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Abstract. In this paper we will obtain a local Young-type inequality for three

positive variables and then several applications for isotonic linear functional
and, for selfadjoint operators in Hilbert spaces will be given.

1. Introduction

The classical inequality of Young is

aνb1−ν < νa+ (1− ν)b,

where a and b are distinct positive real numbers and 0 < ν < 1, see [16].

In the paper [1] are proven new inequalities which extend many generalizations
of Young ’s inequality given in recent years. Many generalizations and refinements
of Young’s inequality are stated also in [6], [5], [7], [10] and references therein.

Theorem 1. ([1]) Let λ, ν and τ be real numbers with λ ≥ 1 and 0 < ν < τ < 1.
Then (ν

τ

)λ
<
Aν(a, b)λ −Gν(a, b)λ

Aτ (a, b)λ −Gτ (a, b)λ
<

(
1− ν
1− τ

)λ
,

for all positive and distinct real numbers a and b. Moreover, both bounds are sharp.

We suppose that a, b, c > 0 are three distinct numbers and p1, p2, p3 > 0,
p

′

1, p
′

2, p
′

3 > 0 with 1
p1

+ 1
p2

+ 1
p3

= 1 and 1
p
′
1

+ 1
p
′
2

+ 1
p
′
3

= 1 . We take into account

the three variables function

f(a, b, c) =
1

p1
ap1 +

1

p2
bp2 +

1

p3
cp3−abc− p

′

1

p1

(
1

p
′
1

ap1 +
1

p
′
2

bp2 +
1

p
′
3

cp3 − a
p1

p
′
1 b

p2

p
′
2 c

p3

p
′
3

)
which have the stationary points A(c

p3
p1 , c

p3
p2 , c) with c > 0, c 6= 1.

Theorem 2. ([4]) The local extreme points of the above function are A(c
p3
p1 , c

p3
p2 , c).

If the following conditions are satisfied

p1
p

′
1

− 1 ≥ max{ 1

p2
|p1
p

′
1

− p2
p

′
2

|, 1

p3
|p1
p

′
1

− p3
p

′
3

|},
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1 ≥ 1

p2

p1
p
′
1

− p22
(p

′
2)

2

p1
p
′
1

− p2
p
′
2

+
1

p3

p1
p
′
1

− p23
(p

′
3)

2

p1
p
′
1

− p3
p
′
3

+
p1
p

′
1

1

p2p3

(
p2
p
′
2

− p3
p
′
3

)2
(
p1
p
′
1

− p2
p
′
2

)(
p1
p
′
1

− p3
p
′
3

) .
then these points are local minimum points for the function f .

We also need to recall, for the first section, the definition of isotonic linear
functional. This definition can be also find in papers as [2], [3], [8], [12] and the
references therein.

Definition 1. Let E be a nonempty set and L be a linear class of real-valued
functions f, g : E → R having the following properties:

(L1) f, g ∈ L imply (αf + βg) ∈ L for all α, β ∈ R.
(L2) 1 ∈ L, i.e., if f0(t) = 1, ∀ t ∈ E, then f0 ∈ L.
An isotonic linear functional is a functional A : L → R having the following

properties:
(A1) A(αf + βg) = αA(f) + βA(g) for all α, β ∈ R;
(A2) If f ∈ L and f(t) ≥ 0 then A(f) ≥ 0.
The mapping A is said to be normalised if
(A3) A(1) = 1.

For several classical examples of isotonic linear functionals, see [3], Example 3.3.

Moreover, for the second section it is necessary to recall some basic things about
the functional calculus with continuous functions on spectrum. As in [11], we
recall that for selfadjoint operators A,B ∈ B(H) we write A ≤ B (or B ≥ A) if
< Ax, x >≤< Bx, x > for every vector x ∈ H. We will consider for beginning
A as being a selfadjoint linear operator on a complex Hilbert space (H;< ., . >).
The Gelfand map establishes a ∗- isometrically isomorphism Φ between the set
C(Sp(A)) of all continuous functions defined on the spectrum of A, denoted Sp(A),
and the C∗- algebra C∗(A) generated by A and the identity operator 1H on H as
follows: For any f, f ∈ C(Sp(A)) and for any α, β ∈ C we have

(i) Φ(αf + βg) = αΦ(f) + βΦ(g);
(ii) Φ(fg) = Φ(f)Φ(g) and Φ(f) = Φ(f∗);
(iii) ||Φ(f)|| = ||f || := supt∈Sp(A) |f(t)|;
(iv) Φ(f0) = 1H and Φ(f1) = A, where f0(t) = 1 and f1(t) = t for t ∈ Sp(A.)
Using this notation, as in [11] for example, we define

f(A) := Φ(f) for all f ∈ C(Sp(A))

and we call it the continuous functional calculus for a selfadjoint operator A. It is
known that if A is a selfadjoint operator and f is a real valued continuous function
on Sp(A), then f(t) ≥ 0 for any t ∈ Sp(A) implies that f(A) ≥ 0, i.e. f(A) is
a positive operator on H. In addition, if and f and g are real valued functions on
Sp(A) then the following property holds:

(1) f(t) ≥ g(t) for any t ∈ Sp(A) implies that f(A) ≥ g(A)

in the operator order of B(H).
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2. A local Young-type inequality and some applications for isotonic
linear functionals

The following result is an immediate consequence of previous Theorem 2, by
using the definition of the local minimum points.

Proposition 1. For any p1, p2, p3 > 0, p
′

1, p
′

2, p
′

3 > 0 with 1
p1

+ 1
p2

+ 1
p3

= 1 and
1
p
′
1

+ 1
p
′
2

+ 1
p
′
3

= 1 which satisfy the conditions

p1
p

′
1

− 1 ≥ max{ 1

p2
|p1
p

′
1

− p2
p

′
2

|, 1

p3
|p1
p

′
1

− p3
p

′
3

|},

1 ≥ 1

p2

p1
p
′
1

− p22
(p

′
2)

2

p1
p
′
1

− p2
p
′
2

+
1

p3

p1
p
′
1

− p23
(p

′
3)

2

p1
p
′
1

− p3
p
′
3

+
p1
p

′
1

1

p2p3

(
p2
p
′
2

− p3
p
′
3

)2
(
p1
p
′
1

− p2
p
′
2

)(
p1
p
′
1

− p3
p
′
3

) ,
and for any d > 0, there is rd > 0 so that for any c ∈ (d − rd, d + rd), b ∈
(d

p3
p2 − rd, d

p3
p2 + rd) and a ∈ (d

p3
p1 − rd, d

p3
p1 + rd) it is true the inequality:

1

p1
ap1 +

1

p2
bp2 +

1

p3
cp3 − abc ≥ p

′

1

p1

(
1

p
′
1

ap1 +
1

p
′
2

bp2 +
1

p
′
3

cp3 − a
p1

p
′
1 b

p2

p
′
2 c

p3

p
′
3

)
.

Now we will use this inequality in order to establish several Young-type inequal-
ities for normalised isotonic linear functionals.

Theorem 3. Let p1, p2, p3 > 0, p
′

1, p
′

2, p
′

3 > 0 with 1
p1

+ 1
p2

+ 1
p3

= 1 and
1
p
′
1

+ 1
p
′
2

+ 1
p
′
3

= 1 which satisfy the conditions

p1
p

′
1

− 1 ≥ max{ 1

p2
|p1
p

′
1

− p2
p

′
2

|, 1

p3
|p1
p

′
1

− p3
p

′
3

|},

1 ≥ 1

p2

p1
p
′
1

− p22
(p

′
2)

2

p1
p
′
1

− p2
p
′
2

+
1

p3

p1
p
′
1

− p23
(p

′
3)

2

p1
p
′
1

− p3
p
′
3

+
p1
p

′
1

1

p2p3

(
p2
p
′
2

− p3
p
′
3

)2
(
p1
p
′
1

− p2
p
′
2

)(
p1
p
′
1

− p3
p
′
3

) ,
and let A : L→ R be a normalised isotonic linear functional.

If f, g, h : E → R, f, g, h > 0, fp1 , gp2 , hp3 , fgh, f
p1

p
′
1 g

p2

p
′
2 h

p3

p
′
3 ∈ L and

A(fp1), A(gp2), A(hp3) > 0 then for any d > 0 there is rd > 0 so that

(a) If, in addition, d− rd ≤ h ≤ d+ rd, d
p3
p2 − rd ≤ g ≤ d

p3
p2 + rd, and d

p3
p1 − rd ≤

f ≤ d
p3
p1 + rd it is true the following inequality:

1

p1
A(fp1) +

1

p2
A(gp2) +

1

p3
A(hp3)−A(fgh) ≥

≥ p
′

1

p1

(
1

p
′
1

A(fp1) +
1

p
′
2

A(gp2) +
1

p
′
3

A(hp3)−A(f
p1

p
′
1 g

p2

p
′
2 h

p3

p
′
3 )

)
.

(b) If, in addition, (d − rd)p3A(h) ≤ h ≤ A(h)(d + rd)
p3 , (d

p3
p2 − rd)p2A(g) ≤

g ≤ A(g)(d
p3
p2 + rd)

p2 , and (d
p3
p1 − rd)p1A(f) ≤ f ≤ A(f)(d

p3
p1 + rd)

p1 it is true the
following inequality:
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1− A(f
1
p1 g

1
p2 h

1
p3 )

A
1
p1 (f)A

1
p2 (g)A

1
p3 (h)

≥ p
′

1

p1

1− A(f
1

p
′
1 g

1

p
′
2 h

1

p
′
3 )

A
1

p
′
1 (f)A

1

p
′
2 (g)A

1

p
′
3 (h)

 .

Proof. (a) We put in inequality from Proposition 1, a = f, b = g and c = h
because the hypothesis of this proposition are satisfied (d − rd ≤ h ≤ d + rd,

d
p3
p2 − rd ≤ g ≤ d

p3
p2 + rd, d

p3
p1 − rd ≤ f ≤ d

p3
p1 + rd). We will have,

1

p1
fp1 +

1

p2
gp2 +

1

p3
hp3 − fgh ≥ p

′

1

p1

(
1

p
′
1

fp1 +
1

p
′
2

gp2 +
1

p
′
3

hp3 − f
p1

p
′
1 g

p2

p
′
2 h

p3

p
′
3

)
.

Now taking into account that A is a normalised isotonic linear functional, pre-
vious inequality can be written:

1

p1
A(fp1) +

1

p2
A(gp2) +

1

p3
A(hp3)−A(fgh) ≥

≥ p
′

1

p1

(
1

p
′
1

A(fp1) +
1

p
′
2

A(gp2) +
1

p
′
3

A(hp3)−A(f
p1

p
′
1 g

p2

p
′
2 h

p3

p
′
3 )

)
.

(b) This time we choose a = f
1
p1

A
1
p1 (f)

, b = g
1
p2

A
1
p2 (g)

and c = h
1
p3

A
1
p3 (h)

in inequality

from Proposition 1 and we get:

1

p1

f

A(f)
+

1

p2

g

A(g)
+

1

p3

h

A(h)
− f

1
p1 g

1
p2 h

1
p3

A
1
p1 (f)A

1
p2 (g)A

1
p3 (h)

≥

≥ p
′

1

p1

 1

p
′
1

f

A(f)
+

1

p
′
2

g

A(g)
+

1

p
′
3

h

A(h)
− f

1

p
′
1 g

1

p
′
2 h

1

p
′
3

A
1

p
′
1 (f)A

1

p
′
2 (g)A

1

p
′
3 (h)

 .

Using again the normalised isotonic linear functional A, we have,

1

p1

A(f)

A(f)
+

1

p2

A(g)

A(g)
+

1

p3

A(h)

A(h)
− A(f

1
p1 g

1
p2 h

1
p3 )

A
1
p1 (f)A

1
p2 (g)A

1
p3 (h)

≥

≥ p
′

1

p1

 1

p
′
1

A(f)

A(f)
+

1

p
′
2

A(g)

A(g)
+

1

p
′
3

A(h)

A(h)
− A(f

1

p
′
1 g

1

p
′
2 h

1

p
′
3 )

A
1

p
′
1 (f)A

1

p
′
2 (g)A

1

p
′
3 (h)

 ,

and by hypothesis that 1
p1

+ 1
p2

+ 1
p3

= 1 and 1
p
′
1

+ 1
p
′
2

+ 1
p
′
3

= 1 we get

1− A(f
1
p1 g

1
p2 h

1
p3 )

A
1
p1 (f)A

1
p2 (g)A

1
p3 (h)

≥ p
′

1

p1

1− A(f
1

p
′
1 g

1

p
′
2 h

1

p
′
3 )

A
1

p
′
1 (f)A

1

p
′
2 (g)A

1

p
′
3 (h)

 ,

and here is the desired inequality from (b).
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3. Some inequalities for positive operators on Hilbert spaces

Let B(H) be the C∗−algebra of all bounded linear operators on a complex Hilbert
space (H, < .,>) and A,B,C ∈ B(H) be three positive operators.

Next result will extend the inequality from Proposition 1 for the norm of the
positive operators A, B and C.

Theorem 4. Let p1, p2, p3 > 0, p
′

1, p
′

2, p
′

3 > 0 with 1
p1

+ 1
p2

+ 1
p3

= 1 and
1
p
′
1

+ 1
p
′
2

+ 1
p
′
3

= 1 which satisfy the conditions

p1
p

′
1

− 1 ≥ max{ 1

p2
|p1
p

′
1

− p2
p

′
2

|, 1

p3
|p1
p

′
1

− p3
p

′
3

|},

1 ≥ 1

p2

p1
p
′
1

− p22
(p

′
2)

2

p1
p
′
1

− p2
p
′
2

+
1

p3

p1
p
′
1

− p23
(p

′
3)

2

p1
p
′
1

− p3
p
′
3

+
p1
p

′
1

1

p2p3

(
p2
p
′
2

− p3
p
′
3

)2
(
p1
p
′
1

− p2
p
′
2

)(
p1
p
′
1

− p3
p
′
3

) ,
and let A, B, C be three positive operators in the complex Hilbert space H. For

any d > 0 if

(d − rd)I ≤ C ≤ (d + rd)I, (d
p3
p2 − rd)I ≤ B ≤ (d

p3
p2 + rd)I, and (d

p3
p1 − rd)I ≤

A ≤ (d
p3
p1 + rd)I then the following inequality holds:

1

p1
||A

p1
2 x||2||y||2||z||2 +

1

p2
||B

p2
2 y||2||x||2||z||2 +

1

p3
||C

p3
2 z||2||x||2||y||2−

−||A 1
2x||2||B 1

2 y||2||C 1
2 z||2 ≥

≥ p
′

1

p1
(

1

p
′
1

||A
p1
2 x||2||y||2||z||2 +

1

p
′
2

||B
p2
2 y||2||x||2||z||2 +

1

p
′
3

||C
p3
2 z||2||x||2||y||2−

−||A
p1

2p
′
1 x||2||B

p2

2p
′
2 y||2||C

p3

2p
′
3 z||2),

for any x, y, z ∈ H.

Proof. The method used in our proof will be as in [7]. We will use the inequality
from Proposition 1,

1

p1
ap1 +

1

p2
bp2 +

1

p3
cp3 − abc ≥ p

′

1

p1

(
1

p
′
1

ap1 +
1

p
′
2

bp2 +
1

p
′
3

cp3 − a
p1

p
′
1 b

p2

p
′
2 c

p3

p
′
3

)
,

where c ∈ (d−rd, d+rd), b ∈ (d
p3
p2 −rd, d

p3
p2 +rd) and a ∈ (d

p3
p1 −rd, d

p3
p1 +rd). Using

the functional calculus with continuous functions for the operator A, we obtain

1

p1
< Ap1x, x > +

1

p2
bp2 < x, x > +

1

p3
cp3 < x, x > −bc < Ax, x >≥

≥ p
′

1

p1
(

1

p
′
1

< Ap1x, x > +
1

p
′
2

bp2 < x, x > +
1

p
′
3

cp3 < x, x > −b
p2

p
′
2 c

p3

p
′
3 < A

p1

p
′
1 x, x >),

for any x ∈ H, b ∈ (d
p3
p2 −rd, d

p3
p2 +rd), c ∈ (d−rd, d+rd) and p1, p2, p3, p

′

1, p
′

2, p
′

3

as in hypothesis of the theorem.
Now, we use in last inequality the functional calculus with continous functions

for the operator B and we get:

1

p1
< Ap1x, x > ||y||2+

1

p2
||x||2 < Bp2y, y > +

1

p3
cp3 ||x||2||y||2−c < Ax, x >< By, y >≥
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≥ p
′

1

p1
(

1

p
′
1

< Ap1x, x > ||y||2 +
1

p
′
2

||x||2 < Bp2y, y > +
1

p
′
3

cp3 ||x||2||y||2−

−c
p3

p
′
3 < A

p1

p
′
1 x, x >< B

p2

p
′
2 y, y >),

for any x, y ∈ H, c ∈ (d− rd, d+ rd) and p1, p2, p3, p
′

1, p
′

2, p
′

3 as in hypothesis of
the theorem.

By functional calculus with continuous functions for the operator C, we will have
from last inequality that,

1

p1
< Ap1x, x > ||y||2||z||2+

1

p2
||x||2||z||2 < Bp2y, y > +

1

p3
< Cp3z, z > ||x||2||y||2−

− < Cz, z >< Ax, x >< By, y >≥

≥ p
′

1

p1
(

1

p
′
1

< Ap1x, x > ||y||2||z||2+
1

p
′
2

||x||2||z||2 < Bp2y, y > +
1

p
′
3

< Cp3z, z > ||x||2||y||2−

− < C
p3

p
′
3 z, z >< A

p1

p
′
1 x, x >< B

p2

p
′
2 y, y >),

for any x, y, z ∈ H and p1, p2, p3, p
′

1, p
′

2, p
′

3 as in hypothesis of the theorem.
From here we get the desired inequality.

Consequence 1. Under previous conditions, for each x, y, z ∈ H with ||x|| =
||y|| = ||z|| = 1 we have the following inequality:

1

p1
||A

p1
2 x||2 +

1

p2
||B

p2
2 y||2 +

1

p3
||C

p3
2 z||2 − ||A 1

2x||2||B 1
2 y||2||C 1

2 z||2 ≥

≥ p
′

1

p1
(

1

p
′
1

||A
p1
2 x||2 +

1

p
′
2

||B
p2
2 y||2 +

1

p
′
3

||C
p3
2 z||2 − ||A

p1

2p
′
1 x||2||B

p2

2p
′
2 y||2||C

p3

2p
′
3 z||2).
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