{\xi - \alpha}{\beta - \alpha}$ and by (2.6) we get

(2.8)
$$\frac{\beta-\xi}{\beta-\alpha}f(\alpha) + \frac{\xi-\alpha}{\beta-\alpha}f(\beta) - f(\xi) \\ = \frac{(\beta-\xi)(\xi-\alpha)}{\beta-\alpha} \left[\int_0^1 f'((1-t)\xi + t\beta)dt - \int_0^1 f'((1-t)\xi + t\alpha)dt\right],$$

for any $\xi \in D$.

From the identity (2.7) we get

$$(2.9) \quad \frac{f(\alpha)}{\beta - \alpha} \frac{1}{2\pi i} \int_{\delta} (\xi - \alpha) (\xi - a)^{-1} d\xi + \frac{f(\beta)}{\beta - \alpha} \frac{1}{2\pi i} \int_{\delta} (\beta - \xi) (\xi - a)^{-1} d\xi - \frac{1}{2\pi i} \int_{\delta} f(\xi) (\xi - a)^{-1} d\xi = \frac{1}{\beta - \alpha} \frac{1}{2\pi i} \int_{\delta} (\beta - \xi)^{2} \left(\int_{0}^{1} f' ((1 - t)\xi + t\beta) dt \right) (\xi - a)^{-1} d\xi - \frac{1}{\beta - \alpha} \frac{1}{2\pi i} \int_{\delta} (\xi - \alpha)^{2} \left(\int_{0}^{1} f' ((1 - t)\xi + t\alpha) dt \right) (\xi - a)^{-1} d\xi = \frac{1}{\beta - \alpha} \int_{0}^{1} \left(\frac{1}{2\pi i} \int_{\delta} (\beta - \xi)^{2} f' ((1 - t)\xi + t\beta) (\xi - a)^{-1} d\xi \right) dt - \frac{1}{\beta - \alpha} \int_{0}^{1} \left(\frac{1}{2\pi i} \int_{\delta} (\xi - \alpha)^{2} f' ((1 - t)\xi + t\alpha) (\xi - a)^{-1} d\xi \right) dt,$$

where for the last equality we used Fubini's theorem.

Since the functions

$$G \ni \mapsto (\beta - \xi)^2 f' ((1 - t)\xi + t\beta) \in \mathbb{C}$$

and

$$G \ni \mapsto \left(\beta - \xi\right)^2 f' \left((1 - t)\xi + t\beta \right) \in \mathbb{C}$$

are analytic on G for all $\alpha,\,\beta\in G$ and $t\in[0,1]\,,$ then by the analytic functional calculus we have

$$\frac{1}{2\pi i} \int_{\delta} (\beta - \xi)^2 f' \left((1 - t)\xi + t\beta \right) (\xi - a)^{-1} d\xi = (\beta - a)^2 f' \left((1 - t)a + t\beta \right)$$

and

$$\frac{1}{2\pi i} \int_{\delta} (\xi - \alpha)^2 f' \left((1 - t) \xi + t\alpha \right) (\xi - a)^{-1} d\xi = (a - \alpha)^2 f' \left((1 - t) a + t\alpha \right).$$

Also, we have

$$\frac{1}{2\pi i} \int_{\delta} (\xi - \alpha) (\xi - a)^{-1} d\xi = a - \alpha, \ \frac{1}{2\pi i} \int_{\delta} (\beta - \xi) (\xi - a)^{-1} d\xi = \beta - a$$

and by (2.9) we get (2.1).

The identity (2.2) follows in a similar way from (2.8) and we omit the details. \Box

We have the following perturbed versions of the identities above:

Corollary 2. With the assumptions of Theorem 4 and if $b, c \in \mathcal{B}$, then

$$(2.10) \quad \widetilde{\Phi}_{f}\left(a;\alpha,\beta\right) - \frac{1}{\beta - \alpha} \left(\beta - a\right)^{2} b + \frac{1}{\beta - \alpha} \left(a - \alpha\right)^{2} c$$
$$= \frac{1}{\beta - \alpha} \left(\beta - a\right)^{2} \int_{0}^{1} \left[f'\left((1 - t)a + t\beta\right) - b\right] dt$$
$$- \frac{1}{\beta - \alpha} \left(a - \alpha\right)^{2} \int_{0}^{1} \left[f'\left((1 - t)a + t\alpha\right) - c\right] dt$$

6

and

(2.11)
$$\Phi_f(a;\alpha,\beta) - \frac{(\beta-a)(a-\alpha)}{\beta-\alpha}(b-c) = \frac{(\beta-a)(a-\alpha)}{\beta-\alpha} \times \left[\int_0^1 \left[f'\left((1-t)a+t\beta\right)-b\right]dt - \int_0^1 \left[f'\left((1-t)a+t\alpha\right)-c\right]dt\right].$$

In particular, for c = b, we have

$$(2.12) \quad \widetilde{\Phi}_f(a;\alpha,\beta) + 2\left(\beta - \alpha\right) \left(a - \frac{\beta + \alpha}{2}\right) b$$
$$= \frac{1}{\beta - \alpha} \left(\beta - a\right)^2 \int_0^1 \left[f'\left((1 - t)a + t\beta\right) - b\right] dt$$
$$- \frac{1}{\beta - \alpha} \left(a - \alpha\right)^2 \int_0^1 \left[f'\left((1 - t)a + t\alpha\right) - b\right] dt$$

and

(2.13)
$$\Phi_f(a;\alpha,\beta) = \frac{(\beta-a)(a-\alpha)}{\beta-\alpha} \times \left[\int_0^1 \left[f'\left((1-t)a+t\beta\right)-b\right]dt - \int_0^1 \left[f'\left((1-t)a+t\alpha\right)-b\right]dt\right].$$

Remark 1. If we take $b = f'(\beta)$ and $c = f'(\alpha)$ in (2.10) and (2.11), then we get

$$(2.14) \quad \widetilde{\Phi}_{f}\left(a;\alpha,\beta\right) - \frac{f'\left(\beta\right)}{\beta - \alpha}\left(\beta - a\right)^{2} + \frac{f'\left(\alpha\right)}{\beta - \alpha}\left(a - \alpha\right)^{2}$$
$$= \frac{1}{\beta - \alpha}\left(\beta - a\right)^{2} \int_{0}^{1}\left[f'\left((1 - t)a + t\beta\right) - f'\left(\beta\right)\right] dt$$
$$- \frac{1}{\beta - \alpha}\left(a - \alpha\right)^{2} \int_{0}^{1}\left[f'\left((1 - t)a + t\alpha\right) - f'\left(\alpha\right)\right] dt$$

and

$$(2.15) \quad \Phi_f(a;\alpha,\beta) - \frac{f'(\beta) - f'(\alpha)}{\beta - \alpha} (\beta - a) (a - \alpha) = \frac{(\beta - a) (a - \alpha)}{\beta - \alpha} \times \left[\int_0^1 \left[f'((1-t)a + t\beta) - f'(\beta) \right] dt - \int_0^1 \left[f'((1-t)a + t\alpha) - f'(\alpha) \right] dt \right].$$

If we take b = f'(a) in (2.12) and (2.13), then we get

$$(2.16) \quad \widetilde{\Phi}_{f}\left(a;\alpha,\beta\right) + 2\left(\beta - \alpha\right)\left(a - \frac{\beta + \alpha}{2}\right)f'\left(a\right)$$
$$= \frac{1}{\beta - \alpha}\left(\beta - a\right)^{2}\int_{0}^{1}\left[f'\left(\left(1 - t\right)a + t\beta\right) - f'\left(a\right)\right]dt$$
$$- \frac{1}{\beta - \alpha}\left(a - \alpha\right)^{2}\int_{0}^{1}\left[f'\left(\left(1 - t\right)a + t\alpha\right) - f'\left(a\right)\right]dt$$

and

(2.17)
$$\Phi_{f}(a;\alpha,\beta) = \frac{(\beta-a)(a-\alpha)}{\beta-\alpha} \times \left[\int_{0}^{1} \left[f'((1-t)a+t\beta) - f'(a) \right] dt - \int_{0}^{1} \left[f'((1-t)a+t\alpha) - f'(a) \right] dt \right].$$

3. Norm Inequalities

We have:

Theorem 5. Let \mathcal{B} be a unital Banach algebra, $a \in \mathcal{B}$ and G be a convex domain of \mathbb{C} with $\sigma(a) \subset G$. If $f: G \to \mathbb{C}$ is analytic on G, then for all $\alpha, \beta \in G$ with $\alpha \neq \beta$, we have

$$\begin{aligned} (3.1) \quad \left\| \widetilde{\Phi}_{f}\left(a;\alpha,\beta\right) \right\| &\leq \frac{1}{|\beta-\alpha|} \left\| \beta-a \right\|^{2} \int_{0}^{1} \left\| f'\left((1-t)\,a+t\beta\right) \right\| dt \\ &+ \frac{1}{|\beta-\alpha|} \left\| a-\alpha \right\|^{2} \int_{0}^{1} \left\| f'\left((1-t)\,a+t\alpha\right) \right\| dt \\ &\leq \frac{1}{|\beta-\alpha|} \left\| \beta-a \right\|^{2} \sup_{t\in[0,1]} \left\| f'\left((1-t)\,a+t\beta\right) \right\| \\ &+ \frac{1}{|\beta-\alpha|} \left\| a-\alpha \right\|^{2} \sup_{t\in[0,1]} \left\| f'\left((1-t)\,a+t\alpha\right) \right\| \\ &\leq \frac{1}{|\beta-\alpha|} \max \left\{ \sup_{t\in[0,1]} \left\| f'\left((1-t)\,a+t\beta\right) \right\|, \sup_{t\in[0,1]} \left\| f'\left((1-t)\,a+t\alpha\right) \right\| \right\} \\ &\times \left[\left\| \beta-a \right\|^{2} + \left\| a-\alpha \right\|^{2} \right] \end{aligned}$$

and

$$(3.2) \quad \|\Phi_{f}(a;\alpha,\beta)\| \\ \leq \frac{\|(\beta-a)(a-\alpha)\|}{|\beta-\alpha|} \int_{0}^{1} \|f'((1-t)a+t\beta) - f'((1-t)a+t\alpha)\| dt \\ \leq \frac{\|\beta-a\|\|a-\alpha\|}{|\beta-\alpha|} \int_{0}^{1} [\|f'((1-t)a+t\beta)\| + \|f'((1-t)a+t\alpha)\|] dt \\ \leq \frac{\|\beta-a\|\|a-\alpha\|}{|\beta-\alpha|} \sup_{t\in[0,1]} [\|f'((1-t)a+t\beta)\| + \|f'((1-t)a+t\alpha)\|].$$

8

Proof. By taking the norm in the identity (2.1), we get

$$\begin{split} \left\| \widetilde{\Phi}_{f} \left(a; \alpha, \beta \right) \right\| &\leq \frac{1}{|\beta - \alpha|} \left\| (\beta - a)^{2} \int_{0}^{1} f' \left((1 - t) \, a + t\beta \right) dt \right\| \\ &+ \frac{1}{|\beta - \alpha|} \left\| (a - \alpha)^{2} \int_{0}^{1} f' \left((1 - t) \, a + t\alpha \right) dt \right\| \\ &\leq \frac{1}{|\beta - \alpha|} \left\| (\beta - a)^{2} \right\| \left\| \int_{0}^{1} f' \left((1 - t) \, a + t\beta \right) dt \right\| \\ &+ \frac{1}{|\beta - \alpha|} \left\| (a - \alpha)^{2} \right\| \left\| \int_{0}^{1} f' \left((1 - t) \, a + t\alpha \right) dt \right\| \\ &\leq \frac{1}{|\beta - \alpha|} \left\| \beta - a \right\|^{2} \int_{0}^{1} \left\| f' \left((1 - t) \, a + t\beta \right) \right\| dt \\ &+ \frac{1}{|\beta - \alpha|} \left\| a - \alpha \right\|^{2} \int_{0}^{1} \left\| f' \left((1 - t) \, a + t\alpha \right) \right\| dt, \end{split}$$

which proves the desired inequality (3.1).

The inequality (3.2) follows by (2.2).

Corollary 3. With the assumptions of Theorem 5 and if

$$\|f'\|_{a,G} := \sup_{(t,\alpha)\in[0,1]\times G} \|f'\left((1-t)\,a+t\alpha\right)\| < \infty,$$

then

(3.3)
$$\left\| \widetilde{\Phi}_{f}(a;\alpha,\beta) \right\| \leq \frac{1}{|\beta-\alpha|} \|f'\|_{a,G} \left[\|\beta-a\|^{2} + \|a-\alpha\|^{2} \right].$$

Corollary 4. With the assumptions of Theorem 5 and if

$$||f'((1-t)a+t\beta) - f'((1-t)a+t\alpha)|| \le tL_{\alpha,\beta}|\beta - \alpha| \text{ for } t \in [0,1],$$

then

(3.4)
$$\|\Phi_f(a;\alpha,\beta)\| \le \frac{1}{2} \|(\beta-a)(a-\alpha)\| L_{\alpha,\beta} \le \frac{1}{2} \|\beta-a\| \|a-\alpha\| L_{\alpha,\beta}.$$

Let $a \in \mathcal{B}$ and G be a convex domain of \mathbb{C} with $\sigma(a) \subset G$ and $\lambda \in G$. We define $G_{\lambda,a} := \{(1-t)\lambda + ta \mid \text{with } t \in [0,1]\}$. We observe that $G_{\lambda,a}$ is a convex subset in \mathcal{B} for every $\lambda \in G$.

We say that the function $g: G_{\lambda,a} \to B$ is Lipschitzian on $G_{\lambda,a}$ with the constant $L_{\lambda,a} > 0$, if for all $x, y \in G_{\lambda,a}$ we have

$$||g(x) - g(y)|| \le L_{\lambda,a} ||x - y||.$$

This is equivalent to

(3.5)
$$||g((1-t)\lambda + ta) - g((1-s)\lambda + sa)|| \le L_{\lambda,a} |t-s| ||a-\lambda||$$

for all $t, s \in [0, 1]$. We write this by $g \in \mathfrak{Lip}_{L_{\lambda, a}}(G_{\lambda, a})$.

Let $h: G \to \mathbb{C}$ be an analytic function on G. For $t \in [0,1]$ and $\lambda \in G$, the auxiliary function $h_{t,\lambda}$ defined on G by $h_{t,\lambda}(\xi) := h((1-t)\lambda + t\xi)$ is also analytic

and using the analytic functional calculus (1.8) for the element $a \in \mathcal{B}$, we can define

(3.6)
$$\widetilde{h}((1-t)\lambda + ta) := h_{t,\lambda}(a) = \frac{1}{2\pi i} \int_{\gamma} h_{t,\lambda}(\xi) (\xi - a)^{-1} d\xi = \frac{1}{2\pi i} \int_{\gamma} h((1-t)\lambda + t\xi) (\xi - a)^{-1} d\xi.$$

We say that the scalar function $h \in \mathfrak{Lip}_{L_{\lambda,a}}(G_{\lambda,a})$ if its extension $\tilde{h}: G_{\lambda,a} \to B$ satisfies the Lipschitz condition (3.5).

Theorem 6. Let \mathcal{B} be a unital Banach algebra, $a \in \mathcal{B}$ and G be a convex domain of \mathbb{C} with $\sigma(a) \subset G$. If $f: G \to \mathbb{C}$ is analytic on G, $\alpha, \beta \in G$ with $\alpha \neq \beta$ and $f' \in \mathfrak{Lip}_{L_{\alpha,a}}(G_{\lambda,a}) \cap \mathfrak{Lip}_{L_{\beta,a}}(G_{\lambda,a})$ for some $L_{\alpha,a}, L_{\beta,a} > 0$, then we have

$$(3.7) \quad \left\| \widetilde{\Phi}_{f}\left(a;\alpha,\beta\right) - \frac{f'\left(\beta\right)}{\beta - \alpha} \left(\beta - a\right)^{2} + \frac{f'\left(\alpha\right)}{\beta - \alpha} \left(a - \alpha\right)^{2} \right\| \\ \leq \frac{1}{2\left|\beta - \alpha\right|} \left[\left\|\beta - a\right\|^{3} L_{\beta,a} + \left\|a - \alpha\right\|^{3} L_{\alpha,a} \right] \\ \leq \frac{1}{2\left|\beta - \alpha\right|} \max\left\{ L_{\beta,a}, L_{\alpha,a} \right\} \left[\left\|\beta - a\right\|^{3} + \left\|a - \alpha\right\|^{3} \right]$$

and

$$(3.8) \quad \left\| \Phi_f\left(a;\alpha,\beta\right) - \frac{f'\left(\beta\right) - f'\left(\alpha\right)}{\beta - \alpha} \left(\beta - a\right) \left(a - \alpha\right) \right\| \\ \leq \frac{\left\| \left(\beta - a\right) \left(a - \alpha\right) \right\|}{2 \left|\beta - \alpha\right|} \left[\left\|\beta - a\right\| L_{\beta,a} + \left\|a - \alpha\right\| L_{\alpha,a} \right] \\ \leq \frac{\left\| \left(\beta - a\right) \left(a - \alpha\right) \right\|}{2 \left|\beta - \alpha\right|} \max \left\{ L_{\beta,a}, L_{\alpha,a} \right\} \left[\left\|\beta - a\right\| + \left\|a - \alpha\right\| \right].$$

Proof. From the identity (2.14) and by the fact that $f' \in \mathfrak{Lip}_{L_{\alpha,a}}(G_{\lambda,a}) \cap \mathfrak{Lip}_{L_{\beta,a}}(G_{\lambda,a})$, we have

$$\begin{split} \left\| \widetilde{\Phi}_{f}\left(a;\alpha,\beta\right) - \frac{1}{\beta - \alpha} f'\left(\beta\right) \left(\beta - a\right)^{2} + \frac{1}{\beta - \alpha} f'\left(\alpha\right) \left(a - \alpha\right)^{2} \right\| \\ &\leq \frac{1}{|\beta - \alpha|} \left\| \left(\beta - a\right)^{2} \int_{0}^{1} \left[f'\left(\left(1 - t\right)a + t\beta\right) - f'\left(\beta\right)\right] dt \right\| \\ &+ \frac{1}{|\beta - \alpha|} \left\| \left(a - \alpha\right)^{2} \int_{0}^{1} \left[f'\left(\left(1 - t\right)a + t\alpha\right) - f'\left(\alpha\right)\right] dt \right\| \\ &\leq \frac{1}{|\beta - \alpha|} \left\| \left(\beta - a\right)^{2} \right\| \left\| \int_{0}^{1} \left[f'\left(\left(1 - t\right)a + t\beta\right) - f'\left(\beta\right)\right] dt \right\| \\ &+ \frac{1}{|\beta - \alpha|} \left\| \left(a - \alpha\right)^{2} \right\| \left\| \int_{0}^{1} \left[f'\left(\left(1 - t\right)a + t\alpha\right) - f'\left(\alpha\right)\right] dt \right\| \end{split}$$

$$\leq \frac{1}{|\beta - \alpha|} \|\beta - a\|^{2} \int_{0}^{1} \|f'((1 - t)a + t\beta) - f'(\beta)\| dt + \frac{1}{|\beta - \alpha|} \|a - \alpha\|^{2} \int_{0}^{1} \|f'((1 - t)a + t\alpha) - f'(\alpha)\| dt \leq \frac{1}{|\beta - \alpha|} \|\beta - a\|^{3} L_{\beta,a} \int_{0}^{1} (1 - t) dt + \frac{1}{|\beta - \alpha|} \|a - \alpha\|^{3} \int_{0}^{1} (1 - t) dt = \frac{1}{2 |\beta - \alpha|} \left[\|\beta - a\|^{3} L_{\beta,a} + \|a - \alpha\|^{3} L_{\alpha,a} \right] \leq \frac{1}{2 |\beta - \alpha|} \max \left\{ L_{\beta,a}, L_{\alpha,a} \right\} \left[\|\beta - a\|^{3} + \|a - \alpha\|^{3} \right],$$

which proves (3.7).

The inequality (3.8) follows by (2.15).

Theorem 7. With the assumptions of Theorem 7 we have

$$(3.9) \quad \left\| \widetilde{\Phi}_{f}\left(a;\alpha,\beta\right) - 2\left(\beta - \alpha\right) \left(\frac{\beta + \alpha}{2} - a\right) f'\left(a\right) \right\|$$
$$\leq \frac{1}{2\left|\beta - \alpha\right|} \left[\left\|\beta - a\right\|^{3} L_{\beta,a} + \left\|a - \alpha\right\|^{3} L_{\alpha,a} \right]$$
$$\leq \frac{1}{2\left|\beta - \alpha\right|} \max\left\{ L_{\beta,a}, L_{\alpha,a} \right\} \left[\left\|\beta - a\right\|^{3} + \left\|a - \alpha\right\|^{3} \right]$$

and

(3.10)
$$\|\Phi_f(a;\alpha,\beta)\| \leq \frac{\|(\beta-a)(a-\alpha)\|}{2|\beta-\alpha|} [\|\beta-a\|L_{\beta,a}+\|a-\alpha\|L_{\alpha,a}]$$

 $\leq \frac{\|(\beta-a)(a-\alpha)\|}{2|\beta-\alpha|} \max\{L_{\beta,a},L_{\alpha,a}\} [\|\beta-a\|+\|a-\alpha\|].$

Proof. By using the identity (2.16), we get after several steps, that

$$\begin{split} \left\| \widetilde{\Phi}_{f}\left(a;\alpha,\beta\right) + 2\left(\beta - \alpha\right) \left(a - \frac{\beta + \alpha}{2}\right) f'\left(a\right) \right\| \\ &\leq \frac{1}{\left|\beta - \alpha\right|} \left\|\beta - a\right\|^{2} \int_{0}^{1} \left\|f'\left(\left(1 - t\right)a + t\beta\right) - f'\left(a\right)\right\| dt \\ &+ \frac{1}{\left|\beta - \alpha\right|} \left\|a - \alpha\right\|^{2} \int_{0}^{1} \left\|f'\left(\left(1 - t\right)a + t\alpha\right) - f'\left(a\right)\right\| dt \\ &\leq \frac{1}{2\left|\beta - \alpha\right|} \left[\left\|\beta - a\right\|^{3} L_{\beta,a} + \left\|a - \alpha\right\|^{3} L_{\alpha,a}\right] \\ &\leq \frac{1}{2\left|\beta - \alpha\right|} \max\left\{L_{\beta,a}, L_{\alpha,a}\right\} \left[\left\|\beta - a\right\|^{3} + \left\|a - \alpha\right\|^{3}\right], \end{split}$$

which proves (3.9).

The inequality (3.10) follows by the identity (2.17) and we omit the details. \Box

S. S. DRAGOMIR

4. Some Examples for Exponential

For the exponential function on the Banach algebra ${\mathcal B}$ we have

$$\Phi_{\exp}(a;\alpha,\beta) := \frac{\exp(\alpha)(\beta-a) + \exp(\beta)(a-\alpha)}{\beta-\alpha} - \exp(a)$$

and

$$\widetilde{\Phi}_{\exp}\left(a;\alpha,\beta\right) := \frac{\exp\left(\alpha\right)\left(a-\alpha\right) + \exp\left(\beta\right)\left(\beta-a\right)}{\beta-\alpha} - \exp\left(a\right),$$

where $a \in \mathcal{B}, \alpha, \beta \in \mathbb{C}$ and $\alpha \neq \beta$.

From the first inequality in (3.1) we have

(4.1)
$$\left\| \widetilde{\Phi}_{\exp}(a; \alpha, \beta) \right\| \leq \frac{1}{|\beta - \alpha|} \|\beta - a\|^2 \int_0^1 \|\exp((1 - t)a + t\beta)\| dt + \frac{1}{|\beta - \alpha|} \|a - \alpha\|^2 \int_0^1 \|\exp((1 - t)a + t\alpha)\| dt.$$

Observe that

$$\begin{aligned} \|\exp(ta + (1-t)\mu)\| &= \|\exp[(1-t)\mu]\exp(ta)\| = |\exp[(1-t)\mu]| \|\exp(ta)\| \\ &= \exp[(1-t)\operatorname{Re}\mu] \|\exp(ta)\| \le \exp[(1-t)\operatorname{Re}\mu]\exp(t\|a\|) \\ &= \exp[(1-t)\operatorname{Re}\mu + t\|a\|] \end{aligned}$$

for all $t \in [0, 1]$, $\mu \in \mathbb{C}$ and $a \in \mathcal{B}$.

This implies that

$$\int_{0}^{1} \|\exp(ta + (1-t)\mu)\| dt \leq \int_{0}^{1} \exp[(1-t)\operatorname{Re}\mu + t\|a\|] dt$$
$$= \begin{cases} \frac{\exp(\|a\|) - \exp(\operatorname{Re}\mu)}{\|a\| - \operatorname{Re}\mu} & \text{if } \operatorname{Re}\mu \neq \|a\|, \\ \exp(\|a\|) & \text{if } \operatorname{Re}\mu = \|a\|. \end{cases}$$

Therefore, by (4.1) we get

$$(4.2) \quad \left\| \widetilde{\Phi}_{\exp}\left(a;\alpha,\beta\right) \right\| \\ \leq \frac{1}{|\beta - \alpha|} \left\| \beta - a \right\|^2 \begin{cases} \frac{\exp\left(\|a\|\right) - \exp\left(\operatorname{Re}\beta\right)}{\|a\| - \operatorname{Re}\beta} & \text{if } \operatorname{Re}\beta \neq \|a\| \\ \exp\left(\|a\|\right) & \text{if } \operatorname{Re}\beta = \|a\| \\ + \frac{1}{|\beta - \alpha|} \left\| a - \alpha \right\|^2 \begin{cases} \frac{\exp\left(\|a\|\right) - \exp\left(\operatorname{Re}\alpha\right)}{\|a\| - \operatorname{Re}\alpha} & \text{if } \operatorname{Re}\alpha \neq \|a\| \\ \exp\left(\|a\|\right) & \text{if } \operatorname{Re}\alpha = \|a\|. \end{cases}$$

Using the first inequality in (3.2) we have

(4.3)
$$\|\Phi_{\exp}(a;\alpha,\beta)\|$$

 $\leq \frac{\|(\beta-a)(a-\alpha)\|}{|\beta-\alpha|} \int_0^1 \|\exp((1-t)a+t\beta) - \exp((1-t)a+t\alpha)\| dt.$

Observe that

$$\exp\left(\left(1-t\right)a+t\beta\right)-\exp\left(\left(1-t\right)a+t\alpha\right)=\left[\exp\left(t\beta\right)-\exp\left(t\alpha\right)\right]\left[\exp\left(1-t\right)a\right],$$

which implies that

(4.4)
$$\|\exp((1-t)a+t\beta) - \exp((1-t)a+t\alpha)\|$$

= $|\exp(t\beta) - \exp(t\alpha)| \|\exp[(1-t)a]\| \le |\exp(t\beta) - \exp(t\alpha)| \exp[(1-t)\|a\|]$

In the recent paper [11] we obtained the following norm inequality for the exponential function

(4.5)
$$\|\exp y - \exp x\| \le \|y - x\| \int_0^1 \exp\left(\|(1 - s)x + sy\|\right) ds.$$

This implies that

$$(4.6) \quad |\exp(t\beta) - \exp(t\alpha)| \le t |\beta - \alpha| \int_0^1 \exp[t |(1-s)\beta + s\alpha|] ds$$
$$\le t |\beta - \alpha| \int_0^1 \exp[((1-s)t |\beta| + st |\alpha|)] ds$$
$$= t |\beta - \alpha| \frac{\exp t |\beta| - \exp t |\alpha|}{t |\beta| - t |\alpha|} = \frac{|\beta - \alpha|}{|\beta| - |\alpha|} [\exp(t |\beta|) - \exp(t |\alpha|)]$$

and by (4.4) we get

$$\begin{aligned} \|\exp((1-t) a + t\beta) - \exp((1-t) a + t\alpha)\| \\ &\leq \exp[(1-t) \|a\|] \frac{|\beta - \alpha|}{|\beta| - |\alpha|} [\exp(t |\beta|) - \exp(t |\alpha|)] \\ &= \frac{|\beta - \alpha|}{|\beta| - |\alpha|} [\exp((1-t) \|a\| + t |\beta|) - \exp(((1-t) \|a\| + t |\alpha|)]. \end{aligned}$$

By integrating this inequality in [0, 1] we get

$$\begin{split} \int_{0}^{1} \|\exp\left((1-t)\,a+t\beta\right) - \exp\left((1-t)\,a+t\alpha\right)\|\,dt \\ &\leq \frac{|\beta-\alpha|}{|\beta|-|\alpha|} \left[\int_{0}^{1} \exp\left((1-t)\,\|a\|+t\,|\beta|\right)dt - \int_{0}^{1} \exp\left((1-t)\,\|a\|+t\,|\alpha|\right)dt\right] \\ &= \frac{|\beta-\alpha|}{|\beta|-|\alpha|} \left[\frac{\exp\|a\|-\exp|\beta|}{\|a\|-|\beta|} - \frac{\exp\|a\|-\exp|\alpha|}{\|a\|-|\alpha|}\right], \end{split}$$

provided $||a|| \neq |\beta|, ||a|| \neq |\alpha|.$

Therefore by (4.3) we obtain:

(4.7)
$$\|\Phi_{\exp}(a;\alpha,\beta)\|$$

$$\leq \frac{\|(\beta-a)(a-\alpha)\|}{|\beta|-|\alpha|} \left[\frac{\exp|\beta|-\exp\|a\|}{|\beta|-\|a\|} - \frac{\exp\|a\|-\exp|\alpha|}{\|a\|-|\alpha|}\right]$$

provided $a \in \mathcal{B}$, α , $\beta \in \mathbb{C}$ and $\alpha \neq \beta$, $||a|| \neq |\beta|$, $||a|| \neq |\alpha|$.

Similar inequalities may be obtained by employing the other general results above, however the details are not presented here.

S. S. DRAGOMIR

References

- M. V. Boldea, Inequalities of Čebyšev type for Lipschitzian functions in Banach algebras. An. Univ. Vest Timiş. Ser. Mat.-Inform. 54 (2016), no. 2, 59–74.
- [2] M. V. Boldea, S. S. Dragomir and M. Megan, New bounds for Čebyšev functional for power series in Banach algebras via a Grüss-Lupaş type inequality. *PanAmer. Math. J.* 26 (2016), no. 3, 71–88.
- [3] J. B. Conway, A Course in Functional Analysis, Second Edition, Springer-Verlag, New York, 1990.
- [4] S. S. Dragomir, A counterpart of Schwarz's inequality in inner product spaces, East Asian Math. J., 20 (1) (2004), 1-10. Preprint, https://arxiv.org/abs/math/0305373.
- [5] S. S. Dragomir, A generalisation of Cerone's identity and applications, Oxford Tamsui J. Math. Sci., 23(1) (2007), 79-90. Preprint RGMIA Res. Rep. Coll., 8(2) (2005), Art. 19.
 [ONLINE: http://rgmia.vu.edu.au/v8n2.html].
- [6] S. S. Dragomir, Inequalities for Stieltjes integrals with convex integrators and applications, *Appl. Math. Lett.*, **20** (2007), 123-130.
- [7] S. S. Dragomir, Bounds for the deviation of a function from the chord generated by its extremities. Bull. Aust. Math. Soc. 78 (2008), no. 2, 225–248.
- [8] S. S. Dragomir, Approximating real functions which possess nth derivatives of bounded variation and applications. *Comput. Math. Appl.* 56 (2008), no. 9, 2268–2278.
- [9] S. S. Dragomir, Bounds for the deviation of a function from a generalised chord generated by its extremities with applications. J. Inequal. Spec. Funct. 3 (2012), no. 4, 67–76.
- [10] S. S. Dragomir, Inequalities for power series in Banach algebras. SUT J. Math. 50 (2014), no. 1, 25–45
- [11] S. S. Dragomir, Inequalities of Lipschitz type for power series in Banach algebras. Ann. Math. Sil. No. 29 (2015), 61–83.
- [12] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results. Aust. J. Math. Anal. Appl. 14 (2017), no. 1, Art. 1, 283 pp.
- [13] S. S. Dragomir, M. V. Boldea and M. Megan, New norm inequalities of Čebyšev type for power series in Banach algebras. Sarajevo J. Math. 11 (24) (2015), no. 2, 253–266.
- [14] S. S. Dragomir, M. V. Boldea, C. Buşe and M. Megan, Norm inequalities of Čebyšev type for power series in Banach algebras. J. Inequal. Appl. 2014, 2014:294, 19 pp.
- [15] S. S. Dragomir, M. V. Boldea and M. Megan, Further bounds for Čebyšev functional for power series in Banach algebras via Grüss-Lupaş type inequalities for *p*-norms. *Mem. Grad. Sch. Sci. Eng. Shimane Univ. Ser. B Math.* **49** (2016), 15–34.
- [16] S. S. Dragomir, M. V. Boldea and M. Megan, Inequalities for Chebyshev functional in Banach algebras. *Cubo* **19** (2017), no. 1, 53–77.

¹Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au *URL*: http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE, IN THE MATHEMATICAL AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATERSRAND, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA