NORM INEQUALITIES FOR THE GENERALISED
COMMUTATOR IN BANACH ALGEBRAS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper, by utilising the Riesz functional calculus in Banach
algebra B, we provide some norm inequalities for the generalized commutator
T z—zf(x)
where z, y, z € B and f is an analytic function for which the elements f (y)

and f(x) exist. Some examples for the resolvent and exponential functions
are also given.

1. INTRODUCTION

Let B be an algebra over C. An algebra norm on B is a map ||-|| : B—[0, c0) such
that (B,|-]|) is a normed space, and, further:
[labl| < llall 6]

for any a, b € B. The normed algebra (B,|||) is a Banach algebra if ||| is a
complete norm. We assume that the Banach algebra is unital, this means that B
has an identity 1 and that ||1|| = 1.

Let B be a unital algebra. An element a € B is invertible if there exists an
element b € B with ab = ba = 1. The element b is unique; it is called the inverse of
a and written ! or . The set of invertible elements of B is denoted by Inv (B).
If a, b € Inv (B) then ab € Inv (B) and (ab) ™" = b~ a1

For a unital Banach algebra we also have:

(i) If a € B and lim, o [|a”||"/™ < 1, then 1 — a € Inv (B);
(ii) {be B: |1 =b|| <1} C Inv(B);
(iii) Inv B is an open subset of B;
(iv) The map InvB 3 a —— a~! € Inv (B) is continuous.

For simplicity, we denote Al, where A € C and 1 is the identity of B, by A. The
resolvent set of a € B is defined by

pla) ={AeC: A—achv(B)};

the spectrum of a is o (a) , the complement of p (a) in C, and the resolvent function
of ais Ry : p(a) — Inv (B),

Ry(N):=(A—a)"".
For each A,y € p(a) we have the identity
R, (’Y) - R, ()‘) = ()‘ - ’Y) R, ()‘) R, (7) .
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We also have that
ola)c{rAeC: A< |lall}.
The spectral radius of a is defined as
v(a)=sup{|A|: A€o (a)}.
Let B a unital Banach algebra and a € B. Then

(i) The resolvent set p (a) is open in C;
(ii) For any bounded linear functional A : B —C, the function Ao R, is analytic
on p(a);
(iii) The spectrum o (a) is compact and nonempty in C;
(iv) We have
v(a) = lim [la"||"/".

Let f be an analytic functions on the open disk D (0, R) given by the power

series

o0
FO) =D a;N (A <R).
j=0
If v (a) < R, then the series Y77 aja’ converges in the Banach algebra B because
S olagl|la?|| < oo, and we can define f (a) to be its sum. Clearly f (a) is well
defined and there are many examples of important functions on a Banach algebra
B that can be constructed in this way. For instance, the exponential map on B
denoted exp and defined as
1
expa := Z f'aj for each a € B.
=0
If B is not commutative, then many of the familiar properties of the exponential
function from the scalar case do not hold. The following key formula is valid,
however with the additional hypothesis of commutativity for a and b from B

exp (a4 b) = exp (a) exp (b) .

Concerning other basic definitions and facts in the theory of Banach algebras,
the reader can consult the classical books [12] and [14].

Let B be a unital Banach algebra, a € B and G be a domain of C with ¢ (a) C G.
If f: G — C is analytic on G, we define an element f (a) in B by

1 _
(11) fla) =5 [ FO -0 de
8!

T 2mi

where v C G is taken to be a closed rectifiable curve in G and such that o (a) C
ins (), the inside of ~.

It is well known (see for instance [4, pp. 201-204]) that f (a) does not depend
on the choice of v and the Spectral Mapping Theorem (SMT)

(1.2) o (f(a)) = f(o(a))
holds.

Let $ol(a) be the set of all the functions that are analytic in a neighborhood
of o (a). Note that $ol(a) is an algebra where if f, g € $ol(a) and f and g have
domains D (f) and D (g), then fg and f + ¢ have domain D (f) N D (g). $Hol(a) is
not, however a Banach algebra.
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The following result is known as the Riesz Functional Calculus Theorem [4, p.
201-203]:
Theorem 1. Let B a unital Banach algebra and a € B.

(a) The map f — f(a) of Hol(a) — B is an algebra homomorphism.
(b) If f(2) = Ypep awz® has radius of convergence r > v (a), then f € $Hol(a)
and f (a) =Y ey cxak.
c) If f(z) =1, then f (a) =
(d) If f(z) =z fordll z, f(a) =a

Y If f, f1,.ees froeer are analytic on G, o (a) C G and f, (z) — f(2) uniformly
on compact subsets of G, then || fn (a) — f (a)|]] = 0 as n — oco.

(f) The Riesz Functional Calculus is unique and if a, b are commuting elements
in B and f € $Hol(a), then f(a)b=>bf (a).

For some recent norm inequalities for functions on Banach algebras, see [2]-[3]
and [5]-[11].

In this paper, by utilising the Riesz functional calculus in Banach algebra B, we
provide some norm inequalities for the generalized commutator

fy)z—zf(x)

where x, y, z € B and f is an analytic function for which the elements f (y) and
f (z) exists. Some examples for the resolvent and exponential functions are also
given.

2. MAIN RESULTS
‘We have:

Lemma 1. For any elements a, b, ¢ in the Banach algebra B and for any n > 1
we have

(2.1) a"c—cb" = Z a1 (ac — cb) b,
In particular, for b = a we have
(2.2) "c—ca” Za" =1 (ac — ca) a'.

Proof. We prove it by induction over n. For n = 1 we obtain in both sides of (2.1)
the same quantity ac — cb. Assume that for k > 2 we have that

akec— bt = Zak =1 (ac — cb) b’
and let us prove that

a e — cpFtt = Zakl c—cbb
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We have
k ‘ ok A
Z ak*l ((ZC - Cb) bt = Z ak71 (ac — Cb) bt + akik (CLC - Cb) bk
i=0 1=0
k—1 ‘ ‘
=aq Z a1 (ac — ¢b) b' + (ac — cb) b*
i=0

=a (a"c — cb*) + (ac — ¢b) b* (by induction hypothesis)
= a"*e — ach® 4 ach® — bt = ¥ Hle — Pt

and the proof is completed.

Remark 1. For ¢ =1, we have from (2.1) that
n—1 ) )
(2.3) a"—b"=> " a""" (a—b)b
i=0

for all a, b in the Banach algebra B, [2].
The following simple equality also holds
(2.4) (zy)" & =z (yz)"

for alln >0 and x, y in the Banach algebra B.
Indeed, if we take a = xy, b =yx and c =z in (2.1), then we get

I
—

n

(xy)" x —z (yx)" = (acy)n*i*1 (zyx — zyx) (y;v)’ =0,

i

Il
=)

which proves (2.4).

Corollary 1. With the assumptions of Lemma 1 we have the inequality

n_ ||l .
Wbr=ter o 181 # llall

(2.5) la™c —eb™|| < |lac — cb]|

nllal"™" if [[b]] = [lal|.
In particular, for b= a, we have
(2.6) la"c —ca™|| <mn Ha||n_1 llac — call .

Proof. By taking the norm and using its properties we have

n—1 n—1
la™c — cb™|| < Z |a" " (ac — eb) V|| < Z la" ="~ H| llac — cb]| ||b"||
i=0 1=0
n—1 ] s
< llac—cbll D llaf™ ™" o]
=0

Ll =" ¢ o)) # lal]
= |lac — cb||

—1 .
nlla]" if o] = llal,

which proves (2.5).
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Now, by the help of power series f (2) = > -, @, 2" we can naturally construct
another power series which will have as coefficients the absolute values of the coef-
ficients of the original series, namely, fa (2) := Y.~ |an| 2™ It is obvious that this
new power series will have the same radius of convergence as the original series.
We also notice that if all coefficients a,, > 0, then fs = f.

As some natural examples that are useful for applications, we can point out that,
if

(2.7) fFy=> (_;)nv =1In 14% AeD(0,1);

3

~1)

2n .
@n)! A =cos A, A e C;

Na)
>

I
M8

o0 _1 n
Ry =Y D e _ sin A, A € C;

— (2n+1)!

S nayn 1
Z(A):Z(*l) A RETSY AeD(0,1);

n=0

then the corresponding functions constructed by the use of the absolute values of
the coefficients are

(2.8) fa (A):Z%)\”:ln%, NeD(0,1);

3
Il
—

=1
ga(A) =Y A" =cosh\, A€ C;

> 1
ha(\) = —— 2" =sinh ), A€ C;

= (2n +1)!

> 1
lA(/\):Z)\":ﬁ, Ae D(0,1).

n=0

Other important examples of functions as power series representations with non-
negative coefficients are:

oo 1 N
(2.9) exp (\) = Eﬁoa)\ A eC,
1, (14 01 o
N e ) " D(0,1);
<1—)\> m-1" o AEDOD:
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>\2”+1 AeD(0,1);

Z f 2n—|— 1 ’
tanh™ (\) = Z LAZ’H, Ae D(0,1)

=T+ (n+B8)T ("),
2 F1 (a,ﬁa%)\)—; nlC ()T (B)T (n+7) A

AeD(0,1);

a, 3,7 >0,

where I' is Gamma function.

‘We have:

Theorem 2. Let f(z) = Y.."  an\" be a function defined by power series with
complez coefficients and convergent on the open disk D (0, R) C C, R > 0. For any
x, Yy, 2 € B with ||z||, ||yl]| < R we have

Lallplofallel) Gf |ly|| # ],

(2.10) 1f () z = 2f (@)|| < llyz — 22|
Fa(lll) i llyll = ]l -

In particular

(2.11) If (2) 2 = 2f (2)]| < llzz — 22| f4 (|z]])

and, see also [5],

Lallylh=fallold if |y £ o]
212 W@ -I@]<y-a]
£alal) if ol =l

Proof. We have, for any m > 1, by making use of the inequality (2.5), that

(2.13) H (Z any”> z—z (Z anz"> |
n=0 n=0

m m
Doan(yz—za")|| <Y lan[ly"z — 22|
n=1 n=1

n__ o,
Sy lovn| o it Jly)| #

< llyz - ze|

S nlal o™ i [yl = 2]

e (g el Iyl = S o ™)
ey

Sl le]" 0 it flyl = .

Moreover, since ||z||, [Jy|| < R, then the series > >~ a,y™ and Y. -, a,z" are
convergent in B and

Doy =f(y),> an
n=0 n=0
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Also, the scalar series Y~ o [an| [y]|" ) Yoveg low ]| |2]|™ and Y07 nay,| )" are

convergent
o0
D laal lyll™ = fadllyl) Zlanl 2" = fa ()
n=0
and
n—1
> nlanlllz]™" = £ (ll2]) -
n=1
Therefore, by taking m — oo in the inequality (2.13) we get the desired result
(2.10). O

Corollary 2. Let f(z) = > .7 g an A", g(2) = > 0o o B, A" be two functions defined
by power series with complex coefficients and convergent on the open disk D (0, R) C
C, R>0. For any x, y € B with ||z||, ||y]| < R we have

(2.14) I1f (@) g (W) =g @) f @I < lley =yl fo (1)) ga (lylD) -
Proof. From (2.11) we get
If (@) 2 = 2f (@) < llzg (y) — g () ]l £4 (=)

and

lzg (y) — g (W) x|l < llzy =yl g (),
which provide the desired result (2.14). O

Remark 2. If we write the inequality (2.10) for the function f () = (1 i)\)_l
defined on the open disk D (0, R) we get for all x, y, z € B with ||z, |ly|| <1 that

215) Ay zmzx) | < llyz -2l - i) 0= 2l
In particular,

(2.16) |0x2)™ 2= 20k 0) | < oz — 22 (1= o))~

and, [5],

(2.17) |azp™ -z <y -l a =1 - 2l

We also have:

Theorem 3. Let f: D C C — C be an analytic function on the domain D and x,
y, z € B with o (z), o (y) C D and v a closed rectifiable path in D and such that
o(x), o(y) Cins(y). Then we have

@18 W)z @< o vz - sl | s el
In particular,

219) @2 @ < gl s [ PO

and

1) W@ < gyl | g e
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Proof. Let A € C, A # 0 and a, b € B such that A € p(a) N p(b), then we have the
following inequality for the resolvent function that is of interest in itself:

(2.21) 1Ry (N) 2 = zRa (V)| < [[bz = zal| (A = 61D~ (1Al = [la]) ™
Indeed, by (2.15) we get for A € p(a) N p(b), A # 0 that

A (1— i>_1z—)\_1z (1— %)71
‘(l_i)”z_z(l_i)l
SRR

1 _
ZWIIbz zall ]AIP (AT = (1)~ (1A = flal) ™

H(/\—b)_lz—z()\—a)_lu -

_
A

= Jlbz — zall (1Al = Il ™" (1A = l|lal) ™"

and the inequality (2.21) is proved.
Let z, y, z € B with o (x), o (y) C D and ~ a closed rectifiable path in D and
such that o (z), o (y) C ins (7). Using the Riesz functional calculus we have

FWeaf @) =5 [ 1O @€ 2 [ r@)=6 ) a
2m/f 1z—z<§—x>‘1}d5
= 501 | F 1R, © 2~ R ©)de

By taking the norm in this equality and the properties of Bochner’s integral [13]
we get

(222)  |f@)z—zf(z / £ IR, ( R, (€)] |de] .
Using inequality (??) we have

@) oo [ ©IR©: - R ) 1
< lyz = =2l o= [ 1£©10e1 = Il ™ (€] = hal) ™ .

By making use of (2.22) and (2.23) we get the desired result (2.18). O
Corollary 3. With the assumptions of Theorem 3 and if
1f1l,00 = sup | f (§)] < o0,
g€y
then

1 |d¢|
(2.24)  |f W)z — 2f (@)|| < 27T|yzz:zzlllfllw,oo/v (]

= llylD (gl = llzll)”
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|d¢|
’YOO/Y (1] = llll)?
and

1 |d¢]
(2.26 fly)—f(x g—y—mfoo/ , 7]

b W= r@ls gl =l | G =T i -Tem ™
Remark 3. If we assume that f : D C C — C is an analytic function on the
domain D and x, y € B with o (z), o (y) C D (0,R) C D where D (0, R) is an open
disk centered in 0 and of radius R, then by taking v parametrized by & (t) = Re?™
where t € [0,1], then d¢ (t) = 2miRe?™dt, |dE ()| = 2nRdt, || = R and by (2.18)
we get

In particular,

(2.25) If (z)z = zf (2)]| <

RH?JZ_ZJCH o2 t
2.27 fz—zf(x)] < / f )| dt.
(2.27) 1F @)= ==f @I < F=p 5 "= e /. | )l
In particular, we have
R|zz — zx i
(2.25) I @)= =2 @1 < s ”/ |7 (Re) at
and
Rlly — = ot
(2,29 f) = f @) < / f (Reit)| at,
b WO ON S G R=Ten , )
Moreover, if || fllp o0 = SUPsejo] |f (Re*™)| < oo, then we have the simpler
inequality
Rlyz — zal| | ] g
(2.30) If () z = 2f (o)l < -

(B = llyll) (7= =)

and, in particular,
R|zz — 2| || /]| g oo

2.31 r)z—z2f(x
(2.31) I @)z =2 @l £ ==

and

(2.32) Hf (y) —f (x)H < R ”y - x” Hf”R,oo

(B =yl (R = [l=[)”

Corollary 4. Let f, g : D C C — C be analytic functions on the domain D and
x,y € B with o (z), o(y) C D and v a closed rectifiable path in D and such that
o(z), o(y) Cins(y). Then we have

(2.33) If (= ) (y) —
lg (6]
d d
< gz llow—ve ”/ |§|—|| D 2' §|/7(|£|—yll)2| ¢

111,00 =sup |f ()] < o0, [lg]l, o =suplg(§)] <oo
£€y ey

and if



10 S.S. DRAGOMIR

then
(2.34) 1f (@) g(y) —g ) f ()]

h e e
< gl oo | G5 |, G

The result follows by the inequality (2.19) applied twice and we omit the details.

Remark 4. If we assume that f, g : D C C — C are analytic functions on the
domain D and x, y € B with o (z), o (y) C D (0,R) C D where D (0, R) is an open
disk centered in O and of radius R, then

(2.35) If (@) g(y) —g(y) f(z)

2
S R ny ylE” / |f R 27rzt idt/ |g 27rzt |dt
(R— [])* (R - |ly])®

Moreover, if

£l g0e == sup |f (Re*™)| <00, [lgllg e = sup |g (Re*™)| < oo,
te[0,1] te(0,1]

then

R? ||z T
(2.36) If () g(y) —g ) f ()| < lzy — y|| ||fHRoo HgHRoo.

(R~ Jlll)* (& — [lyll)”

3. SOME EXAMPLES FOR EXPONENTIAL FUNCTION

Consider the exponential function f (a) = expa, a € B. By using Theorem 2 for
the exponential function, we get the inequalities

W it |lyll # llzll s

3.1)  l(expy)z =z (expa)|| < [lyz — 22|

exp ([lz]]) if [lyll = =[]
In particular
(3.2) [(expx) z — z (exp )| < [lwz — zz|| exp ([|]])

and, see also [5],

W if [yl # [zl ,

(3:3)  llexpy —expz| < [ly —zf
exp ([[=[l) i flyll = [l -
Now, assume that z, y € B and ||z|, ||y|| < R for some R > 0. Observe that
lexp (Re®™)| = |exp [R (cos (27t) + isin (2t))]| = exp [R cos (2t)]
and then by Remark 2.6 we get

Rllyz — zz||
—llyl) (R -

(3.4) l(expy) z — z (expz)|| < & T /0 exp [R cos (27t)] .

In particular, we have

R||xz — zx||

1
exp [Rcos (27t)] d
R—Jal)? Jo OPeos il

(3-5) [(expz) z — z (expa)|| <
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and
Rlly — || 1
LT [, e ReosCro)an (7]

The modified Bessel function of the first kind I,(z) for real number v can be
defined by the power series as [1, p. 376]

(3.6) llexpy — expz| <

(52)"

L(z) = (éz) Ii KT (v+k+1)

where T is the gamma function. For n = 0 we have Iy(z) given by

< (122)"
[O(Z) = 4 3 -
20
An integral formula for real number v is
L,(Z) — l /7T ezcosé’ cos (1/9) do — sin (Vﬂ-) /OO e_ZCOSht_tht,
T Jo m 0
which simplifies for v an integer n to
1 s
I,(z) = f/ e* <% cos (nh) db.
T Jo
For n = 0 we have L g
In(z) = ;/0 e*cos04g.

If we change the variable 8 = 2xt, then dt = idﬂ and

1 1 2m
/ exp [Rcos (27t)| dt = — / exp [Rcos 6] df
0 27 Jo

T 27
— 1 (1/ exp [Rcosf] df + l/ exp [R cos 6] d9)
™ Jo T Jr

(Io(R) + Io(=R)) = Io(R).

N = N

From (3.4) we then get
Rllyz — zz[| Io(R)
(B = llyll) (B = |l=[)’

(3.7) l(expy) z — z (exp )| <

for z, y, z € B with ||z]|, ||y|| < R.
In particular, we have

Rljxz — zz||
3.8 expr)z—z(expr)|]| < ———Ip(R).
(5) o)z — =) < S el ()
and
(39) lexpy — expal < —— W EL_p g, 7

(B —[lyll) (& = |=[])

for z, y, z € B with ||z]|, ||y|| < R.
Since, in general exp u does not commute with exp v, then from (3.2) we get

(310)  llexpuexpn — expvexpul] < Juv — vul exp (Jull + Jol)
for all u,v € B.
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From (3.8) we also have
R? |luv — vul| 9

(3.11) lexpuexpv —expvexpu| < I5(R)
(R = Jlul)* (R = |loll)*

for u, v € B with ||u|, ||v]| < R.

By utilising the examples from (2.7), (2.8) and (2.9), the interested reader may
obtain other similar inequalities for functions defined on the Banach algebra B. We
omit the details.
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