BOUNDS FOR THE HH f-DIVERGENCE MEASURES IN TERMS OF χ^{2}-DIVERGENCE

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract

In this paper we establish some inequalities for the Hermite-Hadamard (HH) f-divergence measures in terms of χ^{2}-divergence. An application for Kullback-Leibler divergence is also provided.

1. Introduction

Let the set X and the σ-finite measure μ be given and consider the set of all probability densities on μ to be defined on $\Omega:=\left\{p \mid p: X \rightarrow \mathbb{R}, p(x) \geq 0, \int_{X} p(x) d \mu(x)=1\right\}$

The f-divergence is defined as follows [2], [3]

$$
\begin{equation*}
D_{f}(p, q):=\int_{X} p(x) f\left[\frac{q(x)}{p(x)}\right] d \mu(x), \quad p, q \in \Omega \tag{1.1}
\end{equation*}
$$

where the function f is convex on $(0, \infty)$. It is assumed that $f(u)$ is zero and strictly convex at $u=1$. By appropriately defining this convex function, various divergences are derived. For instance, the following celebrated divergences are particular cases of f-divergence

$$
\begin{equation*}
D_{K L}(p, q):=\int_{X} p(x) \log \left[\frac{p(x)}{q(x)}\right] d \mu(x), \quad p, q \in \Omega \tag{1.2}
\end{equation*}
$$

(Kullback-Leibler divergence [9])

$$
\begin{equation*}
D_{H}(p, q):=\int_{X}|\sqrt{p(x)}-\sqrt{q(x)}| d \mu(x), \quad p, q \in \Omega \tag{1.4}
\end{equation*}
$$

(Hellinger distance [7])

$$
\begin{align*}
D_{\chi^{2}}(p, q) & :=\int_{X} p(x)\left[\left(\frac{q(x)}{p(x)}\right)^{2}-1\right] d \mu(x), p, q \in \Omega ; \tag{1.5}\\
& \left(\chi^{2} \text {-divergence }\right)
\end{align*}
$$

[^0]\[

$$
\begin{equation*}
D_{J}(p, q):=\int_{X}[p(x)-q(x)] \ln \left[\frac{p(x)}{q(x)}\right] d \mu(x), \quad p, q \in \Omega \tag{1.6}
\end{equation*}
$$

\]

(Jeffreys distance [8])

$$
\begin{equation*}
D_{\Delta}(p, q):=\int_{X} \frac{[p(x)-q(x)]^{2}}{p(x)+q(x)} d \mu(x), \quad p, q \in \Omega \tag{1.7}
\end{equation*}
$$

(triangular discrimination [12])
In [10], Lin and Wong (see also [11]) introduced the following divergence

$$
\begin{equation*}
D_{L W}(p, q):=\int_{X} p(x) \log \left[\frac{p(x)}{\frac{1}{2} p(x)+\frac{1}{2} q(x)}\right] d \mu(x), \quad p, q \in \Omega \tag{1.8}
\end{equation*}
$$

This can be represented as follows, using the Kullback-Leibler divergence:

$$
D_{L W}(p, q)=D_{K L}\left(p, \frac{p+q}{2}\right) .
$$

Lin and Wong have established the following inequalities

$$
\begin{gather*}
D_{L W}(p, q) \leq \frac{1}{2} D_{K L}(p, q) \tag{1.9}\\
D_{L W}(p, q)+D_{L W}(q, p) \leq D_{v}(p, q) \leq 2 \tag{1.10}\\
D_{L W}(p, q) \leq 1 . \tag{1.11}
\end{gather*}
$$

In [11], Shioya and Da-te improved (1.9)-(1.11) by showing that

$$
D_{L W}(p, q) \leq \frac{1}{2} D_{v}(p, q) \leq 1
$$

In the same paper [11], the authors introduced the generalised Lin-Wong f divergence $D_{f}\left(p, \frac{1}{2} p+\frac{1}{2} q\right)$ and the Hermite-Hadamard (HH) f-divergence

$$
\begin{equation*}
D_{H H}^{f}(p, q):=\int_{X} p(x) \frac{\int_{1}^{\frac{q(x)}{p(x)}} f(t) d t}{\frac{q(x)}{p(x)}-1} d \mu(x), \quad p, q \in \Omega \tag{1.12}
\end{equation*}
$$

and, by use of the Hermite-Hadamard inequality for convex functions, proved the following basic inequality

$$
\begin{equation*}
D_{f}\left(p, \frac{p+q}{2}\right) \leq D_{H H}^{f}(p, q) \leq \frac{1}{2} D_{f}(p, q) \tag{1.13}
\end{equation*}
$$

provided that f is convex and normalised, i.e., $f(1)=0$.
In 2002, Barnett, Cerone \& Dragomir [1] improved the inequality (1.13) as follows:

Theorem 1. Assume that the function $f:(0, \infty) \rightarrow \mathbb{R}$ is convex and normalised, i.e. $f(1)=0$. Let $p, q \in \Omega$ then we have the inequality,

$$
\begin{align*}
0 & \leq D_{f}\left(p, \frac{p+q}{2}\right) \tag{1.14}\\
& \leq \lambda D_{f}\left(p, p+\frac{\lambda}{2}(q-p)\right)+(1-\lambda) D_{f}\left(p, \frac{p+q}{2}+\frac{\lambda}{2}(q-p)\right) \\
& \leq D_{H H}^{f}(p, q) \leq \frac{1}{2}\left[D_{f}(p,(1-\lambda) p+\lambda q)+(1-\lambda) D_{f}(p, q)\right] \\
& \leq \frac{1}{2} D_{f}(p, q)
\end{align*}
$$

for all $\lambda \in[0,1]$.
In particular,

$$
\begin{align*}
0 & \leq D_{f}\left(p, \frac{p+q}{2}\right) \leq \frac{1}{2}\left[D_{f}\left(p, \frac{3 p+q}{4}\right)+D_{f}\left(p, \frac{p+3 q}{4}\right)\right] \tag{1.15}\\
& \leq D_{H H}^{f}(p, q) \leq \frac{1}{2}\left[D_{f}\left(p, \frac{p+q}{2}\right)+\frac{1}{2} D_{f}(p, q)\right] \\
& \leq \frac{1}{2} D_{f}(p, q) .
\end{align*}
$$

In 2005, [5], the author obtained the following estimate for a differentiable convex and normalised function $f:(0, \infty) \rightarrow \mathbb{R}$

$$
\begin{equation*}
0 \leq D_{H H}^{f}(p, q)-D_{f}\left(p, \frac{p+q}{2}\right) \leq \frac{1}{8} D_{f^{\dagger}}(p, q) \tag{1.16}
\end{equation*}
$$

for $p, q \in \Omega$, where

$$
\begin{equation*}
f^{\dagger}(t):=(t-1) f^{\prime}(t), t \in(0, \infty) \tag{1.17}
\end{equation*}
$$

In the paper [6] we also obtained the dual inequality

$$
\begin{equation*}
0 \leq \frac{1}{2} D_{f}(p, q)-D_{H H}^{f}(p, q) \leq \frac{1}{8} D_{f^{\dagger}}(p, q) \tag{1.18}
\end{equation*}
$$

for $p, q \in \Omega$.
Motivated by the above results, we establish in this paper other inequalities for the HH f-divergence.

2. General Results

We start with the following useful representation fir the HH f-divergence:
Lemma 1. Assume that the function $f:(0, \infty) \rightarrow \mathbb{R}$ is convex and normalised, then we have the representation

$$
\begin{align*}
D_{H H}^{f}(p, q) & =\int_{X} p(x)\left(\int_{0}^{1} f\left(\frac{s q(x)+(1-s) p(x)}{p(x)}\right) d s\right) d \mu(x) \tag{2.1}\\
& =\int_{0}^{1} D_{f}(p, s q+(1-s) p) d s
\end{align*}
$$

for $p, q \in \Omega$.

Proof. Using the change of variable

$$
t=\frac{s q(x)+(1-s) p(x)}{p(x)}, s \in[0,1]
$$

we have

$$
\frac{\int_{1}^{\frac{q(x)}{p(x)}} f(t) d t}{\frac{q(x)}{p(x)}-1}=\int_{0}^{1} f\left(\frac{s q(x)+(1-s) p(x)}{p(x)}\right) d s
$$

for $x \in X$ for which $p(x), q(x), q(x)-p(x) \neq 0$.
Therefore

$$
\begin{aligned}
D_{H H}^{f}(p, q) & :=\int_{X} p(x) \frac{\int_{1}^{\frac{q(x)}{p(x)}} f(t) d t}{\frac{q(x)}{p(x)}-1} d \mu(x) \\
& =\int_{X} p(x)\left(\int_{0}^{1} f\left(\frac{s q(x)+(1-s) p(x)}{p(x)}\right) d s\right) d \mu(x) \\
& =\int_{0}^{1}\left(\int_{X} p(x) f\left(\frac{s q(x)+(1-s) p(x)}{p(x)}\right) d \mu(x)\right) d s
\end{aligned}
$$

where for the last equality we used Fubini's theorem.
Since

$$
\int_{X} p(x) f\left(\frac{s q(x)+(1-s) p(x)}{p(x)}\right) d \mu(x)=D_{f}(p, s q+(1-s) p)
$$

hence

$$
\begin{aligned}
& \int_{0}^{1}\left(\int_{X} p(x) f\left(\frac{s q(x)+(1-s) p(x)}{p(x)}\right) d \mu(x)\right) d s \\
& =\int_{0}^{1} D_{f}(p, s q+(1-s) p) d s
\end{aligned}
$$

and the equalities in are proved.

For $s \in[0,1]$ and the convex function $f:(0, \infty) \rightarrow \mathbb{R}$ we define the s-weighted perspective $\mathcal{P}_{f, s}:(0, \infty) \times(0, \infty) \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\mathcal{P}_{f, s}(u, v):=u f\left(\frac{s v+(1-s) u}{u}\right) . \tag{2.2}
\end{equation*}
$$

We have the following lemma that is of interest in itself as well:
Lemma 2. Assume that the function $f:(0, \infty) \rightarrow \mathbb{R}$ is convex, then for all $s \in[0,1]$ the s-weighted perspective $\mathcal{P}_{f, s}$ is also convex as a function of two variables.

Proof. Let $(u, v),(w, z) \in(0, \infty) \times(0, \infty)$ and $\alpha, \beta \geq 0$ with $\alpha+\beta=1$. Then

$$
\begin{aligned}
& \mathcal{P}_{f, s}(\alpha(u, v)+\beta(w, z)) \\
& =\mathcal{P}_{f, s}(\alpha u+\beta w, \alpha v+\beta z) \\
& =(\alpha u+\beta w) f\left(\frac{s(\alpha v+\beta z)+(1-s)(\alpha u+\beta w)}{\alpha u+\beta w}\right) \\
& =(\alpha u+\beta w) f\left(\frac{\alpha(s v+(1-s) u)+\beta(s z+(1-s) w)}{\alpha u+\beta w}\right) \\
& =(\alpha u+\beta w) f\left(\frac{\alpha u \frac{s v+(1-s) u}{u}+\beta w \frac{s z+(1-s) w}{w}}{\alpha u+\beta w}\right) \\
& \leq(\alpha u+\beta w) \\
& \times\left[\frac{\alpha u}{\alpha u+\beta w} f\left(\frac{s v+(1-s) u}{u}\right)+\frac{\beta w}{\alpha u+\beta w} f\left(\frac{s z+(1-s) w}{w}\right)\right] \\
& =\alpha u f\left(\frac{s v+(1-s) u}{u}\right)+\beta w f\left(\frac{s z+(1-s) w}{w}\right) \\
& =\alpha \mathcal{P}_{f, s}(u, v)+\beta \mathcal{P}_{f, s}(w, z),
\end{aligned}
$$

which proves the joint convexity of the perspective $\mathcal{P}_{f, s}$.
Remark 1. If we use the perspective concept, then by (2.1) we also have

$$
\begin{equation*}
D_{H H}^{f}(p, q)=\int_{0}^{1}\left(\int_{X} \mathcal{P}_{f, s}(p(x), q(x)) d \mu(x)\right) d s \tag{2.3}
\end{equation*}
$$

The following joint convexity of the $\mathrm{HH} f$-divergence holds:
Theorem 2. Assume that the function $f:(0, \infty) \rightarrow \mathbb{R}$ is convex and normalised, then $D_{H H}^{f}$ is convex as a mapping of two variables on $\Omega \times \Omega$.

Proof. Let $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right) \in \Omega$ and and $\alpha, \beta \geq 0$ with $\alpha+\beta=1$. Then by the representation (2.3) and Lemma 2 we have

$$
\begin{aligned}
& D_{H H}^{f}\left(\alpha\left(p_{1}, q_{1}\right)+\beta\left(p_{2}, q_{2}\right)\right) \\
& =D_{H H}^{f}\left(\alpha p_{1}+\beta p_{2}, \alpha q_{1}+\beta q_{2}\right) \\
& =\int_{0}^{1}\left(\int_{X} \mathcal{P}_{f, s}\left(\alpha p_{1}(x)+\beta p_{2}(x), \alpha q_{1}(x)+\beta q_{2}(x)\right) d \mu(x)\right) d s \\
& =\int_{0}^{1}\left(\int_{X} \mathcal{P}_{f, s}\left(\alpha\left(p_{1}(x), q_{1}(x)\right)+\beta\left(p_{2}(x), q_{2}(x)\right)\right) d \mu(x)\right) d s \\
& \geq \int_{0}^{1}\left(\int_{X}\left[\alpha \mathcal{P}_{f, s}\left(p_{1}(x), q_{1}(x)\right)+\beta \mathcal{P}_{f, s}\left(p_{2}(x), q_{2}(x)\right)\right] d \mu(x)\right) d s \\
& =\alpha \int_{0}^{1}\left(\int_{X} \mathcal{P}_{f, s}\left(p_{1}(x), q_{1}(x)\right) d \mu(x)\right) d s \\
& +\beta \int_{0}^{1}\left(\int_{X} \mathcal{P}_{f, s}\left(p_{2}(x), q_{2}(x)\right) d \mu(x)\right) d s \\
& =\alpha D_{H H}^{f}\left(p_{1}, q_{1}\right)+\beta D_{H H}^{f}\left(p_{2}, q_{2}\right)
\end{aligned}
$$

which proves the desired convexity.

3. Bounds in Terms of χ^{2}-Divergence

The above definitions $D_{f}(p, q)$ and $D_{H H}^{f}(p, q)$ can be extended to continuous functions f defined on $(0, \infty)$, however, in this general case, the positivity properties of the divergences under consideration do not hold in general.

We have:
Theorem 3. Assume that the function $f:(0, \infty) \rightarrow \mathbb{R}$ is twice differentiable and normalised. Let $0<r \leq 1 \leq R<\infty$ and $p, q \in \Omega$ are such that

$$
\begin{equation*}
r \leq \frac{q(x)}{p(x)} \leq R \text { for } \mu \text {-almost every } x \in X \tag{3.1}
\end{equation*}
$$

(i) If there exists a real number m such that

$$
\begin{equation*}
m \leq f^{\prime \prime}(t) \text { for all } t \in[r, R] \tag{3.2}
\end{equation*}
$$

then we have the inequality

$$
\begin{equation*}
0 \leq D_{f}\left(p, \frac{p+q}{2}\right)-\frac{1}{8} m D_{\chi^{2}}(p, q) \leq D_{H H}^{f}(p, q)-\frac{1}{6} m D_{\chi^{2}}(p, q) \tag{3.3}
\end{equation*}
$$

(ii) If there exists the real number M such that

$$
\begin{equation*}
f^{\prime \prime}(t) \leq M \text { for all } t \in[r, R] \tag{3.4}
\end{equation*}
$$

then we have the inequality

$$
\begin{equation*}
0 \leq \frac{1}{8} M D_{\chi^{2}}(p, q)-D_{f}\left(p, \frac{p+q}{2}\right) \leq \frac{1}{6} M D_{\chi^{2}}(p, q)-D_{H H}^{f}(p, q) \tag{3.5}
\end{equation*}
$$

Proof. (i) Consider the auxiliary function $g_{m}:[r, R] \rightarrow \mathbb{R}, g_{m}(t):=f(t)-$ $\frac{1}{2} m\left(\ell^{2}(t)-1\right)$, where $\ell(t)=t$ is the identity function. This function is convex and normalized on $[r, R]$, since g_{m} is twice differentiable and

$$
g_{m}^{\prime \prime}(t):=f^{\prime \prime}(t)-m \geq 0 \text { for all } t \in[r, R]
$$

We have for $p, q \in \Omega$ that

$$
\begin{aligned}
& D_{H H}^{g_{m}}(p, q) \\
& =D_{H H}^{f}(p, q)-\frac{1}{2} m D_{H H}^{\ell^{2}-1}(p, q) \\
& =D_{H H}^{f}(p, q)-\frac{1}{2} m \int_{X} p(x)\left(\int_{0}^{1}\left[\left(\frac{s q(x)+(1-s) p(x)}{p(x)}\right)^{2}-1\right] d s\right) d \mu(x) \\
& =D_{H H}^{f}(p, q)-\frac{1}{2} m \int_{X} p(x)\left(\int_{0}^{1}\left(\frac{s q(x)+(1-s) p(x)}{p(x)}\right)^{2} d s\right) d \mu(x) \\
& +\frac{1}{2} m \int_{X} p(x) d \mu(x) \\
& =D_{H H}^{f}(p, q)-\frac{1}{2} m \int_{X} p(x)\left(\int_{0}^{1}\left(\frac{s q(x)+(1-s) p(x)}{p(x)}\right)^{2} d s\right) d \mu(x)+\frac{1}{2} m .
\end{aligned}
$$

Observe that

$$
\begin{aligned}
& \int_{0}^{1}\left(\frac{s q(x)+(1-s) p(x)}{p(x)}\right)^{2} d s \\
& =\int_{0}^{1}\left[s^{2}\left(\frac{q(x)}{p(x)}\right)^{2}+2 s(1-s) \frac{q(x)}{p(x)}+(1-s)^{2}\right] d s \\
& =\frac{1}{3}\left(\frac{q(x)}{p(x)}\right)^{2}+\frac{1}{3} \frac{q(x)}{p(x)}+\frac{1}{3}=\frac{1}{3}\left[\left(\frac{q(x)}{p(x)}\right)^{2}+\frac{q(x)}{p(x)}+1\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{X} p(x)\left(\int_{0}^{1}\left(\frac{s q(x)+(1-s) p(x)}{p(x)}\right)^{2} d s\right) d \mu(x) \\
& =\frac{1}{3} \int_{X} p(x)\left(\left(\frac{q(x)}{p(x)}\right)^{2}+\frac{q(x)}{p(x)}+1\right) d \mu(x) \\
& =\frac{1}{3}\left[\int_{X} p(x)\left(\frac{q(x)}{p(x)}\right)^{2} d \mu(x)+\int_{X} p(x) \frac{q(x)}{p(x)} d \mu(x)+\int_{X} p(x) d \mu(x)\right] \\
& =\frac{1}{3}\left[\int_{X} \frac{q^{2}(x)}{p(x)} d \mu(x)+\int_{X} q(x) d \mu(x)+\int_{X} p(x) d \mu(x)\right] \\
& =\frac{1}{3}\left[\int_{X} \frac{q^{2}(x)}{p(x)} d \mu(x)+1+1\right]=\frac{1}{3}\left[D_{\chi^{2}}(p, q)+3\right]=\frac{1}{3} D_{\chi^{2}}(p, q)+1 .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
D_{H H}^{g_{m}}(p, q) & =D_{H H}^{f}(p, q)-\frac{1}{2} m\left[\frac{1}{3} D_{\chi^{2}}(p, q)+1\right]+\frac{1}{2} m \\
& =D_{H H}^{f}(p, q)-\frac{1}{6} m D_{\chi^{2}}(p, q)
\end{aligned}
$$

We also have

$$
\begin{aligned}
D_{g_{m}}\left(p, \frac{p+q}{2}\right) & =D_{f}\left(p, \frac{p+q}{2}\right)-\frac{1}{2} m D_{\ell^{2}-1}\left(p, \frac{p+q}{2}\right) \\
& =D_{f}\left(p, \frac{p+q}{2}\right)-\frac{1}{2} m D_{\chi^{2}}\left(p, \frac{p+q}{2}\right)
\end{aligned}
$$

Now,

$$
\begin{aligned}
D_{\chi^{2}}\left(p, \frac{p+q}{2}\right) & =\int_{X} p(x)\left[\left(\frac{\frac{p(x)+q(x)}{2}}{p(x)}\right)^{2}-1\right] d \mu(x) \\
& =\int_{X} p(x)\left[\left(\frac{p(x)+q(x)}{2 p(x)}\right)^{2}-1\right] d \mu(x)
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{X} p(x)\left[\frac{1}{4}\left(\frac{q(x)}{p(x)}+1\right)^{2}-1\right] d \mu(x) \\
& =\int_{X} p(x)\left[\frac{1}{4}\left(\left(\frac{q(x)}{p(x)}\right)^{2}+2 \frac{q(x)}{p(x)}+1\right)-1\right] d \mu(x) \\
& =\frac{1}{4} \int_{X} p(x)\left(\left(\frac{q(x)}{p(x)}\right)^{2}+2 \frac{q(x)}{p(x)}+1\right) d \mu(x)-1 \\
& =\frac{1}{4}\left[\int_{X} \frac{q^{2}(x)}{p(x)} d \mu(x)+2 \int_{X} p(x) \frac{q(x)}{p(x)} d \mu(x)+\int_{X} p(x) d \mu(x)\right]-1 \\
& =\frac{1}{4} D_{\chi^{2}}(p, q)+1-1=\frac{1}{4} D_{\chi^{2}}(p, q)
\end{aligned}
$$

therefore

$$
\begin{aligned}
D_{g_{m}}\left(p, \frac{p+q}{2}\right) & =D_{f}\left(p, \frac{p+q}{2}\right)-\frac{1}{2} m D_{\ell^{2}-1}\left(p, \frac{p+q}{2}\right) \\
& =D_{f}\left(p, \frac{p+q}{2}\right)-\frac{1}{8} m D_{\chi^{2}}(p, q)
\end{aligned}
$$

If we use the first inequality in (1.13) for g_{m} we have

$$
0 \leq D_{g_{m}}\left(p, \frac{p+q}{2}\right) \leq D_{H H}^{g_{m}}(p, q)
$$

which by above calculations gives

$$
0 \leq D_{f}\left(p, \frac{p+q}{2}\right)-\frac{1}{8} m D_{\chi^{2}}(p, q) \leq D_{H H}^{f}(p, q)-\frac{1}{6} m D_{\chi^{2}}(p, q)
$$

This proves (3.3).
(ii) Consider the auxiliary function $g_{M}:[r, R] \rightarrow \mathbb{R}, g_{M}(t):=\frac{1}{2} M\left(\ell^{2}(t)-1\right)-$ $f(t)$, where $\ell(t)=t$ is the identity function. This function is convex and normalized on $[r, R]$, since g_{M} is twice differentiable and

$$
g_{M}^{\prime \prime}(t)=M-f^{\prime \prime}(t) \geq 0 \text { for all } t \in[r, R]
$$

Now, by using a similar argument to the one for the auxiliary function g_{m} we deduce the desired result (3.5).

Corollary 1. With the assumptions of Theorem 3 and if

$$
\begin{equation*}
0<m \leq f^{\prime \prime}(t) \leq M<\infty \text { for all } t \in[r, R] \tag{3.6}
\end{equation*}
$$

then we have

$$
\begin{gather*}
\frac{1}{8} m D_{\chi^{2}}(p, q) \leq D_{f}\left(p, \frac{p+q}{2}\right) \leq \frac{1}{8} M D_{\chi^{2}}(p, q) \tag{3.7}\\
\frac{1}{6} m D_{\chi^{2}}(p, q) \leq D_{H H}^{f}(p, q) \leq \frac{1}{6} M D_{\chi^{2}}(p, q) \tag{3.8}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{1}{24} m D_{\chi^{2}}(p, q) \leq D_{H H}^{f}(p, q)-D_{f}\left(p, \frac{p+q}{2}\right) \leq \frac{1}{24} M D_{\chi^{2}}(p, q) \tag{3.9}
\end{equation*}
$$

We also have:

Theorem 4. Assume that the function $f:(0, \infty) \rightarrow \mathbb{R}$ is twice differentiable and normalised. Let $0<r \leq 1 \leq R<\infty$ and $p, q \in \Omega$ are such that the condition (3.1) is valid.
(i) If there exists a real number m such that the assumption (3.2) holds, then we have the inequality

$$
\begin{equation*}
0 \leq D_{H H}^{f}(p, q)-\frac{1}{6} m D_{\chi^{2}}(p, q) \leq \frac{1}{2} D_{f}(p, q)-\frac{1}{4} m D_{\chi^{2}}(p, q) \tag{3.10}
\end{equation*}
$$

(ii) If there exists the real number M such that the assumption (3.4) holds, then we have the inequality

$$
\begin{equation*}
0 \leq \frac{1}{6} M D_{\chi^{2}}(p, q)-D_{H H}^{f}(p, q) \leq \frac{1}{2} M D_{\chi^{2}}(p, q)-D_{f}(p, q) \tag{3.11}
\end{equation*}
$$

Proof. (i) Consider the auxiliary function $g_{m}:[r, R] \rightarrow \mathbb{R}, g_{m}(t):=f(t)-$ $\frac{1}{2} m\left(\ell^{2}(t)-1\right)$, where $\ell(t)=t$ is the identity function. This function is convex and normalized on $[r, R]$.

We have

$$
D_{H H}^{g_{m}}(p, q)=D_{H H}^{f}(p, q)-\frac{1}{6} m D_{\chi^{2}}(p, q)
$$

and

$$
\begin{aligned}
D_{g_{m}}(p, q) & :=\int_{X} p(x) g_{m}\left[\frac{q(x)}{p(x)}\right] d \mu(x) \\
& =\int_{X} p(x)\left[f\left(\frac{q(x)}{p(x)}\right)-\frac{1}{2} m\left(\ell^{2}\left(\frac{q(x)}{p(x)}\right)-1\right)\right] d \mu(x) \\
& =D_{f}(p, q)-\frac{1}{2} m D_{\chi^{2}}(p, q)
\end{aligned}
$$

If we use the second inequality in (1.13) we have

$$
0 \leq D_{H H}^{g_{m}}(p, q) \leq \frac{1}{2} D_{g_{m}}(p, q)
$$

namely

$$
\begin{aligned}
0 & \leq D_{H H}^{f}(p, q)-\frac{1}{6} m D_{\chi^{2}}(p, q) \leq \frac{1}{2}\left[D_{f}(p, q)-\frac{1}{2} m D_{\chi^{2}}(p, q)\right] \\
& =\frac{1}{2} D_{f}(p, q)-\frac{1}{4} m D_{\chi^{2}}(p, q)
\end{aligned}
$$

which proves (3.10).
(ii) Follows in a similar way for the auxiliary function $g_{M}:[r, R] \rightarrow \mathbb{R}, g_{M}(t):=$ $\frac{1}{2} M\left(\ell^{2}(t)-1\right)-f(t)$.

Corollary 2. With the assumptions of Theorem 3 and if the condition (3.6) holds, then we have

$$
\begin{equation*}
\frac{1}{2} m D_{\chi^{2}}(p, q) \leq D_{f}(p, q) \leq \frac{1}{2} M D_{\chi^{2}}(p, q) \quad \text { (see also }[4] \text {) } \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{12} m D_{\chi^{2}}(p, q) \leq \frac{1}{2} D_{f}(p, q)-D_{H H}^{f}(p, q) \leq \frac{1}{12} M D_{\chi^{2}}(p, q) \tag{3.13}
\end{equation*}
$$

Further, we observe that by using the definitions of the auxiliary mappings $g_{m}(t)$ and $g_{M}(t)$ we have

$$
g_{m}^{\dagger}(t)=(t-1)\left(f(t)-\frac{1}{2} m\left(t^{2}-1\right)\right)^{\prime}=f^{\dagger}(t)-m t(t-1)
$$

and

$$
g_{M}^{\dagger}(t)=M t(t-1)-f^{\dagger}(t)
$$

This give

$$
\begin{align*}
D_{g_{m}^{\dagger}}(p, q) & =D_{f^{\dagger}}(p, q)-m \int_{X} p(x) \frac{q(x)}{p(x)}\left(\frac{q(x)}{p(x)}-1\right) d \mu(x) \tag{3.14}\\
& =D_{f^{\dagger}}(p, q)-m D_{\chi^{2}}(p, q)
\end{align*}
$$

and

$$
\begin{equation*}
D_{g_{M}^{\dagger}}(p, q)=M D_{\chi^{2}}(p, q)-D_{f^{\dagger}}(p, q) \tag{3.15}
\end{equation*}
$$

Theorem 5. Assume that the function $f:(0, \infty) \rightarrow \mathbb{R}$ is twice differentiable and normalised. Let $0<r \leq 1 \leq R<\infty$ and $p, q \in \Omega$ are such that the condition (3.1) is valid.
(i) If there exists a real number m such that the assumption (3.2) holds, then we have the inequality

$$
\begin{align*}
0 & \leq D_{H H}^{f}(p, q)-D_{f}\left(p, \frac{p+q}{2}\right)-\frac{1}{24} m D_{\chi^{2}}(p, q) \tag{3.16}\\
& \leq \frac{1}{8}\left[D_{f^{\dagger}}(p, q)-m D_{\chi^{2}}(p, q)\right]
\end{align*}
$$

and

$$
\begin{align*}
0 & \leq \frac{1}{2} D_{f}(p, q)-D_{H H}^{f}(p, q)-\frac{1}{12} m D_{\chi^{2}}(p, q) \tag{3.17}\\
& \leq \frac{1}{8}\left[D_{f^{\dagger}}(p, q)-m D_{\chi^{2}}(p, q)\right] .
\end{align*}
$$

(ii) If there exists the real number M such that the assumption (3.4) holds, then we have the inequality

$$
\begin{align*}
0 & \leq \frac{1}{24} M D_{\chi^{2}}(p, q)-D_{H H}^{f}(p, q)+D_{f}\left(p, \frac{p+q}{2}\right) \tag{3.18}\\
& \leq \frac{1}{8}\left[M D_{\chi^{2}}(p, q)-D_{f^{\dagger}}(p, q)\right]
\end{align*}
$$

and

$$
\begin{aligned}
0 & \leq \frac{1}{12} M D_{\chi^{2}}(p, q)-\frac{1}{2} D_{f}(p, q)+D_{H H}^{f}(p, q) \\
& \leq \frac{1}{8}\left[M D_{\chi^{2}}(p, q)-D_{f^{\dagger}}(p, q)\right] .
\end{aligned}
$$

Proof. (i) If we use the inequality (1.16) for g_{m}, then we have

$$
0 \leq D_{H H}^{g_{m}}(p, q)-D_{g_{m}}\left(p, \frac{p+q}{2}\right) \leq \frac{1}{8} D_{g_{m}^{\star}}(p, q)
$$

namely

$$
\begin{aligned}
0 & \leq D_{H H}^{f}(p, q)-\frac{1}{6} m D_{\chi^{2}}(p, q)-D_{f}\left(p, \frac{p+q}{2}\right)+\frac{1}{8} m D_{\chi^{2}}(p, q) \\
& \leq \frac{1}{8}\left[D_{f^{\dagger}}(p, q)-m D_{\chi^{2}}(p, q)\right]
\end{aligned}
$$

which is equivalent to (3.16).
If we use (1.18) for g_{m}, then we have

$$
0 \leq \frac{1}{2} D_{g_{m}}(p, q)-D_{H H}^{g_{m}}(p, q) \leq \frac{1}{8} D_{g_{m}^{\dagger}}(p, q)
$$

namely

$$
\begin{aligned}
0 & \leq \frac{1}{2}\left[D_{f}(p, q)-\frac{1}{2} m D_{\chi^{2}}(p, q)\right]-D_{H H}^{f}(p, q)+\frac{1}{6} m D_{\chi^{2}}(p, q) \\
& \leq \frac{1}{8}\left[D_{f^{\dagger}}(p, q)-m D_{\chi^{2}}(p, q)\right]
\end{aligned}
$$

(ii) Follows in a similar way for g_{M}.

Finally, we have:
Corollary 3. With the assumptions of Theorem 3 and if the condition (3.6) holds, then we have

$$
\begin{align*}
\frac{1}{12} m D_{\chi^{2}}(p, q) & \leq \frac{1}{8} D_{f^{\dagger}}(p, q)-D_{H H}^{f}(p, q)+D_{f}\left(p, \frac{p+q}{2}\right) \tag{3.20}\\
& \leq \frac{1}{12} M D_{\chi^{2}}(p, q)
\end{align*}
$$

and

$$
\begin{equation*}
\frac{1}{24} m D_{\chi^{2}}(p, q) \leq \frac{1}{8} D_{f^{\dagger}}(p, q)+D_{H H}^{f}(p, q)-\frac{1}{2} D_{f}(p, q) \leq \frac{1}{24} M D_{\chi^{2}}(p, q) \text {. } \tag{3.21}
\end{equation*}
$$

4. An Example

We consider the convex and normalized function $f:(0, \infty) \rightarrow R, f(t)=-\ln t$. We have

$$
D_{f}(p, q):=D_{K L}(p, q)
$$

and

$$
D_{f}\left(p, \frac{p+q}{2}\right)=D_{L W}(p, q)
$$

for all $p, q \in \Omega$.
We define the identric mean of two positive numbers $a, b>0$

$$
I(a, b):=\left\{\begin{array}{l}
\frac{1}{e}\left(\frac{b^{b}}{a^{a}}\right)^{1 /(b-a)} \quad \text { if } b \neq a \\
a \text { if } b=a
\end{array}\right.
$$

We observe that

$$
\frac{1}{b-a} \int_{a}^{b} \ln t d t=\frac{b \ln b-b-b \ln b+a}{b-a}=\ln I(a, b) .
$$

Therefore

$$
\begin{aligned}
D_{H H}^{f}(p, q) & =-\int_{X} p(x) \frac{\int_{1}^{\frac{q(x)}{p(x)}} \ln t d t}{\frac{q(x)}{p(x)}-1} d \mu(x)=-\int_{X} p(x) \ln \left[I\left(\frac{q(x)}{p(x)}, 1\right)\right] d \mu(x) \\
& =\int_{X} p(x) \ln \left[I\left(\frac{q(x)}{p(x)}, 1\right)\right]^{-1} d \mu(x)=: D_{H H}^{K L}(p, q)
\end{aligned}
$$

where we call $D_{H H}^{K L}(p, q)$ the Kullback-Leibler HH divergence.
If $0<r<1<R<\infty$ then for $f(t)=-\ln t$,

$$
\inf _{t \in[r, R]} f^{\prime \prime}(t)=\inf _{t \in[r, R]} \frac{1}{t^{2}}=\frac{1}{R^{2}}, \sup _{t \in[r, R]} f^{\prime \prime}(t)=\sup _{t \in[r, R]} \frac{1}{t^{2}}=\frac{1}{r^{2}}
$$

If $p, q \in \Omega$ satisfy the condition (3.1), then by using (3.7)-(3.9) for $m=\frac{1}{R^{2}}$ and $M=\frac{1}{r^{2}}$ we get

$$
\begin{align*}
\frac{1}{8 R^{2}} D_{\chi^{2}}(p, q) & \leq D_{L W}(p, q) \tag{4.1}\\
\frac{1}{6 R^{2}} D_{\chi^{2}}(p, q) & \leq D_{H H}^{K r^{2}} D_{\chi^{2}}(p, q) \tag{4.2}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{1}{24 R^{2}} D_{\chi^{2}}(p, q) \leq D_{H H}^{K L}(p, q)-D_{L W}(p, q) \leq \frac{1}{24 r^{2}} D_{\chi^{2}}(p, q) \tag{4.3}
\end{equation*}
$$

By (3.13), we also have

$$
\begin{equation*}
\frac{1}{12 R^{2}} D_{\chi^{2}}(p, q) \leq \frac{1}{2} D_{K L}(p, q)-D_{H H}^{K L}(p, q) \leq \frac{1}{12 r^{2}} D_{\chi^{2}}(p, q) \tag{4.4}
\end{equation*}
$$

Now, if $f(t)=-\ln t$, then

$$
f^{\dagger}(t):=-\left(\frac{t-1}{t}\right)=\frac{1}{t}-1
$$

and

$$
\begin{aligned}
D_{f^{\dagger}}(p, q) & =\int_{X} p(x)\left(\frac{p(x)}{q(x)}-1\right) d \mu(x)=\int_{X}\left(\frac{p^{2}(x)}{q(x)}-p(x)\right) d \mu(x) \\
& =\int_{X} \frac{p^{2}(x)}{q(x)} d \mu(x)-1=D_{\chi^{2}}(q, p)
\end{aligned}
$$

for all $p, q \in \Omega$.
Finally, by the (3.20) and (3.21) we also have

$$
\begin{align*}
\frac{1}{12 R^{2}} D_{\chi^{2}}(p, q) & \leq \frac{1}{8} D_{\chi^{2}}(q, p)-D_{H H}^{K L}(p, q)+D_{L W}(p, q) \tag{4.5}\\
& \leq \frac{1}{12 r^{2}} D_{\chi^{2}}(p, q)
\end{align*}
$$

and

$$
\begin{align*}
\frac{1}{24 R^{2}} D_{\chi^{2}}(p, q) & \leq \frac{1}{8} D_{\chi^{2}}(q, p)+D_{H H}^{K L}(p, q)-\frac{1}{2} D_{K L}(p, q) \tag{4.6}\\
& \leq \frac{1}{24 r^{2}} D_{\chi^{2}}(p, q)
\end{align*}
$$

provided $p, q \in \Omega$ satisfy the condition (3.1).

References

[1] N. S. BARNETT, P. CERONE, AND S. S. DRAGOMIR, Some new inequalities for HermiteHadamard divergence in information theory, in Stochastic Analysis and Applications, Volume 3, Edited by Yeol Je Cho, Jong Kyu Kim, Yong Kab Choi, Nova Science Publishers, New York, 2003, pp. 7-20. Preprint RGMIA Res. Rep. Coll. 5 (2002), No. 4, Art. 8. [Online https://rgmia.org/papers/v5n4/NIHHDIT.pdf].
[2] I. CSISZÁR, Information-type measures of difference of probability distributions and indirect observations, Studia Math. Hungarica, 2 (1967), 299-318.
[3] I. CSISZÁR, On topological properties of f-divergences, Studia Math. Hungarica, 2 (1967), 329-339.
[4] S. S. DRAGOMIR, Some inequalities for (m, M)-convex mappings and applications for the Csiszár Φ-divergence in information theory. Math. J. Ibaraki Univ. 33 (2001), 35-50.
[5] S. S. DRAGOMIR, An Ostrowski type inequality for convex functions, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 16 (2005), 12-25. [Online http://pefmath2.etf.bg.ac.rs/files/125/963.pdf].
[6] S. S. DRAGOMIR, A generalised trapezoid type inequality for convex functions (June 2003). Mathematics Preprint Archive Vol. 2003, Issue 6, pp 56-65. Available at SSRN: https://ssrn.com/abstract=3177646, see also https://arxiv.org/pdf/math/0305374.pdf.
[7] E. HELLINGER, Neue Bergrüirdung du Theorie quadratisher Formerus von uneudlichvieleu Veränderlicher, J. für reine and Augeur. Math., 36 (1909), 210-271.
[8] H. JEFFREYS, An invariant form for the prior probability in estimating problems, Proc. Roy. Soc. London, 186 A (1946), 453-461.
[9] S. KULLBACK and R. A. LEIBLER, On information and sufficiency, Ann. Math. Stat., 22 (1951), 79-86.
[10] J. LIN and S. K. M. WONG, A new directed divergence measure and its characterization, Int. J. General Systems, 17 (1990), 73-81.
[11] H. SHIOYA and T. DA-TE, A generalisation of Lin divergence and the derivative of a new information divergence, Elec. and Comm. in Japan, 78 (7) (1995), 37-40.
[12] F. TOPSØE, Some inequalities for information divergence and related measures of discrimination, IEEE Transactions on Information Theory, Volume: 46, Issue: 4, 1602-1609. Preprint Res. Rep. Coll., RGMIA, 2 (1) (1999), 85-98.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the WitwaterSrand,, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 94A17, 26D15.
 Key words and phrases. f-divergence measures, HH f-divergence measures, Kullback-Leibler divergence, Hellinger discrimination, χ^{2}-divergence, Jeffrey's distance.

