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Abstract

Let K be a compact convex subspace of C and C (K;C) the space of
continuous functions from K into C. We consider bounded linear func-
tionals from C (K;C) into C and bounded linear operators from C (K;C)
into itself. We assume that these are bounded by companion real positive
linear entities, respectively. We study quantitatively the rate of conver-
gence of the approximation of these linearities to the corresponding unit
elements. Our results are inequalities of Korovkin type involving the com-
plex modulus of continuity and basic test functions.
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1 Introduction

The study of the convergence of positive linear operators became more intensive
and attractive when P. Korovkin (1953) proved his famous theorem (see [7], p.
14).
Korovkin�s First Theorem. Let [a; b] be a compact interval in R and

(Ln)n2N be a sequence of positive linear operators Ln mapping C ([a; b]) into
itself. Assume that (Lnf) converges uniformly to f for the three test functions
f = 1; x; x2. Then (Lnf) converges uniformly to f on [a; b] for all functions of
f 2 C ([a; b]).
So a lot of authors since then have worked on the theoretical aspects of the

above convergence. But R. A. Mamedov (1959) (see [8]) was the �rst to put
Korovkin�s theorem in a quantitative scheme.
Mamedov�s Theorem. Let fLngn2N be a sequence of positive linear

operators in the space C ([a; b]), for which Ln1 = 1, Ln (t; x) = x + �n (x),
Ln
�
t2; x

�
= x2 + �n (x). Then it holds

kLn (f; x)� f (x)k1 � 3!1
�
f;
p
dn

�
;
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where !1 is the �rst modulus of continuity and dn = k�n (x)� 2x�n (x)k1 :
An improvement of the last result was the following.
Shisha and Mond�s Theorem. (1968, see [10]). Let [a; b] � R be a

compact interval. Let fLngn2N be a sequence of positive linear operators acting
on C ([a; b]). For n = 1; 2; :::; suppose Ln (1) is bounded. Let f 2 C ([a; b]).
Then for n = 1; 2; :::; it holds

kLnf � fk1 � kfk1 � kLn1� 1k1 + kLn (1) + 1k1 � !1 (f; �n) ;

where

�n :=
�Ln �(t� x)2�� (x) 1

2

1
:

Shisha-Mond inequality generated and inspired a lot of research done by
many authors worldwide on the rate of convergence of a sequence of positive
linear operators to the unit operator, always producing similar inequalities how-
ever in many di¤erent directions, e.g., see the important work of H. Censka of
1983 in [6], etc.
The author (see [1]) in his 1993 research monograph, produces in many

directions best upper bounds for j(Lnf) (x0)� f (x0)j, x0 2 Q � Rn, n � 1,
compact and convex, which lead for the �rst time to sharp/attained inequalities
of Shisha-Mond type. The method of proving is probabilistic from the theory
of moments. His pointwise approach is closely related to the study of the weak
convergence with rates of a sequence of �nite positive measures to the unit
measure at a speci�c point.
The author in [3], pp. 383-412 continued this work in an abstract setting:

Let X be a normed vector space, Y be a Banach lattice; M � X is a compact
and convex subset. Consider the space of continuous functions from M into Y ,
denoted by C (M;Y ); also consider the space of bounded functions B (M;Y ).
He studied the rate of the uniform convergence of lattice homomorphisms T :
C (M;Y )! C (M;Y ) or T : C (M;Y )! B (M;Y ) to the unit operator I. See
also [2].
Also the author in [4], pp. 175-188 continued the last abstract work for

bounded linear operators that are bounded by companion real positive linear
operators. Here the invoved functions are from [a; b] � R into (X; k�k) a Banach
space.
All the above have inspired and motivated the work of this article. Our

results are of Shisha-Mond type, i.e., of Korovkin type.
Namely here let K be a convex and compact subset of C and l be a linear

functional from C (K;C) into C, and let el be a positive linear functional from
C (K;R) into R, such that jl (f)j � el (jf j), 8 f 2 C (K;C).
Clearly then l is a bounded linear functional. Initially we create a quantita-

tive Korovkin type theory over the last described setting, then we transfer these
results to related bounded linear operators with similar properties.
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2 Background

We need

Theorem 1 Let K � (C; j�j) and f a function from K into C. Consider the
�rst complex modulus of continuity

!1 (f; �) := sup
x;y2K
jx�yj<�

jf (x)� f (y)j , � > 0: (1)

We have:
(1)� If K is open convex or compact convex, then !1 (f; �) < 1, 8 � > 0,

where f 2 UC (K;C) (uniformly continuous functions).
(2)�If K is open convex or compact convex, then !1 (f; �) is continuous on

R+ in �, for f 2 UC (K;C) :
(3)�If K is convex, then

!1 (f; t1 + t2) � !1 (f; t1) + !1 (f; t2) , t1; t2 > 0; (2)

that is the subadditivity property is true. Also it holds

!1 (f; n�) � n!1 (f; �) (3)

and
!1 (f; ��) � d�e!1 (f; �) � (�+ 1)!1 (f; �) ; (4)

where n 2 N, � > 0, � > 0, d�e is the ceiling of the number.
(4)�Clearly in general !1 (f; �) � 0 and is increasing in � > 0 and !1 (f; 0) =

0:
(5)�If K is open or compact, then !1 (f; �)! 0 as � # 0, i¤ f 2 UC (K;C) :
(6)�It holds

!1 (f + g; �) � !1 (f; �) + !1 (g; �) ; (5)

for � > 0, any f; g : K ! C, K � C is arbitrary.

Proof. (1)�Here K is open convex. Let here f 2 UC (K;C), i¤ 8 " > 0,
9 � > 0 : jx� yj < � implies jf (x)� f (y)j < ". Let "0 > 0 then 9 �0 > 0 :
jx� yj � �0 with jf (x)� f (y)j < "0, hence !1 (f; �0) � "0 <1:
Let � > 0 arbitrary and x; y 2 K : jx� yj � �. Choose n 2 N : n�0 > �, and

set xi = x+ i
n (y � x), 0 � i � n. Notice that all xi 2 K. Then

jf (x)� f (y)j =
�����
n�1X
i=0

(f (xi)� f (xi+1))
����� �

jf (x)� f (x1)j+ jf (x1)� f (x2)j+ jf (x2)� f (x3)j+ :::+ jf (xn�1)� f (y)j �

n!1 (f; �0) � n"0 <1;

since jxi � xi+1j = 1
n jx� yj �

1
n� < �0:
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Thus !1 (f; �) � n"0 <1, proving the claim. If K is compact convex, then
claim is obvious.
(2)�Let x; y 2 K and let jx� yj � t1 + t2, then there exists a point z 2 xy,

z 2 K : jx� zj � t1 and jy � zj � t2, where t1; t2 > 0.
Notice that

jf (x)� f (y)j � jf (x)� f (z)j+ jf (z)� f (y)j � !1 (f; t1) + !1 (f; t2) :

Hence
!1 (f; t1 + t2) � !1 (f; t1) + !1 (f; t2) ;

proving (3)�. Then by the obvious property (4)�we get

0 � !1 (f; t1 + t2)� !1 (f; t1) � !1 (f; t2) ;

and
j!1 (f; t1 + t2)� !1 (f; t1)j � !1 (f; t2) :

Let f 2 UC (K;C), then lim
t2#0

!1 (f; t2) = 0, by property (5)�. Hence !1 (f; �)
is continuous on R+:
(5)�()) Let !1 (f; �)! 0 as � # 0. Then 8 " > 0; 9 � > 0 with !1 (f; �) � ".

I.e. 8 x; y 2 K : jx� yj � � we get jf (x)� f (y)j � ": That is f 2 UC (K;C).
(() Let f 2 UC (K;C). Then 8 " > 0; 9 � > 0 : whenever jx� yj � �,

x; y 2 K, it implies jf (x)� f (y)j � ". I.e. 8 " > 0; 9 � > 0 : !1 (f; �) � ".
That is !1 (f; �)! 0 as � # 0:
(6)�Notice that

j(f (x) + g (x))� (f (y) + g (y))j � jf (x)� f (y)j+ jg (x)� g (y)j :

That is property (6)�now is clear.
We need

Theorem 2 ([1], p. 208) Let (V1; k�k) ; (V2; k�k) be real normed vector spaces
and Q � V1 which is star- shaped relative to the �xed point x0. Consider f :
Q! V2 with the properties:

f (x0) = 0, and ks� tk � h implies kf (s)� f (t)k � w; w; h > 0: (6)

Then, there exists a maximal such function �, namely

� (t) :=

�
kt� x0k

h

�
� w � �!i ; (7)

where
�!
i is any unit vector in V2.

That is
kf (t)k � k� (t)k , all t 2 Q: (8)
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Corollary 3 Let K � (C; j�j) be a compact convex subset, and f 2 C (K;C).
Then

jf (x)� f (x0)j � !1 (f; �)
�
jx� x0j
�

�
; � > 0; (9)

8 x; x0 2 K:

We make

Remark 4 Let K � (C; j�j) be a compact subset and g 2 C (K;R).
A linear functional I from C (K;R) into R is positive, i¤ I (g1) � I (g2),

whenever g1 � g2, where g1; g2 2 C (K;R) :
Let us assume that I is a positive linear functional. Then by Riesz represen-

tation theorem, [9], p. 304, there exists a unique Borel measure � on K such
that

I (g) =

Z
K

g (t) d� (t) ; (10)

8 g 2 C (K;R) :

We make

Remark 5 Here initially we follow [5].
Suppose  is a smooth path parametrized by z (t), t 2 [a; b] and f is a complex

function which is continuous on . Put z (a) = u and z (b) = w with u;w 2 C.
We de�ne the integral of f on u;w =  asZ



f (z) dz =

Z
u;w

f (z) dz :=

Z b

a

f (z (t)) z0 (t) dt: (11)

By triangle inequality we have����Z


f (z) dz

���� =
�����
Z b

a

f (z (t)) z0 (t) dt

����� �
Z b

a

jf (z (t))j jz0 (t)j dt :=
Z


jf (z)j jdzj :

(12)
Inequalities (12) provide a typical example on linear functionals: clearly

R

f (z) dz

induces a linear functional from C (;C) into C, and
R

jf (z)j jdzj involves a

positive linear functional from C (;R) into R.
Thus, be given K a convex and compact subset of C and l be a linear func-

tional from C (K;C) into C, it is not strange to assume that there exists a
positive linear functional el from C (K;R) into R, such that

jl (f)j � el (jf j) ; 8 f 2 C (K;C) : (13)

Furthermore, we may assume that el (1 (�)) = 1, where 1 (t) = 1, 8 t 2 K; l (c (�)) =
c;8c 2 C where c (t) = c, 8 t 2 K�
We call el the companion functional to l.
Here C is a vector space over the �eld of reals. The functional l is linear

over R and the functional el is linear over R.
Next we study approximation properties of

�
ln;eln� pairs, n 2 N:
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3 Main Results - I

First about linear functionals:
We present the following quantitative approximation result of Korovkin type.

Theorem 6 Here K is a convex and compact subset of C and ln is a sequence
of linear functionals from C (K;C) into C, n 2 N. There is a sequence of
companion positive linear functionals eln from C (K;R) into R, such that

jln (f)j � eln (jf j) , 8 f 2 C (K;C) ; 8 n 2 N: (14)

Additionally, we assume that eln (1 (�)) = 1 and ln (c (�)) = c;8c 2 C 8 n 2 N:
Then

jln (f)� f (x0)j � 2!1
�
f;eln (j� � x0j)� ; 8 n 2 N; 8 x0 2 K, (15)

8 f 2 C (K;C) :

Proof. We notice that

jln (f)� f (x0)j = jln (f)� ln (f (x0) (�))j =

jln (f (�)� f (x0) (�))j
(14)
� eln (jf (�)� f (x0) (�)j) (by �>0; (9))�

eln�!1 (f; �)� j� � x0j
�

��
� !1 (f; �)eln�1 (�) + j� � x0j

�

�
=

!1 (f; �)

�eln (1(�)) + 1
�
eln (j� � x0j)� =

!1 (f; �)

�
1 +

1

�
eln (j� � x0j)� = 2!1 �f;eln (j� � x0j)� ; (16)

by choosing
� := eln (j� � x0j) ;

if eln (j� � x0j) > 0, that is proving (15).
Next, we consider the case of eln (j� � x0j) = 0. By Riesz representation

theorem, see (10) there exists a probability measure � such that

eln (g) = Z
K

g (t) d� (t) ; 8 g 2 C (K;R) : (17)

That is, here it holds Z
K

jt� x0j d� (t) = 0;

which implies jt� x0j = 0, a.e, hence t � x0 = 0, a.e, and t = x0, a.e. Con-
sequently � (ft 2 K : t 6= x0g) = 0. Hence � = �x0 , the Dirac measure with
support only fx0g :
Therefore in that case eln (g) = g (x0), 8 g 2 C (K;R). Thus, it holds

!1

�
f;eln (j� � x0j)� = !1 (f; 0) = 0, and eln (jf (�)� f (x0) (�)j) = jf (x0)� f (x0)j =

0, giving jln (f)� f (x0)j = 0. That is (15) is again true.
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Remark 7 We have that

eln (j� � x0j) = Z
K

jt� x0j d� (t)

(by Schwarz�s inequality)

�
�Z

K

1d� (t)

� 1
2
�Z

K

jt� x0j2 d� (t)
� 1

2

=

�eln (1)� 1
2

�Z
K

jt� x0j2 d� (t)
� 1

2

=
�eln �j� � x0j2�� 1

2

: (18)

We give

Corollary 8 All as in Theorem 6. Then

jln (f)� f (x0)j � 2!1
�
f;
�eln �j� � x0j2�� 1

2

�
; 8 n 2 N; 8 x0 2 K. (19)

Conclusion 9 All as in Theorem 6. By (15) and/or (19), as eln (j� � x0j)! 0,

or eln �j� � x0j2�! 0, as n! +1, we obtain that ln (f)! f (x0) with rates, 8
x0 2 K.

Next comes a more general quantitative approximation result of Korovkin
type.

Theorem 10 Here K is a convex and compact subset of C and ln is a sequence
of linear functionals from C (K;C) into C, n 2 N. There is a sequence of
companion positive linear functionals eln from C (K;R) into R, such that

jln (f)j � eln (jf j) , 8 f 2 C (K;C) ; 8 n 2 N: (20)

Additionally, we assume that

ln (cg) = celn (g) ; 8 g 2 C (K;R) ; 8 c 2 C: (21)

Then, for any f 2 C (K;C), we have

jln (f)� f (x0)j � jf (x0)j
���eln (1 (�))� 1���+ �eln (1 (�)) + 1�!1 �f;eln (j� � x0j)� ;

(22)
8 x0 2 K, 8 n 2 N:
(Notice if eln (1 (�)) = 1, then (22) collapses to (15). So Theorem 10 gener-

alizes Theorem 6).
By (22), as eln (1 (�)) ! 1 and eln (j� � x0j) ! 0, then ln (f) ! f (x0), as

n! +1, with rates, and as here eln (1 (�)) is bounded.
7



Proof. We observe that

jln (f)� f (x0)j = jln (f)� ln (f (x0) (�)) + ln (f (x0) (�))� f (x0)j �

jln (f)� ln (f (x0) (�))j+
���f (x0)eln (1 (�))� f (x0)��� =

jln (f (�)� f (x0) (�))j+ jf (x0)j
���eln (1 (�))� 1��� � (23)

jf (x0)j
���eln (1 (�))� 1���+ eln (jf (�)� f (x0) (�)j) �

jf (x0)j
���eln (1 (�))� 1���+ eln�!1 (f; �)� j� � x0j

�

��
�

jf (x0)j
���eln (1 (�))� 1���+ eln (!1 (f; �))�1 (�) + j� � x0j

�

�
=

jf (x0)j
���eln (1 (�))� 1���+ !1 (f; �) �eln (1 (�)) + 1

�
eln (j� � x0j)� =

jf (x0)j
���eln (1 (�))� 1���+ �eln (1 (�)) + 1�!1 �f;eln (j� � x0j)� ;

by choosing
� := eln (j� � x0j) ; (24)

if eln (j� � x0j) > 0:
Next we consider the case ofeln (j� � x0j) = 0: (25)

By Riesz representation theorem there exists a positive �nite measure � such
that eln (g) = Z

K

g (t) d� (t) , 8 g 2 C (K;R) : (26)

That is Z
K

jt� x0j d� (t) = 0; (27)

which implies jt� x0j = 0, a.e., hence t � x0 = 0, a.e, and t = x0, a.e.
on K. Consequently � (ft 2 K : t 6= x0g) = 0. That is � = �x0M (where
0 < M := � (K) = eln (1 (�))). Hence, in that case eln (g) = g (x0)M . Conse-

quently it holds !1
�
f;eln (j� � x0j)� = 0, and the right hand side of (22) equals

jf (x0)j jM � 1j. Also, it is eln (jf (�)� f (x0) (�)j) = jf (x0)� f (x0)jM = 0.
Hence from the �rst part of this proof we get jln (f)� ln (f (x0) (�))j = 0, and
ln (f) = ln (f (x0) (�)) = f (x0)eln (1 (�)) =Mf (x0) :
Consequently the left hand side of (22) becomes

jln (f)� f (x0)j = jMf (x0)� f (x0)j = jf (x0)j jM � 1j :

So that (22) becomes an equality, and both sides equal jf (x0)j jM � 1j in the
extreme case of eln (j� � x0j) = 0: Thus inequality (22) is proved completely in
all cases.
We make
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Remark 11 By Schwartz�s inequality we get

eln (j� � x0j) � �eln �j� � x0j2�� 1
2
�eln (1 (�))� 1

2

: (28)

We give

Corollary 12 All as in Theorem 10. Then

jln (f)� f (x0)j � jf (x0)j
���eln (1 (�))� 1���+

�eln (1 (�)) + 1�!1�f;�eln (1 (�))� 1
2
�eln �j� � x0j2�� 1

2

�
; (29)

8 x0 2 K, 8 n 2 N:

Next we give another version of our Korovkin type result.

Theorem 13 Here all are as in Theorem 10. Then, for any f 2 C (K;C), we
have

jln (f)� f (x0)j � jf (x0)j
���eln (1 (�))� 1���+�eln (1 (�)) + 1�!1�f;�eln �j� � x0j2�� 1

2

�
;

(30)
8 x0 2 K, 8 n 2 N:
By (30), as eln (1 (�)) ! 1 and eln �j� � x0j2� ! 0, then ln (f) ! f (x0), as

n! +1, with rates, and as here eln (1 (�)) is bounded.
Proof. Let t; x0 2 K and � > 0. If jt� x0j > �, then

jf (t)� f (x0)j � !1 (f; jt� x0j) = !1
�
f; jt� x0j ��1�

�
� (31)�

1 +
jt� x0j
�

�
!1 (f; �) �

 
1 +

jt� x0j2

�2

!
!1 (f; �) :

The estimate

jf (t)� f (x0)j �
 
1 +

jt� x0j2

�2

!
!1 (f; �) (32)

also holds trivially when jt� x0j � �.
So (32) is true always, 8 t 2 K, for any x0 2 K:
We can rewrite

jf (�)� f (x0)j �
 
1 +

j� � x0j2

�2

!
!1 (f; �) : (33)

As in the proof of Theorem 10 we have

jln (f)� f (x0)j � ::: � jf (x0)j
���eln (1 (�))� 1���+

9



eln !1 (f; �) 1 (�) + j� � x0j2
�2

!!
=

jf (x0)j
���eln (1 (�))� 1���+ !1 (f; �) �eln (1 (�)) + 1

�2
eln �j� � x0j2�� = (34)

jf (x0)j
���eln (1 (�))� 1���+ !1�f;�eln �j� � x0j2�� 1

2

��eln (1 (�)) + 1� ;
by choosing

� :=
�eln �j� � x0j2�� 1

2

; (35)

if eln �j� � x0j2� > 0.
Next we consider the case ofeln �j� � x0j2� = 0: (36)

By Riesz representation theorem there exists a positive �nite measure � such
that eln (g) = Z

K

g (t) d� (t) , 8 g 2 C (K;R) : (37)

That is Z
K

jt� x0j2 d� (t) = 0;

which implies jt� x0j2 = 0, a.e., hence t � x0 = 0, a.e, and t = x0, a.e. on
K. Consequently � (ft 2 K : t 6= x0g) = 0. That is � = �x0M (where 0 <
M := � (K) = eln (1 (�))). Hence, in that case eln (g) = g (x0)M . Consequently
it holds !1

�
f;
�eln �j� � x0j2�� 1

2

�
= 0, and the right hand side of (30) equals

jf (x0)j jM � 1j.
Also, it is eln (jf (�)� f (x0) (�)j) = jf (x0)� f (x0)jM = 0. Hence from

the �rst part of this proof we get: jln (f)� ln (f (x0) (�))j = 0, and ln (f) =
ln (f (x0) (�)) = f (x0)eln (1 (�)) =Mf (x0) :
Consequently the left hand side of (30) becomes

jln (f)� f (x0)j = jf (x0)j jM � 1j :

So that (30) is true again. The proof of the theorem is now complete.

Corollary 14 Here all are as in Theorem 10. Then

jln (f)� f (x0)j � jf (x0)j
���eln (1 (�))� 1���+ �eln (1 (�)) + 1� �

min

�
!1

�
f;
�eln (1 (�))� 1

2
�eln �j� � x0j2�� 1

2

�
; !1

�
f;
�eln �j� � x0j2�� 1

2

��
;

(38)
8 x0 2 K, 8 n 2 N:
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Proof. By (29) and (30).
So (29) is better that (30) only if eln (1 (�)) < 1:
We need

Theorem 15 Let K � C convex, x0 2 K0(interior of K) and f : K ! R such
that jf (t)� f (x0)j is convex in t 2 K. Furthermore let � > 0 so that the closed
disk D (x0; �) � K. Then

jf (t)� f (x0)j �
!1 (f; �)

�
jt� x0j ; 8 t 2 K: (39)

Proof. Let g (t) := jf (t)� f (x0)j, t 2 K, which is convex in t 2 K and
g (x0) = 0.
Then by Lemma 8.1.1, p. 243 of [1], we obtain

g (t) � !1 (g; �)

�
jt� x0j ; 8 t 2 K: (40)

We notice the following

jf (t1)� f (x0)j = jf (t1)� f (t2) + f (t2)� f (x0)j �

jf (t1)� f (t2)j+ jf (t2)� f (x0)j ;

hence
jf (t1)� f (x0)j � jf (t2)� f (x0)j � jf (t1)� f (t2)j : (41)

Similarly, it holds

jf (t2)� f (x0)j � jf (t1)� f (x0)j � jf (t1)� f (t2)j : (42)

Therefore for any t1; t2 2 K : jt1 � t2j � � we get

j jf (t1)� f (x0)j � jf (t2)� f (x0)j j � jf (t1)� f (t2)j � !1 (f; �) : (43)

That is
!1 (g; �) � !1 (f; �) : (44)

The last and (40) imply

jf (t)� f (x0)j �
!1 (f; �)

�
jt� x0j ; 8 t 2 K; (45)

proving (39).
We continue with a convex Korovkin type result:

Theorem 16 All as in Theorem 10. Let x0 2 K0 and assume that jf (t)� f (x0)j
is convex in t 2 K. Let � > 0,such that the closed disk D (x0; �) � K. Then

jln (f)� f (x0)j � jf (x0)j
���eln (1 (�))� 1���+!1 �f;eln (j� � x0j)� ; 8 n 2 N: (46)
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Proof. As in the proof Theorem 10 we have

jln (f)� f (x0)j � ::: � jf (x0)j
���eln (1 (�))� 1���+ eln (jf (�)� f (x0) (�)j) (39)� (47)

jf (x0)j
���eln (1 (�))� 1���+ !1 (f; �)

�
eln (j� � x0j) =

jf (x0)j
���eln (1 (�))� 1���+ !1 �f;eln (j� � x0j)� ;

by choosing
� := eln (j� � x0j) > 0;

if the last is positive. The case of eln (j� � x0j) = 0 is treated similarly as in the
proof of Theorem 10. The theorem is proved.

Theorem 17 All as in Theorem 16. Inequality (46) is sharp, in fact it is
attained by f� (t) =

�!
j jt� x0j, where

�!
j is a unit vector of (C; j�j); t; x0 2 K:

Proof. Indeed, f� here ful�lls the assumptions of the theorem. We further
notice that f� (x0) = 0, and jf� (t)� f� (x0)j = jt� x0j is convex in t 2 K. The
left hand side of (46) is

jln (f�)� f� (x0)j = jln (f�)j =
���ln ��!j j� � x0j���� (21)=����!j eln (j� � x0j)��� = ���eln (j� � x0j)��� : (48)

The right hand side of (46) is

!1

�
f�;eln (j� � x0j)� = !1 ��!j j� � x0j ;eln (j� � x0j)� =

sup
t1;t22K

jt1�t2j�eln(j��x0j)
����!j jt1 � x0j � �!j jt2 � x0j��� =

sup
t1;t22K

jt1�t2j�eln(j��x0j)
jjt1 � x0j � jt2 � x0jj � (49)

sup
t1;t22K

jt1�t2j�eln(j��x0j)
jt1 � t2j = eln (j� � x0j) :

Hence we have found that

!1

�
f�;eln (j� � x0j)� � eln (j� � x0j) : (50)

Clearly (46) is attained.
The theorem is proved.
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4 Main Results - II

Next we give results on linear operators:
Let K be a compact convex subset of C. Consider L : C (K;C)! C (K;C)

a linear operator and eL : C (K;R)! C (K;R) a positve linear operator (i.e. for
f1:f2 2 C (K;R) with f1 � f2 we get eL (f1) � eL (f2)) both over the �eld of R:
We assume that

jL (f)j � eL (jf j) , 8 f 2 C (K;C) ;
(i.e. jL (f) (z)j � eL (jf j) (z), 8 z 2 K).
We call eL the companion operator of L:
Let x0 2 K. Clearly, then L (�) (x0) is a linear functional from C (K;C) into

C, and eL (�) (x0) is a positive linear functional from C (K;R) into R. Notice
L (f) (z) 2 C and eL (jf j) (z) 2 R, 8 f 2 C (K;C) (thus jf j 2 C (K;R)). Here
L (f) 2 C (K;C), and eL (jf j) 2 C (K;R), 8 f 2 C (K;C) :
Notice that C (K;C) = UC (K;C), also C (K;R) = UC (K;R) (uniformly

continuous functions).
By [3], p. 388, we have that eL (j� � x0jr) (x0), r > 0, is a continuous function

in x0 2 K:
After this preparation we transfer the main results from section 3 to linear

operators.
We have the following approximation results with rates of Korovkin type.

Theorem 18 Here K is a convex and compact subset of C and Ln is a sequence
of linear operators from C (K;C) into itself, n 2 N. There is a sequence of
companion positive linear operators eLn from C (K;R) into itself, such that

jLn (f)j � eLn (jf j) , 8 f 2 C (K;C) ; 8 n 2 N (51)

(i.e. jLn (f) (x0)j �
�eLn (jf j)� (x0), 8 x0 2 K).

Additionally, we assume that

Ln (cg) = ceLn (g) ; 8 g 2 C (K;R) ; 8 c 2 C (52)

(i.e. (Ln (cg)) (x0) = c
�eLn (g)� (x0) ; 8 x0 2 K).

Then, for any f 2 C (K;C), we have

j(Ln (f)) (x0)� f (x0)j � jf (x0)j
���eLn (1 (�)) (x0)� 1���+�eLn (1 (�)) (x0) + 1�!1 �f; eLn (j� � x0j) (x0)� ; (53)

8 x0 2 K, 8 n 2 N:

Proof. By Theorem 10.
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Corollary 19 All as in Theorem 18. Then

kLn (f)� fk1;K � kfk1;K

eLn (1 (�))� 1
1;K

+

eLn (1 (�)) + 1
1;K

!1

�
f;
eLn (j� � x0j) (x0)

1;K

�
; (54)

8 n 2 N:
If eLn (1 (�)) = 1, 8 n 2 N, then

kLn (f)� fk1;K � 2!1
�
f;
eLn (j� � x0j) (x0)

1;K

�
; (55)

8 n 2 N:
As eLn (1 (�)) u! 1,

eLn (j� � x0j) (x0)
1;K

u! 0, then (by (54)) Ln (f)
u! f ,

as n! +1, where u means uniformly. Notice eLn (1 (�)) is bounded, and all the
suprema in (54) are �nite.

We continue with

Theorem 20 Here all as in Theorem 18. Then, for any f 2 C (K;C), we have

j(Ln (f)) (x0)� f (x0)j � jf (x0)j
���eLn (1 (�)) (x0)� 1���+

�eLn (1 (�)) (x0) + 1�!1�f;�eLn �j� � x0j2� (x0)� 1
2

�
; (56)

8 x0 2 K, 8 n 2 N:

Proof. By Theorem 13.

Corollary 21 All as in Theorem 18. Then, for any f 2 C (K;C), we have

kLn (f)� fk1;K � kfk1;K

eLn (1 (�))� 1
1;K

+

eLn (1 (�)) + 1
1;K

!1

�
f;
eLn �j� � x0j2� (x0) 1

2

1;K

�
; (57)

8 n 2 N:
If eLn (1 (�)) = 1, then

kLn (f)� fk1;K � 2!1
�
f;
eLn �j� � x0j2� (x0) 1

2

1;K

�
; (58)

8 n 2 N:
As eLn (1 (�)) u! 1,

eLn �j� � x0j2� (x0)
1;K

u! 0, then (by (57)) Ln (f)
u!

f , as n! +1.
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We continue with a convex Korovkin type result:

Theorem 22 All as in Theorem 18. Let a �xed x�0 2 K0 and assume that
jf (t)� f (x�0)j is convex in t 2 K. Let � > 0,such that the closed disk D (x�0; �) �
K. Then

j(Ln (f)) (x�0)� f (x�0)j � jf (x�0)j
���eLn (1 (�)) (x�0)� 1���

+!1

�
f; eLn (j� � x�0j) (x�0)� ; 8 n 2 N: (59)

As eLn (1 (�)) (x�0) ! 1, and eLn (j� � x�0j) (x�0) ! 0, we get that (Ln (f)) (x�0) !
f (x�0), as n! +1; a pointwise convergence.

Proof. By Theorem 16.
Note: Theorem 22 goes throw if (51), (52) are valid only for the particular

x�0:
We �nish with

Proposition 23 All as in Theorem 22. Inequality (59) is sharp, in fact it is
attained by f (t) =

�!
j jt� x�0j, where

�!
j is a unit vector of C; x�0; t 2 K:

Proof. By Theorem 17.
Note: Let K be a convex compact subset of a real normed vector space

(V; k�k1) and (X; k�k2) is a Banach space. We can consider bounded linear
functionals and bounded operators on C (K;X). This paper�s methodology can
be applied to this more general setting and produce a similar Korovkin theory
in full strength.
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