
SOME WEIGHTED INTEGRAL INEQUALITIES FOR CONVEX
FUNCTIONS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we establish some weighted integral inequalities of
µCeby�ev and Grüss�type for convex functions.

1. Introduction

For a function f : [a; b]! C we consider the symmetrical transform of f on the
interval [a; b] ; denoted by �f[a;b] or simply �f , when the interval [a; b] is implicit, as
de�ned by

(1.1) �f (t) :=
1

2
[f (t) + f (a+ b� t)] ; t 2 [a; b] :

For the Lebesgue measurable functions q; h; k : [a; b] ! R we introduce the
weighted µCeby�ev�s functional

C[a;b] (h; k; q) :=
1R b

a
q (t)

Z b

a

q (t)h (t) k (t) dt

� 1R b
a
q (t)

Z b

a

q (t)h (t) dt
1R b

a
q (t)

Z b

a

q (t) k (t) dt = C[a;b] (k; h; q)

and the associated (`)-µCeby�ev�s functional

�C[a;b] (h; k; q) :=
1R b

a
q (t)

Z b

a

�q (t)h (t) �k (t) dt

� 1R b
a
q (t)

Z b

a

�q (t)h (t) dt
1R b

a
q (t)

Z b

a

�q (t) k (t) dt = C[a;b] (h; k; �q) ;

provided that all the Lebesgue integrals exist on [a; b] and
R b
a
q (t) 6= 0:

For q � 1 we have the unweighted functionals

C[a;b] (h; k) :=
1

b� a

Z b

a

h (t) k (t) dt� 1

b� a

Z b

a

h (t) dt
1

b� a

Z b

a

k (t) dt

and

�C[a;b] (h; k) :=
1

b� a

Z b

a

h (t) �k (t) dt� 1

b� a

Z b

a

h (t) dt
1

b� a

Z b

a

k (t) dt:
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It is well known that, if the functions (h; k) are synchronous on [a; b] ; namely

[h (x)� h (y)] [k (x)� k (y)] � 0
for all x; y 2 [a; b] and q is nonnegative, then the following weighted µCeby�ev
inequality holds

(1.2) 0 � �C[a;b] (h; k; q) :
If there exists the constants m; M; n; N such that m � h �M and n � k � N

almost everywhere on [a; b] ; then we also have the weighted Grüss inequality (see
for instance [4] for an extension to general Lebesgue integral and positive measure):

(1.3) �C[a;b] (h; k; q) �
1

4
(M �m) (N � n) ;

with 1
4 as best possible constant.

For other µCeby�ev and Grüss�type inequalities see [1]-[9], [11]-[12] and [14]-[21].
In [13] the authors proved the following µCeby�ev type inequality:

Theorem 1. Let f; g : [a; b]! R be both convex or concave on [a; b] and p : [a; b]!
[0;1) integrable an symmetric, namely p (a+ b� x) = p (x) for all x 2 [a; b] ; then

(1.4)
Z b

a

p (x) dx

Z b

a

p (x) f (x) �g (x) dx �
Z b

a

p (x) f (x) dx

Z b

a

p (x) g (x) dx:

If one of the functions is convex and the other concave, then the sign of inequality
reverses in (1.4).

If p � 1 then for two functions that have the same convexity one can get from
(1.4) that

�C[a;b] (f; g) =
1

b� a

Z b

a

f (x) �g (x) dx� 1

b� a

Z b

a

f (x) dx
1

b� a

Z b

a

g (x) dx(1.5)

� 0:
Moreover, if in addition g is symmetric then �g (x) = g (x) and from (1.5) one obtains
[13, Corollary 4]

(1.6) (b� a)
Z b

a

f (x) g (x) dx �
Z b

a

f (x) dx

Z b

a

g (x) dx:

In the subsequent paper [10] the authors provided an upper bound for �C[a;b] (f; g)
as follows:

Theorem 2. Let f; g : [a; b]! R be both convex or concave on [a; b] ; then

0 � �C[a;b] (f; g)(1.7)

� 1

4

�
f (a) + f (b)

2
� f

�
a+ b

2

���
g (a) + g (b)

2
� g

�
a+ b

2

��
;

where the constant 14 is best possible.

One can observe that for g = f we get the inequality

(1.8) 0 � �C[a;b] (f; f) �
1

4

�
f (a) + f (b)

2
� f

�
a+ b

2

��2
:

Motivated by the above results, in this paper we establish some new weighted
integral inequalities of µCeby�ev and Grüss�type for convex functions.
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2. Main Results

We have the following fundamental relation between the µCeby�ev�s functional
and the associated (`)- µCeby�ev�s functional:

Lemma 1. For the Lebesgue measurable functions p; f; g : [a; b]! R, we have the
following equalities

(2.1) C[a;b]
�
�f; �g; p

�
= �C[a;b] (f; g; p) = �C[a;b] (g; f ; p) ;

provided the involved Lebesgue integrals exist.
In particular

(2.2) C[a;b]
�
�f; �g
�
= �C[a;b] (f; g) = �C[a;b] (g; f) :

Proof. We observe thatZ b

a

p (t) �f (t) �g (t) dt

=
1

4

Z b

a

p (t) [f (t) + f (a+ b� t)] [g (t) + g (a+ b� t)] dt

=
1

4

"Z b

a

p (t) f (t) g (t) dt+

Z b

a

p (t) f (a+ b� t) g (t) dt

+

Z b

a

p (t) f (t) g (a+ b� t) dt+
Z b

a

p (t) f (a+ b� t) g (a+ b� t) dt
#
:

By using the change of variable s = a+ b� t; t 2 [a; b] we haveZ b

a

p (t) f (a+ b� t) g (t) dt =
Z b

a

p (a+ b� t) f (t) g (a+ b� t) dt

and Z b

a

p (t) f (a+ b� t) g (a+ b� t) dt =
Z b

a

p (a+ b� t) f (t) g (t) dt:

ThereforeZ b

a

p (t) f (t) g (t) dt+

Z b

a

p (a+ b� t) f (t) g (t) dt = 2
Z b

a

�p (t) f (t) g (t) dt

and Z b

a

p (t) f (a+ b� t) g (t) dt+
Z b

a

p (t) f (t) g (a+ b� t) dt

=

Z b

a

p (a+ b� t) f (t) g (a+ b� t) dt+
Z b

a

p (t) f (t) g (a+ b� t) dt

= 2

Z b

a

�p (t) f (t) g (a+ b� t) dt:
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By using these identities we getZ b

a

p (t) �f (t) �g (t) dt =
1

4

"
2

Z b

a

�p (t) f (t) g (t) dt+ 2

Z b

a

�p (t) f (t) g (a+ b� t) dt
#

=
1

2

"Z b

a

�p (t) f (t) g (t) dt+

Z b

a

�p (t) f (t) g (a+ b� t) dt
#

=

Z b

a

�p (t) f (t) �g (t) dt:

SinceZ b

a

p (t) �f (t) dt =

Z b

a

p (t)
f (t) + f (a+ b� t)

2
dt

=
1

2

"Z b

a

p (t) f (t) dt+

Z b

a

p (t) f (a+ b� t) dt
#

=
1

2

"Z b

a

p (t) f (t) dt+

Z b

a

p (a+ b� t) f (t) dt
#
=

Z b

a

�p (t) f (t) dt

and, similarly Z b

a

p (t) �g (t) dt =

Z b

a

�p (t) g (t) dt;

hence Z b

a

p (t)

Z b

a

p (t) �f (t) �g (t) dt�
Z b

a

p (t) �f (t) dt

Z b

a

p (t) �g (t) dt

=

Z b

a

p (t)

Z b

a

�p (t) f (t) �g (t) dt�
Z b

a

�p (t) f (t) dt

Z b

a

�p (t) g (t) dt;

which proves the �rst equality in (2.1).
The second equality follows by the symmetry of the µCeby�ev functional. �

Lemma 2 ([10, Lemma 2.2]). Let f : [a; b]! R be convex (concave) on [a; b] ; then
�f is nonincreasing (nondecreasing) on

�
a; a+b2

�
and nondecreasing (nonincreasing)

on
�
a; a+b2

�
:

We have the following weighted integral inequality:

Theorem 3. Assume that f; g : [a; b]! R are both convex or concave on [a; b] and
p : [a; b]! [0;1) with

R b
a
p (t) dt > 0: Then we have

(2.3) 0 � �C[a;b] (f; g; p)

� 1

4

�
f (a) + f (b)

2
� f

�
a+ b

2

���
g (a) + g (b)

2
� g

�
a+ b

2

��
� 1

64

�
f 0� (b)� f 0+ (a)

� �
g0� (b)� g0+ (a)

�
(b� a)2
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where

�C[a;b] (f; g; p) =
1R b

a
p (t)

Z b

a

�p (t) f (t) �g (t) dt

� 1R b
a
p (t)

Z b

a

�p (t) f (t) dt
1R b

a
p (t)

Z b

a

�p (t) g (t) dt:

Proof. Since the set of di¤erentiable convex functions de�ned on (a; b) is dense in the
class of all convex functions de�ned on (a; b) in the uniform convergence topology,
we can assume without loosing the generality that f and g are di¤erentiable convex
on (a; b) : This imply that �f and �g are di¤erentiable convex and nonincreasing on�
a; a+b2

�
and nondreasing on

�
a; a+b2

�
:

For any x; y 2 [a; b] with x 6= y; by Cauchy mean value theorem, there exists a
c between x and y such that

(2.4)
h
�f (x)� �f (y)

i
(�g)

0
(c) = [�g (x)� �g (y)]

�
�f
�0
(c) ;

which implies thath
�f (x)� �f (y)

i
[�g (x)� �g (y)] (�g)0 (c) = [�g (x)� �g (y)]2

�
�f
�0
(c) :

Since �f and �g are di¤erentiable and nonincreasing on
�
a; a+b2

�
and nondreasing on�

a; a+b2
�
then

�
�f
�0
(c) and (�g)0 (c) have the same sign which implies that

(2.5)
h
�f (x)� �f (y)

i
[�g (x)� �g (y)] � 0:

For x = y the inequality (2.5) also holds, so
�
�f; �g
�
are synchronous on [a; b] :

Using the weighted µCeby�ev�s inequality (1.2) for
�
�f; �g
�
and p we get

0 � C[a;b]
�
�f; �g; p

�
= �C[a;b] (f; g; p) ; by Lemma 1

and the �rst inequality in (2.3) is proved.
Now, if we use the weighted Grüss�inequality (1.3) for the functions �f; �g that

satisfy the bounds

(2.6) f

�
a+ b

2

�
� �f � f (a) + f (b)

2

and

(2.7) g

�
a+ b

2

�
� �g � g (a) + g (b)

2
;

we get

C[a;b]
�
�f; �g; p

�
� 1

4

�
f (a) + f (b)

2
� f

�
a+ b

2

���
g (a) + g (b)

2
� g

�
a+ b

2

��
and by Lemma 1 we deduce the second inequality in (2.3).
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In paper [8] we proved between others that for any convex function h : [a; b]! R
we have the inequality

0 � h (a) + h (b)

2
� h

�
a+ b

2

�
� 1

4

�
h0� (b)� h0+ (a)

�
(b� a)

with the constant 14 as best possible.
By using this inequality for f and g we deduce the last part of (2.3). �

Remark 1. If p is symmetrical on [a; b] ; then by (2.3) we get

0 � �C[a;b] (f; g; p) =
1R b

a
p (t)

Z b

a

p (t) f (t) �g (t) dt

� 1R b
a
p (t)

Z b

a

p (t) f (t) dt
1R b

a
p (t)

Z b

a

p (t) g (t) dt

and therefore we recapture the inequality (1.5).
The second inequality in (2.3) gives a weighted generalization of the inequality

(1.7).

Corollary 1. Assume that f : [a; b]! R is either convex or concave on [a; b] and
p : [a; b]! [0;1) with

R b
a
p (t) dt > 0: Then we have

(2.8) 0 � �C[a;b] (f; f ; p) �
1

4

�
f (a) + f (b)

2
� f

�
a+ b

2

��2
� 1

64

�
f 0� (b)� f 0+ (a)

�2
where

�C[a;b] (f; f ; p) =
1R b

a
p (t)

Z b

a

�p (t) f (t) �f (t) dt�
 

1R b
a
p (t)

Z b

a

�p (t) f (t) dt

!2
:

3. Related Results

We can improve the second inequality in (2.3) as follows:
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Theorem 4. Assume that f; g : [a; b]! R are both convex on [a; b] and p : [a; b]!
[0;1) with

R b
a
p (t) dt > 0:

(3.1) 0 � �C[a;b] (f; g; p) �
 
f (a) + f (b)

2
� 1R b

a
p (t) dt

Z b

a

�p (t) f (t) dt

!1=2

�
 

1R b
a
p (t) dt

Z b

a

�p (t) f (t) dt� f
�
a+ b

2

�!1=2

�
 
g (a) + g (b)

2
� 1R b

a
p (t) dt

Z b

a

�p (t) g (t) dt

!1=2

�
 

1R b
a
p (t) dt

Z b

a

�p (t) g (t) dt� g
�
a+ b

2

�!1=2
� 1

4

�
f (a) + f (b)

2
� f

�
a+ b

2

���
g (a) + g (b)

2
� g

�
a+ b

2

��
� 1

64

�
f 0� (b)� f 0+ (a)

� �
g0� (b)� g0+ (a)

�
(b� a)2 :

Proof. We employ the following well known inequality that follows from the weighted
Korkine�s identity [15, p. 296] and the weighted double integral Cauchy-Bunyakovsky-
Schwarz inequality

(3.2)
�
C[a;b] (h; k; q)

�2 � �C[a;b] (h; h; q)� �C[a;b] (k; k; q)� ;
see also [5].
We also have the identity [5, p. 399]

C[a;b] (h; h; q)

=

 
�� 1R b

a
q (t) dt

Z b

a

q (t)h (t) dt

! 
1R b

a
q (t)

Z b

a

q (t)h (t) dt� �
!

� 1R b
a
q (t) dt

Z b

a

q (t) [�� h (t)] [h (t)� �] dt

and if [�� h (t)] [h (t)� �] � 0 and q (t) � 0 for t 2 [a; b] ; then

(3.3) C[a;b] (h; h; q) � 
�� 1R b

a
q (t) dt

Z b

a

q (t)h (t) dt

! 
1R b

a
q (t) dt

Z b

a

q (t)h (t) dt� �
!

� 1

4
(�� �)2 :

From (3.2) we have

(3.4)
h
C[a;b]

�
�f; �g; p

�i2
�
h
C[a;b]

�
�f; �f ; p

�i �
C[a;b] (�g; �g; p)

�
;
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and since �f and �g satisfy the conditions (2.6) and (2.7), hence

C[a;b]
�
�f; �f ; p

�
�
 
f (a) + f (b)

2
� 1R b

a
p (t) dt

Z b

a

p (t) �f (t) dt

!
(3.5)

�
 

1R b
a
p (t) dt

Z b

a

p (t) �f (t) dt� f
�
a+ b

2

�!

� 1

4

�
f (a) + f (b)

2
� f

�
a+ b

2

��2
;

and

C[a;b] (�g; �g; p) �
 
g (a) + g (b)

2
� 1R b

a
p (t) dt

Z b

a

p (t) �g (t) dt

!
(3.6)

�
 

1R b
a
p (t) dt

Z b

a

p (t) �g (t) dt� g
�
a+ b

2

�!

� 1

4

�
g (a) + g (b)

2
� g

�
a+ b

2

��2
:

By taking into account thatZ b

a

p (t) �f (t) dt =

Z b

a

�p (t) f (t) dt and
Z b

a

p (t) �g (t) dt =

Z b

a

�p (t) g (t) dt

and by making use of (3.5), (3.6) and the representation Lemma 1 we deduce the
desired result (3.1). �

Remark 2. If p is symmetrical on [a; b] ; then by (3.1) we get

(3.7) 0 � �C[a;b] (f; g; p) �
 
f (a) + f (b)

2
� 1R b

a
p (t) dt

Z b

a

p (t) f (t) dt

!1=2

�
 

1R b
a
p (t) dt

Z b

a

p (t) f (t) dt� f
�
a+ b

2

�!1=2

�
 
g (a) + g (b)

2
� 1R b

a
p (t) dt

Z b

a

p (t) g (t) dt

!1=2

�
 

1R b
a
p (t) dt

Z b

a

p (t) g (t) dt� g
�
a+ b

2

�!1=2
� 1

4

�
f (a) + f (b)

2
� f

�
a+ b

2

���
g (a) + g (b)

2
� g

�
a+ b

2

��
� 1

64

�
f 0� (b)� f 0+ (a)

� �
g0� (b)� g0+ (a)

�
(b� a)2 :
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Corollary 2. Assume that f : [a; b]! R is either convex or concave on [a; b] and
p : [a; b]! [0;1) with

R b
a
p (t) dt > 0: Then we have

(3.8) 0 � �C[a;b] (f; f ; p)

�
 
f (a) + f (b)

2
� 1R b

a
p (t) dt

Z b

a

�p (t) f (t) dt

!

�
 

1R b
a
p (t) dt

Z b

a

�p (t) f (t) dt� f
�
a+ b

2

�!

� 1

4

�
f (a) + f (b)

2
� f

�
a+ b

2

��2
� 1

64

�
f 0� (b)� f 0+ (a)

�2
:

The following case for unweighted inequalities is of interest:

Corollary 3. Let f; g : [a; b]! R be both convex on [a; b] ; then

(3.9) 0 � �C[a;b] (f; g) �
 
f (a) + f (b)

2
� 1

b� a

Z b

a

f (t) dt

!1=2

�
 

1

b� a

Z b

a

f (t) dt� f
�
a+ b

2

�!1=2

�
 
g (a) + g (b)

2
� 1

b� a

Z b

a

g (t) dt

!1=2

�
 

1

b� a

Z b

a

g (t) dt� g
�
a+ b

2

�!1=2
� 1

4

�
f (a) + f (b)

2
� f

�
a+ b

2

���
g (a) + g (b)

2
� g

�
a+ b

2

��
� 1

64

�
f 0� (b)� f 0+ (a)

� �
g0� (b)� g0+ (a)

�
(b� a)2 :
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