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Abstract

Let K be a compact convex subspace of C and C (K, C) the space of
continuous functions from K into C. We consider bounded linear func-
tionals from C (K, C) into C and bounded linear operators from C (K, C)
into itself. We assume that these are bounded by companion real positive
linear entities, respectively. We study quantitatively the rate of conver-
gence of the approximation of these linearities to the corresponding unit
elements. Our results are inequalities of Korovkin type involving the com-
plex modulus of continuity and basic test functions.
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1 Introduction

The study of the convergence of positive linear operators became more intensive
and attractive when P. Korovkin (1953) proved his famous theorem (see [7], p.
14).

Korovkin’s First Theorem. Let [a,b] be a compact interval in R and
(Ln),cn be a sequence of positive linear operators L,, mapping C ([a,b]) into
itself. Assume that (L, f) converges uniformly to f for the three test functions
f=1,2,22. Then (L, f) converges uniformly to f on [a,b] for all functions of
7 e C(ab]).

So a lot of authors since then have worked on the theoretical aspects of the
above convergence. But R. A. Mamedov (1959) (see [8]) was the first to put
Korovkin’s theorem in a quantitative scheme.

Mamedov’s Theorem. Let {L,}, .y be a sequence of positive linear
operators in the space C ([a,b]), for which L,1 = 1, L, (t,z) = = + a, (),
L, (t*,2) = 2® + 3, (z). Then it holds

1L (fi2) = £ @)l < 301 (£ V)
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where wy is the first modulus of continuity and d,, = ||8,, (x) — 2z, (z)]

An improvement of the last result was the following.

Shisha and Mond’s Theorem. (1968, see [10]). Let [a,b] C R be a
compact interval. Let {L,}, y be a sequence of positive linear operators acting
on C ([a,b]). For n = 1,2,..., suppose L, (1) is bounded. Let f € C([a,b]).
Then for n = 1,2, ..., it holds

|oo'

1nf = flloe < I flloe - 1En1 = Ulog + 1 Ln (1) + Ul - wr (f, 1) 5

o= (2 0

Shisha-Mond inequality generated and inspired a lot of research done by
many authors worldwide on the rate of convergence of a sequence of positive
linear operators to the unit operator, always producing similar inequalities how-
ever in many different directions, e.g., see the important work of H. Censka of
1983 in [6], etc.

The author (see [1]) in his 1993 research monograph, produces in many
directions best upper bounds for (L, f) (zo) — f (z0)|, 20 € @ C R™, n > 1,
compact and convex, which lead for the first time to sharp/attained inequalities
of Shisha-Mond type. The method of proving is probabilistic from the theory
of moments. His pointwise approach is closely related to the study of the weak
convergence with rates of a sequence of finite positive measures to the unit
measure at a specific point.

The author in [3], pp. 383-412 continued this work in an abstract setting:
Let X be a normed vector space, Y be a Banach lattice; M C X is a compact
and convex subset. Consider the space of continuous functions from M into Y,
denoted by C (M,Y); also consider the space of bounded functions B (M,Y).
He studied the rate of the uniform convergence of lattice homomorphisms 7' :
CM,Y)—-C(M,Y)orT:C(M,Y)— B(M,Y) to the unit operator I. See
also [2].

Also the author in [4], pp. 175-188 continued the last abstract work for
bounded linear operators that are bounded by companion real positive linear
operators. Here the invoved functions are from [a,b] C R into (X, ||-||) a Banach
space.

All the above have inspired and motivated the work of this article. Our
results are of Shisha-Mond type, i.e., of Korovkin type.

Namely here let K be a convex and compact subset of C and I be a linear
functional from C (K, C) into C, and let I be a positive linear functional from
C (K,R) into R, such that |l (f)| < L(|f]), V¥ f € C(K,C).

Clearly then [ is a bounded linear functional. Initially we create a quantita-
tive Korovkin type theory over the last described setting, then we transfer these
results to related bounded linear operators with similar properties.

where )
z
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2 Background
We need

Theorem 1 Let K C (C,|:|) and f a function from K into C. Consider the
first complex modulus of continuity

w1 (f,0) = Sup. |f (x) = f(y)|, 6>0. (1)
jo—y|<

We have:

(1)’ If K is open convex or compact convez, then wy (f,d) < oo, V § > 0,
where f € UC (K, C) (uniformly continuous functions).

(2)’ If K is open convex or compact convex, then wi (f,d) is continuous on
Ry ind, for f e UC (K,C).

(8) If K is convez, then

wl(fatl—’_t?)Swl(f’tl)—’_wl(fth); tlat2>03 (2)

that is the subadditivity property is true. Also it holds

w1 (f,nd) < nwy (f,9) ®3)

and

wi (f,A6) < [Awi (f,6) < A+ 1w (f,9), (4)

wheren € N, A >0, 6 > 0, [-] is the ceiling of the number.

(4)’ Clearly in general wq (f,d) > 0 and is increasing in § > 0 and wy (f,0) =
0.

(5)" If K is open or compact, then wy (f,0) = 0asd | 0, iff f e UC(K,C).

(6)° It holds

wl(f+g75)Swl(fa§)+wl(g>5)a (5)

foréd >0, any f,g: K — C, K C C is arbitrary.

Proof. (1) Here K is open convex. Let here f € UC (K,C), iff V e > 0,
36 >0:|r—y| < implies |f(x) — f(y)] < e. Let eg > 0 then 3 Jp > 0:
| —y| < do with |f (z) — f (y)| < €0, hence wy (f, dp) < o < 0.

Let 6 > 0 arbitrary and z,y € K : |z —y| < 4. Choose n € N: ndy > J, and
set x; = x + - (y —x), 0 < i < n. Notice that all z; € K. Then

n—1

(@) = F@) =D (f (@) = f (zir1))] <

i=0
|f (@) = f )+ [f (z1) = fz2)| +|f (22) = f(@3)|+ ... + [f (@n1) = f(Y)] <
nwi (f,dp) < neg < 00,

since |z; — zi41] = 2 |z —y| < 16 < 4.



Thus w; (f,d) < nep < 0o, proving the claim. If K is compact convex, then
claim is obvious.

(2) Let x,y € K and let |z — y| < t; + ta, then there exists a point z € 7y,
z€ K :|x—z| <t and |y — z| < ta, where t1,t5 > 0.

Notice that

@) = fWI<If (@) = fFEI+1F(z) = F @l Sw (fit) +wi (ft2).
Hence
w1 (fit1 +12) Swi (fit) +wi(fite),
proving (3)’. Then by the obvious property (4)’ we get

0<wi(f,t1+1t2) —wi (fit1) Swi (f t2),

and
w1 (f, 11+ t2) — w1 (f, 1) S wi (£ t2).

Let f € UC (K,C), then tli%wl (f,t2) = 0, by property (5)’. Hence wq (f,-)
is continuous on R .

(5) (=) Let w1 (f,0) = 0asd | 0. ThenVe > 0,3 > 0 withw; (f,9) <e.
le Va,ye K: |z —y|<dweget|f(z)— f(y)| <e Thatis f € UC(K,C).

(<) Let f € UC(K,C). Then Ve > 0,36 > 0 : whenever |z —y| < 4,
x,y € K, it implies |f(z) — f(y)] <e. Le. Ve >0,36 >0:w;(f,d) <e.
That is wy (f,0) = 0asd | 0.

(6)’ Notice that

[(f (@) +9(@) = (F ) +9W)l <[f (@) = Fyl+1g(z) —g W)l

That is property (6)’ now is clear. m
We need

Theorem 2 ([1], p. 208) Let (V1,|-|), (Va,]||-||) be real normed vector spaces
and Q C Vi which is star- shaped relative to the fixed point xo. Consider f :
Q — Vo with the properties:

f(xo) =0, and ||s —t|| < h implies || f(s)— f (@) <w; w,h>0. (6)

Then, there exists a mazximal such function ®, namely

t —
O (1) = P m“'} w- i, (7)
h
N
where © is any unit vector in Vs.
That is
IO <@, allt Q. (8)



Corollary 3 Let K C (C,|-|) be a compact convex subset, and f € C(K,C).
Then
|z — o]

F@) - Fleol <o (18) [25

w , 0>0, 9)
Vz,z € K.

We make
Remark 4 Let K C (C,|-|) be a compact subset and g € C (K,R).

A linear functional T from C (K,R) into R is positive, iff I (1) > I(g2),
whenever g1 > go, where g1, 92 € C (K, R).

Let us assume that I is a positive linear functional. Then by Riesz represen-

tation theorem, [9], p. 304, there exists a unique Borel measure u on K such
that

umzégwww, (10)
VgeC(K,R).
‘We make

Remark 5 Here initially we follow [5].
Suppose v is a smooth path parametrized by z (t), t € [a,b] and f is a complex
function which is continuous on y. Put z (a) = u and z (b) = w with u,w € C.
We define the integral of f on y, ., = as

b
/ f(z)dz= f(z)dz = / f(z(t) 2 (t)dt. (11)

By triangle inequality we have
b
d < t "] dt = dz|.
qu>z < [1reonE o tﬂf@mju
12

Inequalities (12) provide a typical example on linear functionals: clearly fy f(z)dz

b
/fuu»zww

induces a linear functional from C (v,C) into C, and f7 |f (2)]]dz| involves a
positive linear functional from C (v,R) into R.

Thus, be given K a convex and compact subset of C and l be a linear func-
tional from C (K,C) into C, it is not strange to assume that there exists a
positive linear functional lerom C (K,R) into R, such that

LHI<I(f), ¥ feC(K,C). (13)

Furthermore, we may assume that 1 (1(-)) = 1, where1(¢) =1,Vt € K, 1(c(-)) =
c,Ye e C wherec(t)=c,Vite K-
We call I the companion functional to [.

Here C is a vector space over the field of reals. The functional [ is linear
over R and the functional [ is linear over R. B
Next we study approximation properties of (ln, ln> pairs, n € N.



3 Main Results - 1

First about linear functionals:
We present the following quantitative approximation result of Korovkin type.

Theorem 6 Here K is a convex and compact subset of C and l,, is a sequence
of linear functionals from C(K,C) into C, n € N. There is a sequence of

companion positive linear functionals l,, from C (K,R) into R, such that
n () <1 (If]), ¥ f€C(K,C), VneN. (14)

Additionally, we assume that 1, (1(-)) =1 and I, (¢ (-)) = ¢,Yc € C ¥V n € N.
Then

[t (f) = f (@) < 201 (£Tn (- =20])), YnEN, Ve K, (1)
¥ feC(K,C).
Proof. We notice that
[l (f) = f (o) = [l (F) =l (f (z0) ()| =

(14) - (by 6>0, (9))
n (f ()= F@o) O < L (If ()= flzo) ) <

In (Wl (f,0) P;%'-D <wi (f,0)1n (1(')+|175$0|) N

1 (£9) 1 (16 + 3 (-~ 2o =

O () [ Y (A Iy PR

by choosing B
6 :=ln (| — o),
if I, (|- — zo|) > 0, that is proving (15).

Next, we consider the case of I, (|- — zp|) = 0. By Riesz representation
theorem, see (10) there exists a probability measure p such that

h(o)= [ g@dule), ¥geCUR). (17)
K

That is, here it holds

/?H—xﬂdu@)zo,

K

which implies [t — 29| = 0, a.e, hence t — ¢y = 0, a.e, and t = xg, a.e. Con-
sequently u({t € K :t# xp}) = 0. Hence p = d,,, the Dirac measure with
support only {zo}.

Therefore in that case I, (9) = g(x0), V ¢ € C(K,R). Thus, it holds

o (£ = ao)) = e (£,0) = 0, and E, (1 () = £ (20) () = 11 (z0) —  (z0)| =
0, giving |l, (f) — f (zo)] = 0. That is (15) is again true. m



Remark 7 We have that
(- = 2o = [ 1= zoldu ()
K

(by Schwarz’s inequality)

(i)’ ([ -mfau) = (i (i —a))’ as)
We give

Corollary 8 All as in Theorem 6. Then

1
2

lln (f) = £ (w0)] < 21 (f, (Tn (\-—xOF)) ) ¥YneN, Vaoe K. (19)

Conclusion 9 All as in Theorem 6. By (15) and/or (19), as L, (|- — zo|) — 0,
or I, (| — zo\z) — 0, as n — 400, we obtain that l,, (f) — f (xzo) with rates, ¥
xg € K.

Next comes a more general quantitative approximation result of Korovkin
type.

Theorem 10 Here K is a convex and compact subset of C and l,, is a sequence
of linear functionals from C(K,C) into C, n € N. There is a sequence of

companion positive linear functionals 1, from C (K,R) into R, such that

n (I <1 (If]), ¥ fEC(K,C), ¥neN. (20)
Additionally, we assume that

Iy (cg) =cln (g), YgeC(K,R), VceC. (21)

Then, for any f € C(K,C), we have

b (f) = f (@o)| < [f (o)

L (L) = 1]+ (T (1) + 1) w1 (£T (- = wo]))
(22)
Vage K,VneN.
(Notice if I, (1(-)) = 1, then (22) collapses to (15). So Theorem 10 gener-
alizes Theorem 6).
By (22), as 1, (1(:)) — 1 and L, (|- — zo|) — 0, then L, (f) — f(z0), as
n — 400, with rates, and as here I, (1(-)) is bounded.



Proof. We observe that
b (f) = f (@o)| = |l (f) = L (f (0) () + 1n (f (z0) (1)) — £ (w0)| <

|f (o)
Pl () =147, (wn (10) [E521]) <

~ |~—$0|

ln(l(-))—l‘ﬂl(wl(f,é))(1(-)+ ; >:

|f (o)

|f (o)]

|f (o)
by choosing

L) =1]+01(7.0) [l 00+ 5 (- = )] =
(1) =1+ (T () + D) wn (£7 (- = 20))

5 =1, (|- - 20l), (24)

if I, (|- — o) > 0.
Next we consider the case of

I (|- = wo|) = 0. (25)

By Riesz representation theorem there exists a positive finite measure p such
that

L= [ a@dut), ¥oeCER). (26)
That is
[ 1t =aoldutt) =o, (27)
K
which implies |t —z¢| = 0, a.e., hence t — x9g = 0, a.e, and t = 1z, a.e.

on K. Consequently p({t € K :t# zo}) = 0. That is p = J,,M (where
0<M:=u(K)=1,(1())). Hence, in that case l,,(9) = g (z¢) M. Conse-
quently it holds w; (f, I (|- — xo|)> = 0, and the right hand side of (22) equals

|f (o) |M — 1] Also, it is L (|f (-) = f (w0) ()]) = |f (o) = f (x0)| M = 0.
Hence from the first part of this proof we get |, (f) — I (f (o) (+))] = 0, and

In (f) = In (f (w0) (-)) = f (w0) In (1(-)) = M f (z0) .
Consequently the left hand side of (22) becomes
ln (f) = f (@o)| = [M f (z0) — [ (x0)| = [f (zo)| [M — 1].
So that (22) becomes an equality, and both sides equal |f (xo)| |[M — 1| in the

extreme case of [, (|- — zo|) = 0. Thus inequality (22) is proved completely in
all cases. m
We make



Remark 11 By Schwartz’s inequality we get

L= o < (1 (1-- =) (L)) 29
We give

Corollary 12 All as in Theorem 10. Then

[ (f) = f (o) < [f (0)]

mam+t)e (1 Gam) @ (-af)). e

Vage K,VneN.

L) -1+

Next we give another version of our Korovkin type result.

Theorem 13 Here all are as in Theorem 10. Then, for any f € C (K,C), we

have
L0 =1 (m a0 1) (1. (=),
(30)

|l (f) = f (@o)| < [ (20)]

Vaege K,VneN.
By (30), as I (1()) = 1 and I (|- = @ol*) — 0, then L (f) — [ (wo), as

n — 400, with rates, and as here I, (1(+)) is bounded.

Proof. Let t,zo € K and § > 0. If |t — zg| > ¢, then

£ (8) = £ (z0)] < wi (£t —wo|) = w1 (f, [t — m0| 57 16) < (31)
<1 =+ |t 6‘T0> w1 (f,(S) < (1 + 7“ 76;CO| > w1 (f, 5) .
The estimate )
VOREIE (1 L= )m (£:5) )

also holds trivially when [t — zq| < 6.
So (32) is true always, V t € K, for any zo € K.
We can rewrite

If () = f(z0)] < <1 + ;O|> wi (f,9). (33)

As in the proof of Theorem 10 we have

ln (f) = f (@o)| < ... < |f (@0)]

L) -1+



- |._$O|2 B
by w1 (f,6) | 1()+ 52 =

L) =1 +o(00) [ 00+ 5l (- alf)| =

T.(1() - 1‘ o (f, (’[n (|. _1'0|2>)é> (Tn(u.)) n 1) ,

d:= (Zn (| - x0|2>) , (35)
i 7 (|~—$0|2) > 0.

Next we consider the case of
L (= wol”) =0, (36)

By Riesz representation theorem there exists a positive finite measure p such
that

|f (w0)]

|f (wo)]

by choosing

(S

I () = /K () du(t), ¥ geC(K.R). (37)
That is

/|t*$o|2dﬂ(t):0,

K

which implies |t — x0|2 = 0, a.e., hence t — 29 = 0, a.e, and t = zp, a.e. on
K. Consequently pp({t € K :t#xo}) = 0. That is u = d,,M (where 0 <
M = pu(K) =1,(1())). Hence, in that case I, (g) = g (zo) M. Consequently

1
it holds w (f, (ln (| - w0|2)) 2) = 0, and the right hand side of (30) equals

f o)l |M = 1],
Also, it s b, (1f ()~ f (20) ())) = I (o) — f (20)] M = 0. Hence from
the first part of this proof we get: |l (f) —ln (f (z0) (-))| = 0, and I, (f) =

In (f (x0) () = f (o) In (1 (-)) = M f (o) -
Consequently the left hand side of (30) becomes

|l (f) = f (o) = | f (o) | [M —1].
So that (30) is true again. The proof of the theorem is now complete. ®

Corollary 14 Here all are as in Theorem 10. Then

tn (F) = £ @o)| < 1f @o)l [T (1 () = 1| + (T (1 () + 1)

min {w1 (f, ()’ (& (- 960'2))%) @ (f’ (5 (1= “””“'2))$> } ’

(38)

Vage K,VneN.

10



Proof. By (29) and (30). =
So (29) is better that (30) only if I,, (1(-)) < 1.
We need

Theorem 15 Let K C C convex, xg € K (interior of K) and f : K — R such
that |f (t) — f (zo)] is convex int € K. Furthermore let § > 0 so that the closed
disk D (x,0) C K. Then

! (f7 5)

[f () = f(@o)l < =5t — ol , VI K. (39)
Proof. Let g(t) := |f (¢t) — f(x0)|, t € K, which is convex in ¢t € K and
g (o) =0.
Then by Lemma 8.1.1, p. 243 of [1], we obtain
(t) < if"” lt— x|, VteK. (40)

We notice the following
[f (t1) = (o)l = |f (81) = f (t2) + f (t2) — f (20)| <
|f (t1) = f ()] + S (t2) = f (o),

hence

[f (t1) = f (o)l = [f (t2) = f (o)l < |f (tx) — f (t2)].- (41)
Similarly, it holds

[f(t2) = [ (o)l = [f (t1) = f (o)l < |f (ta) — f (t2)]- (42)

Therefore for any t1,t2 € K : [t; — ta] < § we get

S (t1) = f (@o)l = |f (t2) = f (o) [| < [f (t1) = f ()| Swi(f,6).  (43)
That is

w1 (9,0) < wi (f,9). (44)
The last and (40) imply
0ol < 2Dy ) viex (45)

proving (39). m
We continue with a convex Korovkin type result:

Theorem 16 All as in Theorem 10. Let xg € K° and assume that | f (t) — f (z0)]
is convex int € K. Let & > 0,such that the closed disk D (xg,0) C K. Then

tn (F) = £ @o)] < 1 @)l [l (1() = 1| + 1 (£,T (- = o)), ¥ neN. (46)

11



Proof. As in the proof Theorem 10 we have

 (F) = £ @o)] < e < 1S (@)l [T (L) = 1| + T (1 () = f (w0) () ET
17 ol 1) = 1] + LD, () =
1F @) [l (L) = 1] + w1 (£.70 (- = o))

by choosing _
0:=1,(—zo]) >0,

if the last is positive. The case of I, (|- — zo|) = 0 is treated similarly as in the
proof of Theorem 10. The theorem is proved. m

Theorem 17 All as in Theorem 16. Inequality (46) is sharp, in fact it is
— —
attained by f* (t) = j |t — zo|, where j is a unit vector of (C,|-|); t,zo € K.

Proof. Indeed, f* here fulfills the assumptions of the theorem. We further

notice that f* (xg) =0, and |f* (¢t) — f* (xo)| = |t — xo| is convex in ¢t € K. The
left hand side of (46) is

[ (f7) = 7 (@)l = [ln (f )| =

- 21
ln (.7 | *I’0|>‘ (:)

|50 (1 = wol)| = [T (- = @) (48)

The right hand side of (46) is

wi (7,0 = o) = w1 (71 = ol T (- = 20])) =

- -
sup ’J [t1 — zo| — |t2—$0|’=
t1,t2€K
[t1—t2|<ln(]-—zol)
sup [[t1 — 20| — [t2 — @ol| < (49)
t1,t2€ K

[t1—t2|<lp (|-—0])
sup [t1 — ta] = 1n (] — zo]) -
t1,t20€K
|t1—t2|<ln(]-—0])

Hence we have found that
wr (£0 (- = o)) < T (1 = o) (50)
Clearly (46) is attained.

The theorem is proved. m

12



4 Main Results - 11

Next we give results on linear operators:
Let K be a compact convex subset of C. Consider L : C (K,C) — C (K, C)
a linear operator and L : C (K,R) — C (K, R) a positve linear operator (i.e. for
fi.f2 € C(K,R) with f1 > fo we get L (f1) > L (f)) both over the field of R.
We assume that

L) <L(f]), ¥ feC(K,C),

(e [L(S) () < L(If]) (2), ¥ 2 € K).

We call L the companion operator of L.

Let 29 € K. Clearly, then L (-) (zg) is a linear functional from C (K, C) into
C, and L (-) (o) is a positive linear functional from C (K,R) into R. Notice
L(f)(z) € Cand L(|f])(2) € R,V f € C(K,C) (thus |f| € C(K,R)). Here
L(f) € C(K,C), and L(|f]) € C (K,R),Y f € C(K,C).

Notice that C (K,C) = UC (K, C), also C (K,R) = UC (K,R) (uniformly
continuous functions).

By [3], p. 388, we have that L (|- — zo|") (x0), 7 > 0, is a continuous function
in xop € K.

After this preparation we transfer the main results from section 3 to linear
operators.

We have the following approximation results with rates of Korovkin type.

Theorem 18 Here K is a convezr and compact subset of C and L,, is a sequence
of linear operators from C (K,C) into itself, n € N. There is a sequence of
companion positive linear operators L, from C (K,R) into itself, such that

Lo (DI < Lo (If]), ¥V f€C(K,C), VneN (51)

(i.e. |Ln (/) (20)] < (Za (1)) (20), ¥ w0 € K.
Additionally, we assume that

Ly (cg) =cL,(9), YgeC(K,R), VceC (52)

(i.e. (L (9)) (w0) = ¢ (Ln (9)) (20) , ¥ 0 € K.
Then, for any f € C(K,C), we have

|(Ln (f)) (z0) = f (zo)| < |f (w0)]

L (1()) (w0) = 1| +

(Zn @) @o) + 1) wi (£ (1 = 0] (0) ) (53)
Vage K,VneN.

Proof. By Theorem 10. m

13



Corollary 19 All as in Theorem 18. Then

1 (F) = Flloeric < 1 locc |

Loae) -1+

[Eoaen | o (AE 0 -z ). 60
vVneN.
IfL,(1(:) =1,V neN, then
10 (9) = e <201 (£ B b - @ ). 69

VnGNV.
As Lo (1() % 1, )

Lo (- = 2ol (o) _ = 0. then (by (54)) Lu () * f.

as n — 400, where u means uniformly. Notice L, (1(-)) is bounded, and all the
suprema in (54) are finite.

We continue with

Theorem 20 Here all as in Theorem 18. Then, for any f € C (K, C), we have

[(Ln () (0) = £ (o) < |f (20)]

Lu(1()) (o) = 1|+

(Ln (1() (o) + 1) w1 (f, (Zn (|. - xo\z) (xo)) é) : (56)
Vage K,VneN.
Proof. By Theorem 13. =

Corollary 21 All as in Theorem 18. Then, for any f € C (K,C), we have

1 (F) = Floosc < 1 o |

Loa)=1|_ +

‘ Ln(1())+ 1H<>O,K wy (f, ) Ln (|- - x0|2) (0) iK) : (57)
vneNlN
IfL,(1()) =1, then
120 ()= e < 200 (2T (1=l @0 ). 69)

VneN.
As L, (1() 51

f, as n — +o0.

)

L (|- - x0|2) (“"CO)HOO,K 0, then (by (57)) Ln (f)
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We continue with a convex Korovkin type result:

Theorem 22 All as in Theorem 18. Let a fived iy € K° and assume that
|f (t) — f (z3)] is convexint € K. Let§ > 0,such that the closed disk D (xf,d) C
K. Then

(Lo (1)) (25) = £ (@] < |f (@) Lo (1)) (5) — 1

wr (£, La (- = i) (w3)) , ¥ meN. (59)

As L, (1(-) (z3) — 1, and Ly, (|- — a3]) (z5) — 0, we get that (L, (f)) (x3) —
f(x§), as n — 400, a pointwise convergence.

Proof. By Theorem 16. m
Note: Theorem 22 goes throw if (51), (52) are valid only for the particular

x5
We finish with

Proposition 23 All as in Theorem 22. Inequality (59) is sharp, in fact it is
— — —
attained by f (t) = j |t — x|, where j is a unit vector of C; x§,t € K.

Proof. By Theorem 17. m

Note: Let K be a convex compact subset of a real normed vector space
(Vi |I-ll;) and (X, ||-|l,) is a Banach space. We can consider bounded linear
functionals and bounded operators on C (K, X). This paper’s methodology can
be applied to this more general setting and produce a similar Korovkin theory
in full strength.
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