HERMITE-HADAMARD TRAPEZOID AND MID-POINT
DIVERGENCES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we introduce the concepts of Hermite-Hadamard
trapezoid and mid-point divergences that are closely related to the Jensen
divergence considered by Burbea and Rao in 1982. The joint convexity of
these divergences as well as several inequalities involving these measures are
established. Various examples concerning the Csiszdr, Lin-Wong and HH f-
divergence measures are also given.

1. INTRODUCTION

For a function f defined on an interval I of the real line R , by following the
paper by Burbea & Rao [1], we consider the [J-divergence between the vectors z,
y € I™ given by

Gos )= 3 (317 + £l - (252)).

i=1
As important examples of such divergences, we can consider [1],
(@a—1)7' Y0, [% (28 +y2) — (%y)a} , a#l
jn,a (l’, y) =
3 2 [wiln () +yiln (y;) — (@i +ys) In (252)], a=1.
If f is convex on I, then 7, ¢ (x,y) > 0 for all (z,y) € I™ x I".

The following result concerning the joint convexity of 7, s also holds:

Theorem 1 (Burbea-Rao, 1982 [1]). Let f be a C? function on an interval I. Then
Tn,5 18 convex (concave) on I™ x I™, if and only if f is convexr (concave) and # is
concave (convex) on I.

We define the Hermite-Hadamard trapezoid and mid-point divergences

0y Tl =3 (560 [ 70 )
and
02 M) =3 ([ r@-nmema- (252)

for all (z,y) € I"™ x I"™.
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2 S.S. DRAGOMIR

We observe that

(1.3) In,g (@,y) = To 5 (2,y) + My g (2,9)

for all (x,y) € I" x I™.
If f is convex on I, then by Hermite-Hadamard inequalities

b ! b
[ s, | f((l—t)a+tb>dtzf<“ )
2 o 2
for all a, b € I, we have the following fundamental facts

(1.4) T ¢ (x,y) > 0and M, ¢ (z,y) >0

for all (x,y) € I" x I™.
Using Bullen’s inequality, see for instance [6, p. 2]

0§/Olf((1t)a+tb)dtf(a;b)

gf(a)—;f(b)/olf((lt)athb)dt

we also have
Let us recall the following special means:
a) The arithmetic mean

b
Ala,b) := %, a,b>0,

b) The geometric mean
G (a,b) == Vab; a,b> 0,

¢) The harmonic mean

2
H (a,b) := ; a,b>0,
P
d) The identric mean
1
1 bb b—a
— <a) if b # a
I(a,b):=¢ € \@ ;a,b>0
a if b=a
e) The logarithmic mean
b
I ;L if b#a
L(a,b):=¢ Mv—mna ; a,b>0
a it b=a

f) The p-logarithmic mean
pptl _ ool ) B

L, (a,b) := <(p+1)(b—a) if b#a, peR\{-1,0}

; a,b>0.

a if b=a
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If we put Lg (a,b) := I (a,b) and L_; (a,b) := L (a,b), then it is well known that
the function R 3p — L, (a,b) is monotonic increasing on R.
We observe that for p € R\ {—1,0} we have

/1 [(1—t)a+tb]" dt = L} (a,b), /1 [(1—t)a+tb] " dt =L " (a,b)
and )
/ In[(1-¢t)a+tb]dt=1InI(a,b).

Using these notations we can define the following divergences for (x,y) € I™ x I™
where I is an interval of positive numbers:

n

/Tn,p (.’E, y) = Z [A (mfv ylp) - Lg (xia yl)]

=1

and
n

Mn,p (a:,y) = Z [Li (xiayi) — AP ($z‘,yz‘)]
i=1
for all p € R\ {-1,0},

and

and

Mo (z,y) :==1In

for p = 0.
Since the function f (¢) =, ¢ > 0 is convex for p € (—00,0) U (1, 00), then we
have

(1'6) T;L,p ($7y)a Mn,p (Z‘,y) >0

for all (z,y) € I"™ x I"™.
For p € (0, 1) the function f (t) = t?, ¢t > 0 and for p = 0, the function f (¢) = Int
are concave, then we have for p € [0,1) that

(1'7) ’Tn,p (:r,y), Mn,p (177y) <0

for all (x,y) € I" x I™.

Finally for p = 1 we have both 7, , (z,y) = M, , (z,y) = 0 for all (z,y) €
Im x I™.

In this paper we establish the joint convexity of the Hermite-Hadamard trape-
zoid and mid-point divergences T, y and M,, ¢ and also provide several inequalities
involving these measures. Several examples concerning the Csiszdr, Lin-Wong and
HH f-divergence measures are also given.
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2. GENERAL RESULTS

We start with the following convexity result that is a consequence of Burbea-Rao
theorem above:

Theorem 2. Let f be a C* function on an interval I. Then T,y and M, ; are
convezx (concave) on I™ x I™, if and only if f is convex (concave) and # s concave
(convez) on I.

Proof. If T,, y and M,, ; are convex on I™ x I"™ then the sum 7, ¢ + My, s = Tn f
is convex on I"™ x I which, by Burbea-Rao theorem implies that f is convex and

# is concave on I.

Now, if f is convex and # is concave on I, then by the same theorem we have

that the function Jy: I x I — R

7 )= 5@+ 50~ 1 (252

is convex.
Let x, y, u, v € I. We define

p (1) =T (1 =1) (2,9) + 1 (u,0)) = Tr (L= t) & + tu, (L = 1) y + tv))

:%[f((l—t)x+tu)+f((1—t)y+tv)]
(I-t)z+tut (1 —t)y+tv

i : )

:%[f((l—t)x+tu)+f((1—t)y+tv)]

_f<(1—t)x;y+t“;r”)

for t € [0,1].
Let t1, t2 € [0,1] and «, 8 > 0 with a + 8 = 1. By the convexity of J; we have

¢ (aty + Bta)
=J5 (1 — aty = Bta) (z,y) + (at1 + Bt2) (u,v))
= Jf ((a+ B —atr — Bt2) (z,y) + (at1 + Bt2) (u,v))
=T (a1 —t1) (z,y) + B(L = t2) (z,y) + aty (u,v) + B2 (u,v))
=T ([l —t1) (z,y) + b1 (w,0)] + B[(1 = t2) (2, ) + t2 (u, v)])
< adp (L=t1) (@) + t1 (u,v) + BTf (1 — t2) (z,y) + t2 (u,0))
= ap (1) + B (t2),

which proves that ¢ is convex on [0, 1] for all z, y, u, v € I.
Applying the Hermite-Hadamard inequality for ¢ we get

1
(21) 3O +e]= [pd
and since
0= 511+ Fwl -7 (5Y),
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[N

o(1) = [f(u)+f(”)]_f<u+v>

2

and

/Olso(wdt:;[/Olf«l—t>x+tu>dt+/olf<<1—t)y+tv>dt]
—/Olf(<1—t>””‘§y+t“‘§“)dt,

hence by (2.1) we get
s {30 @+ rwi-1 () + @ rwl-1(*50)}
z§[/Olf«l—t>x+tu>dt+/01f<<1—t>y+tv>dt}
Lo

Re-arranging this inequality, we get

[P - -y mal

AP () [

which is equivalent to

_|_

ET eu) + T (g0)] > T x+y’u+v
9 ! ! ! 2 9

for all (z,u), (y,v) € I x I, which shows that 7; is Jensen’s convex on I x I. Since
Ty is continuous on I x I, hence 7 is convex in the usual sense on I x I. Further,
by summing over ¢ from 1 to n we deduce that 7, s is convex on I™ x I™.

Now, if we use the second Hermite-Hadamard inequality for ¢ on [0, 1], we have

(22) /01<p(t)dt2 © (;)
Since
o(3) =3 () ()] ()
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hence by (2.2) we have

1
[/f (1=t)x+tu) dt+/f l—t)y—l—tv)dt}
0

! T+y U+ v
—/Of<(1—t) o Tt )dt

() ()] (32 5))

which is equivalent to

;[/Olf((l_t)$+tu)dt_f<$+

2
+% [/Olf((l—t)y+tv)dt—f<y—;vﬂ
[ 3050

that can be written as

(2.
1
2

3 My )+ My ) 2 My (52,410

2 72
— My () + 5 00

for all (z,u), (y,v) € I xI, which shows that M is Jensen’s convex on I x I. Since
M is continuous on I x I, hence M is convex in the usual sense on I x I. Further,
by summing over ¢ from 1 to n we deduce that M,, ¢ is convex on I"™ x I". O

The following reverses of the Hermite-Hadamard inequality hold:

Lemma 1 (Dragomir, 2002 [4] and [5]). Let h: [a,b] — R be a convex function on
[a,b]. Then

(2.3) ogé{m (a;b) —h (“;bﬂ (b—a)
. h(a);h(b) _bia abh(x)dm
<[ ()~ hs @] (0 a)

and

(2.4) ogé[m (a;b) —h_ (“;bﬂ (b—a)

1 b a+b
gb_a/ah(z)dxh< 5 >
< Slh ()~ hs @] (0 a).

The constant & is best possible in all inequalities from (2.3) and (2.4).

We also have:
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Theorem 3. Let f be a C' convex function on an interval I. IfIO is the interior
of 1, then for all (z,y) € I"™ x I we have

(25) 0= Moy (#3) < Tog (2:9) < 5Cop (0:9)

where

(26) Cogr () 3= DO () = ' ()] (s — ).
i=1

Proof. Since for b # a

1 b 1
b—a/a f(ﬂﬁ)dﬂ:—/0 F((1—1t)a+tb)dt,

then from (2.3) we get

Fla)+fl)
2

1
| Ha e de < 17 @) = 7 0] )

for all i € {1,...,n} and this inequality also holds if z; = y;.
By summing these inequalities over ¢ € {1,...,n} we get the last inequality in
(2.5). O

Remark 1. If

v =inf f' (t) and T = sup f’ (t)
tel tel

are finite, then
n

Cogr (2,y) < (=73l — i

i=1
and by (2.5) we get the simpler upper bound

n

05 Mug (2:0) S To (00 € G0 =9 sl

Moreover, if ©;, y; € [a,b] C I foralli € {1,...,n} and since f’ is increasing on I,

then we have the inequalities

BT 0 Moy (@9) < T (o) < g 1 )= £ @)Y i — wil.

Since T, 5 (x,y) = Tn 5 (x,y) + My s (z,y), hence

0< Fug (029) < 31 0) = 1 @)D o — il

Corollary 1. With the assumptions of Theorem 3 and if the derivative f' is Lip-
schitzian with the constant K > 0, namely

[f/(6) = ' ()| < K [t —s| forallt, s€l,

then we have the inequality

1
(2.8) 0< Mg (2,y) < Ty (z,y) < ngg (z,9),
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where dg (x,y) is the Euclidean distance between x and y, namely

n 1/2
da (z,y) = (Z (i — Z/z‘)2> :

i=1
Also, we have

1
0 < Jn g (w,y) < {Kd3 (,9).

3. RELATED RESULTS

We have the following Jensen’s type inequality:

Theorem 4. Let f be a C? function on an interval 1. If f is conver and # 1S
concave on I, then for all (z;,y;) € I x I,1 € {1,...,n} and p; >0, i € {1,...,n}
with Y, p; = 1, we have

(3.1) fzpz - (2 -

+;§p -1 (U5 )
zigp 1 () + F ()] sz (=52)
§u<>+f<n+f(“+”)

> 5 [re-r ()] (Zm— )

(59 B

for all (u,v) € I x I.
In particular,

82 33w [r@ - (2] ( ZWJ)

A [rw-r (%;%)} (- om0
Z;g;pi[f( sz (25%)

| () + (zpzyz) (Bt S
0

B 2
>



HERMITE-HADAMARD TRAPEZOID AND MID-POINT DIVERGENCES 9

Proof. 1t is well known that if the function of two independent variables F' : D C

R x R — R is convex on the convex domain D and has partial derivatives 2£ and

ox
%—5 on D then for all (x,y), (u,v) € D we have the gradient inequalities

(3.3) OF (,y) gi’y) (z —u)+ @) (g‘z’y) (y —v)
ZF(J:?y)_F(uv’U)
ZW@*U) Ty(y*’”)-

Now, if we take F': I x I — R given by

r@ sl -1 (55Y)

F(I,y): 9

|~

and observe that

8F($ay)_1-/ Tty |
Tl =gl w-r (7))

and

OF (z,y) 1], WEEEAY
et rw-r (55)
and since F' is convex on I x I, then by (3.3) we get
a0 5 r@-7 ()| e-wglro-r(55Y)] -
1 1

s@+fwl-1 () -3+ s+ s ()

s rw-r ()] e-w+ i ro-r (5] o-o.

Moreover, if (z;,y;) € I x I, i € {1,...,n} then by (3.4) we get

v

Y

33 5|7 -1 (B @ g e -7 (25) | e
> U@+ £l - 1 (252) - 5w+ ol s ()
25 [r@-r ()] @ -weg [ro-r ()| - v

forall i € {1,...,n} and (u,v) € I x I.
Let p; > 0 for all i € {1,...,n} with > | p; = 1. If we multiply (3.5) by p; >0
and sum over 4 from 1 to n, then we get the desired result (3.1). O
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Corollary 2. With the assumptions of Theorem 4 we have

oo 5[ (23] ()
g lrm-r ()] (15
> Jn.s (@,Y)
ENIEICN REEE
> 0.

Similar results hold for the Hermite-Hadamard trapezoid and mid-point diver-

gences.

Theorem 5. Let f be a C? function on an interval I. If f is convex and % s
concave on I, then for all (x;,y;) € I x I, i € {l,..,n} andp; >0, i € {1,...,

with Y., p; = 1, we have

(3.7) > pi (i — U)/ (L=t) [f (@) = f (L= t) @ +ty;)| dt
i=1 0

n 1
+§jm@ﬁ—w/'ﬂf@nff%ufwxm%mnﬁ

EZZ’lpz (@ )+Zl 1 Pif (4) sz/f (1L —t)z; + ty;) dt
- /f (1 =t)u+tv)dt
>§jm ZqLA<1fww<> £ = t)u+ )] dt

+Zpi(yi—v)/0 FIF (0) — £ (1= t)u+ to)] dt

for all (u,v) € I x I.
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In particular,

Zpi (xz - ijﬂ«“j) /O (L=t) [f (zi) = f/ (1= t) w; + ty;)] dt
+sz (yz Zpgy])/ ") = f((1 =) i+ tys)] dt

> Tl @) PR pd 0 5, | ra=nairma
=1

7 (Zjeamim) :f (Zimm) / s (ipj (1=t + twl) .

j=1

> 0.

Proof. Let (z,y), (u,v) € I x I. If we take F': I x I — R given by

F(z,y) = /f t)x +ty)d
then
P @ [ a-arq-germa
1
_ /O(1—t)[f’(:r)ff'((lft)z+ty)}dt
and
D~ W [ a-s

1
= [re-ra-oarma

and since F' is convex on I x I, then by (3.3) we get
(3.9) /0(1—t)[f'(1‘)—f'((l—t)$+ty)]dt($—U)

[ @ - ooy -v)

0
1

ZW/O (= t) e +ty) dt

—u—gf(v)-l-/olf((l—t)u+tv)dt
(L= [f" (w) = f (L =t)u+tv)]dt (x — u)

L[ (0) = f (L=t u+t)]dt (y —v).
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Therefore, if (x;,y;) € I x I, i € {1,...,n} then by (3.9) we get

(3.10) <m—m)4<1—wu%m>—f«1—wm+¢wnw
1
+@r*wzgﬂf@0*f%ﬂfﬂmﬁ%mﬂﬁ
f(%);'f(yi) _/0 F((L=t)z; + ty;) dt

_f(ui);—f(v) +/01f((1—t)u+tv)dt

> (@) [ =D )= (= ut ) e

>

+@rwq4tvwm—f%u—wu+wnﬁ

for all i € {1,...,n} and (u,v) € I x I.
Let p; > 0 for all i € {1,...,n} with >_"" | p; = 1. If we multiply (3.10) by p; > 0
and sum over ¢ from 1 to n, then we get the desired result (3.7). O

Corollary 3. With the assumptions of Theorem 4 we have

(3.11) ‘ (ml 1 mj) /0 (T —=t)[f (z;) — f (1 —t) 2 + ty;)] dt

(yi—iZyj) /0 tLf" (i) = f (1 =) + ty;)] dt

i=1 =1
Z/Tn,f(x,y)
iy 1y 1 n
_nf(” Xz ) ;—f(” Yi1 v1) +n/0 f <;Z[(1—t)$i+tyi]> dt
=1
>0

We also have:

Theorem 6. Let f be a C? function on an interval I. If f is convex and # 18
concave on I, then for all (x;,y;) € I x I, i € {1,...,n} andp; > 0,7 € {1,...,n}
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with Y+, p; = 1, we have

(3.12) Zpi (i —u)/o1 1-1) [f’((l —t) @i+ ty;) — f' (x;ry” dt

+Zpi (yi —v) /Olt {f’((l —t)xi +ty) — f <f”+y>} dt

2

1 n . :
ZZPi/ f((l—t)$i+tyi)dt—2pif (W)
/f 1—tu+tv)dt+f<u+v)

>Zpl z; u/ol 1—t)[f’((l—t)u—&—tv)—f’(wﬂdt

2

+;Pz‘(yi—v)/olt{f’((l—t)u+tu)—f’<u+v>}dt

2

for all (u,v) € I x I.
In particular,

(3.13) Zpl (m Zp]xj)/o (1-1) {f’((lt)xmttyi)f’<xi+yi>}dt

2

+sz (y Zpaya)/ [ (1= t)a; + tys) - f<xi+yi>}dt

2

>Zpi/0 f((l—t)$i+tyi)dt—2pif (ml—;yl)

/ (sz ) @ —I—tyl]) dt + f (ipi (x;y))

j=1
> 0.

Proof. Let (z,y), (u,v) € I x I. If we take F': I x I — R given by

F(x,y)/Olf((lt)z+ty)dtf($;y)

then

1
OF (z.y) _ / (1—t)f (1—1) z+ty)dt**f <x+y>
Ox 0 ’

/01175{ (1= 1) +ty) — f(;y)]dt
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and

Sl - /Oltf’«l—t)ww) -3/ (5Y)

_ /Olt [f’((l—t)x—kty)—f’ <$;Lyﬂ dt.

The rest of the proof follows in the similar way to the one from above and we omit
the details. (]

Corollary 4. With the assumptions of Theorem 4 we have

(3.14) zn: i — ﬁ:xJ / 1—t){f’((l—t)xiﬁ—tyi)—f’(xi;yiﬂdt

=1 =

+Z yl—*ZyJ /O [ (1= t) 2 + tys) — f’(xi;yiﬂdt

> Mn,f (Jf,y)
RS L~ (zi+yi
Jj=1 Jj=1
> 0.

4. SOME RESULTS FOR f-DIVERGENCES

Consider the probability distributions p, g. Assume that f : (0,00) — R is convex
and define the Csiszdr’s f-divergence measure [2] and [3]

Cy (py4 sz ( )

and the Lin-Wong f-divergence measure [9]

LWt (0,4 sz (q‘“’l).

If f:(0,00) — Ris a C? convex function and such that # is concave on (0, 00) ,
then we get from (3.2) for z; = g—f and y; = 1,4 € {1,...,n} that

2l () ()

namely

(4~1) 0< [Cn,f (p7 Q) +f (1)} - Lwn,f (pa Q)

N |
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for any probability distributions p, q.
If there exists 0 <7 <1 < R < oo and I € [r, R] for any i € {1,...,n} and for
some K > 0 we have

(4.2) [f7 ()= f (D) < Ks 1

for any s, t € [r, R], then

n ’ & _ ! w .

=1 [f (pz) / ( 2p; ):| (q% pz)

7 (%) I <qz+pz>‘| S
Di

1 4 G t+pi 1 i)’
K i 7 ) ; ; —*K \9: — Pi)
T2 Z i 2pi 19 =l 2; P
1.~ —2pigi +p; 1 —q;
= _—-K —Z =-K =+ -1 :D2(paq)

where D,z (p, q) is the well known x>-divergence.
By utilising the inequality (4.1) we get

(03) 055 [Cos(ha) + ()]~ LW (0,0) < (K Dye ().

DN =

Since f is a C? convex function on [r, R] then we can take K = maxyc( g | f” (£)]
in the inequality (4.3).

In the same paper [9], the authors introduced the Hermite-Hadamard (HH) f-
divergence by

Di,HH@,q)::épi - Z/ (1—t t)dt.

If f:(0,00) — Ris a C? convex function and such that f is concave on (0, c0) ,
then we get from (3.8) for z; = g—? and y; = 1,4 € {1,...,n} that namely

for any probability distributions p, g.
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If there exists 0 <7 <1 < R < oo and I € [r, R] for any i € {1,...,n} and for
some K > 0 we have the condition (4.2) then

n

;mi—pi)/:(l—t) (&) -r(a-0Zed)|a
<Zi)f’<<”>§i+f>|dt

n 1
sZm—m/ (1—t)|f

n

|Qz pL|/ l_t

o 2o )

— g /0(1—t )tdt = —KZ = KDy (9,9)

Therefore, if It € [r, R] for any i € {1,...,n} and K = max;e[, ) |f” ()], then

<K

q;
1—1t)— —t|dt
—a-pt ]

(@5) 0510 ma) +F )]~ Dl (0.0) < K Dye (0).

N | =

If f:(0,00) — R is a C? convex function and such that # is concave on (0, c0) ,
then we get from (3.13) for z; = % and y; = 1,4 € {1,...,n} that

g?i (Z—1>/01(1_t) lf’(u_t)gz'_H) _p (g;1>

> Pz‘/ f((l_t)pZ +t> dt—sz <2> >0,
= 0 i=1

D7]:7HH (p7 q) - ‘CWTL,f (pa Q)

n

Stw-p) [ -0 lr(a-n®e) (0]

i=1

dt

/'\
e~
o

S~—
o
A

IN

for any probability distributions p, g.
If there exists 0 <7 <1 < R < oo and I € [r, R] for any i € {1,...,n} and for
some K > 0 we have the condition (4.2) then

i@ipi)/l(lt) [f’ ((1 )jH) Iz (‘12;79)]&
S sl (10 (252

i + Di
<KZ|qz pl|/ (1-1¢) ‘ 1—t)p +t—q2p'p

dt

1
qi — Pi 1 1
:K§ 7/ (1—t)‘t—‘dt:KDz(p,q).
~ p o 2 .
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Therefore if * € [r, R] for any i € {1,...,n} and K = maxe(,, g [f” ()], then
1
(4.7) 0<D HH (p,q) — LW f (p,q) < gKDXQ (p,q) -

5. SOME EXAMPLES

Consider the power function fo : [0,00) — R, fo (t) = (— 1) "t with o €
(1,2]. This function is convex on [0, 00) and f,, is concave on (0, 00) and therefore

-1
(5.1) T (@,y) = (@ = 1) Y [A(af,45) — A (@i, 1))
i=1
is jointly convex on R’} x R, where R, := [0, 00).
The Hermite-Hadamard trapezoid and mid-point divergences associated to f,

are
n

(5.2) Too (,9) = (@ = 1) Z [A (2, ") — Lg (i, i)
and .
(53) Mn,f (.’17, y) a - 1 ! Z xza yl - A (-Tia yz>]

for (z,y) € R} x R7.
According to Theorem 2, these divergences are jointly convex on R’ x R’} . From
Theorem 3 we have the inequalities

1 IR gae
(54) 0 < Mn,oz (xay) < 7;1,04 (l’,y) < §a2 (Ol - 1) ! ZLa—i (xlayz) (xl - yz)2
i=1
for (z,y) € R} x R7.
If [a,b] C R and (z,y) € [a,b]" x [a,b]" then by (2.7) we have

1 _ _ a1\
(65) 0< Mg (w,y) <Toys(2,9) < gla=1) " a0 a1 D |oi — il

We have for [a,b] C R}, := (0,00) that
K= ") =(a—1)" -1 g2 = 2
Jnax, t)=(a=-1) ala—-1) Jnax, pr—

and by the inequality (2.8) we have
o)
(5.6) 0 < Mg (,9) < Top (0,9) < g5 di (2,9).
For f, we have

Cn,fa (pa q) E Oé - 1 Zpl aq;x7
i=1

- i + D
EWn,fa (pa Q) . Oé _1 Z (q b )

and

Dloyn (pq) = (a—l)_lgplw sz a( , )

q
Ppi
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Let 0 <7 <1< R <oo. If It € [r,R]for any i € {1,...,n}, then from the
inequality (4.3) we get

1 _ 1 «
(57 03 [Cs )+ (@= 1) | = LWas, (,0) < ;Do (,0).

from (4.5) we have

1 _ 1 «
(58 05 [Cos 00)+ (@17 =Dfty (0.0) < s 2Dy (.9)

while from (4.7) we obtain

1
(5.9) 0< Dy (pa) = LW s, (p.0) < 5~

— D, (p,q) .

Consider now the function f; : (0,00) — R, fi (¢) = tln¢. The function f; is
convex on (0, 00) and % is concave on (0,00) . Then the function

n

Tt (2,y) = %Z [mi In (z;) + yiIn (y;) — (zi + %) In (ml;ryzﬂ

i=1
is jointly convex on R’ x R, .
Observe that

b
tintdt =

—_

b
/mtd(t?)
a
- -
tzlnt‘a—/ tdt]
a

b—a

S
—
)

o
\
IS

= ! b2lnba21nab2_a2}
b—a | 2

B [521Inb? —a?Ilna® b? —a?

T 2b—a| 2 2 ]

B 1 v —a? [b2lnb2—a21na2 1}
b—a 2 b2 — a2

(b+a)InI (a®b?),

4>\>—n N[ = N—= = N = L\DM—!
—

where [ is the identric mean.
Therefore

510 Tsoa)i= 3 (31 @)+ Pl = [ F(@- 00+ ) )

K2

z;1n (22) + y; In (y2)
2

—A(z;,y)InT (m?,yf)]

-2 Z [A(ziln (27) ,y:In (y7)) — A (xi,9:) In 1 (27, 47)]
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and

n

My (2,y) = Z (A (w4, ;) In1 (33?7%2) — A(,y:) IHA(%,yi))

i=1

Z Az, yi) [ln[ (m?, yf) —In A (z;, yl)]
i=1
for (z,y) € R, x RY,.
According to Theorem 2, these divergences are jointly convex on R}, x R7 .
From Theorem 3 we have the inequalities

1 (zi 91)
5.11 0< M1 (z,y) <Tpq(z, —_—
( ) = ,1( y) ,1( ) SZ (x“yz)
From the inequality (2.7) we have
1 n
(5.12) 0 < My (z,y) < T (z,y) < 3 (Inb—1Ina) Z |z; — yil
i=1

for (z,y) € [a,b]" x [a,b]" , where [a,b] C (0,0).
We also have from (2.8) that

(5.13) 0< My (z,y) < Toa (w, y)_;bb 3 (z,9)

for (z,y) € [a,b]" x [a,b]" , where [a,b] C (0,0).
Consider the divergences

rLf1 b, q ZQZln(ql>v

Kullback-Leibler divergence [7],

qi +pt qi + i
LW, (p,q Z ( o, )

Lm—Wong divergence measure [8].

and

,vailHH pv Z flqltintdt 7214 QZapz lnI ((%) 71>-

pi

Let 0 <7 <1 <R <oo If It €[rR] for any ¢ € {1,...,n}, then from the
inequality (4.3) we get

1 1
(514) 0 < §C7l,f1 (pa Q) - EWTL,ﬁ (pa Q) < ED)@ (pa Q) 5
from (4.5) we have

1 1
(5.15) 0< 5Cus (0:0) = Dy (,0) < - Do (P:0),

while from (4.7) we obtain

1
(5.16) 0< DanH (@) = LW, (p,q) < gDXQ (P,q) -



20 S.S. DRAGOMIR

REFERENCES

(1] J. Burbea and C. R. Rao, On the convexity of some divergence measures based on entropy
functions, IEEE Tran. Inf. Theor., Vol. IT-28, No. 3, 1982, 489-495.

(2] 1. Csiszdr, Information-type measures of difference of probability distributions and indirect

observations, Studia Math. Hungarica, 2 (1967), 299-318.

I. Csiszar, On topological properties of f-divergences, Studia Math. Hungarica, 2 (1967), 329-

339.

[4] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex
functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure
and Appl. Math., 3 (2) (2002), Art. 31.

[5] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex

(3

functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure
and Appl. Math., 3 (3) (2002), Art. 35.
[6] S. S. Dragomir and C. E. M. Pearce, Selected  Topics on  Hermite-
Hadamard  Inequalities and  Applications, RGMIA Monographs, 2000. [Online
https://rgmia.org/monographs/hermite_hadamard.html] .
S. Kullback and R. A. Leibler, On information and sufficiency, Ann. Math. Stat., 22 (1951),
79-86.
J. Lin and S. K. M. Wong, A new directed divergence measure and its characterization, Int.
J. General Systems, 17 (1990), 73-81.
H. Shioya and T. Da-Te, A generalisation of Lin divergence and the derivative of a new
information divergence, Elec. and Comm. in Japan, 78 (7) (1995), 37-40.

7

8

9

IMATHEMATICS, COLLEGE OF ENGINEERING & SCIENCE, VICTORIA UNIVERSITY, PO Box 14428,
MELBOURNE CiTYy, MC 8001, AUSTRALIA.

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.org/dragomir

2DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES,
ScHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-
SRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA





