SOME f-DIVERGENCE MEASURES RELATED TO JENSEN'S ONE

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract

In this paper we introduce some f-divergence measures that are related to the Jensen's divergence introduced by Burbea and Rao in 1982. We establish their joint convexity and provide some inequalities between these measures and a combination of Csiszár's f-divergence, f-midpoint divergence and f-integral divergence measures.

1. Introduction

Let (X, \mathcal{A}) be a measurable space satisfying $|\mathcal{A}|>2$ and μ be a σ-finite measure on (X, \mathcal{A}). Let \mathcal{P} be the set of all probability measures on (X, \mathcal{A}) which are absolutely continuous with respect to μ. For $P, Q \in \mathcal{P}$, let $p=\frac{d P}{d \mu}$ and $q=\frac{d Q}{d \mu}$ denote the Radon-Nikodym derivatives of P and Q with respect to μ.

Two probability measures $P, Q \in \mathcal{P}$ are said to be orthogonal and we denote this by $Q \perp P$ if

$$
P(\{q=0\})=Q(\{p=0\})=1 .
$$

Let $f:[0, \infty) \rightarrow(-\infty, \infty]$ be a convex function that is continuous at 0 , i.e., $f(0)=\lim _{u \downarrow 0} f(u)$.

In 1963, I. Csiszár [4] introduced the concept of f-divergence as follows.
Definition 1. Let $P, Q \in \mathcal{P}$. Then

$$
\begin{equation*}
I_{f}(Q, P)=\int_{X} p(x) f\left[\frac{q(x)}{p(x)}\right] d \mu(x), \tag{1.1}
\end{equation*}
$$

is called the f-divergence of the probability distributions Q and P.
Remark 1. Observe that, the integrand in the formula (1.1) is undefined when $p(x)=0$. The way to overcome this problem is to postulate for f as above that

$$
\begin{equation*}
0 f\left[\frac{q(x)}{0}\right]=q(x) \lim _{u \downarrow 0}\left[u f\left(\frac{1}{u}\right)\right], x \in X \tag{1.2}
\end{equation*}
$$

We now give some examples of f-divergences that are well-known and often used in the literature (see also [3]).

[^0]1.1. The Class of χ^{α}-Divergences. The f-divergences of this class, which is generated by the function $\chi^{\alpha}, \alpha \in[1, \infty)$, defined by
$$
\chi^{\alpha}(u)=|u-1|^{\alpha}, \quad u \in[0, \infty)
$$
have the form
\[

$$
\begin{equation*}
I_{f}(Q, P)=\int_{X} p\left|\frac{q}{p}-1\right|^{\alpha} d \mu=\int_{X} p^{1-\alpha}|q-p|^{\alpha} d \mu \tag{1.3}
\end{equation*}
$$

\]

From this class only the parameter $\alpha=1$ provides a distance in the topological sense, namely the total variation distance $V(Q, P)=\int_{X}|q-p| d \mu$. The most prominent special case of this class is, however, Karl Pearson's χ^{2}-divergence

$$
\chi^{2}(Q, P)=\int_{X} \frac{q^{2}}{p} d \mu-1
$$

that is obtained for $\alpha=2$.
1.2. Dichotomy Class. From this class, generated by the function $f_{\alpha}:[0, \infty) \rightarrow$ \mathbb{R}

$$
f_{\alpha}(u)= \begin{cases}u-1-\ln u & \text { for } \alpha=0 \\ \frac{1}{\alpha(1-\alpha)}\left[\alpha u+1-\alpha-u^{\alpha}\right] & \text { for } \alpha \in \mathbb{R} \backslash\{0,1\} ; \\ 1-u+u \ln u & \text { for } \alpha=1\end{cases}
$$

only the parameter $\alpha=\frac{1}{2}\left(f_{\frac{1}{2}}(u)=2(\sqrt{u}-1)^{2}\right)$ provides a distance, namely, the Hellinger distance

$$
H(Q, P)=\left[\int_{X}(\sqrt{q}-\sqrt{p})^{2} d \mu\right]^{\frac{1}{2}}
$$

Another important divergence is the Kullback-Leibler divergence obtained for $\alpha=1$,

$$
K L(Q, P)=\int_{X} q \ln \left(\frac{q}{p}\right) d \mu
$$

1.3. Matsushita's Divergences. The elements of this class, which is generated by the function $\varphi_{\alpha}, \alpha \in(0,1]$ given by

$$
\varphi_{\alpha}(u):=\left|1-u^{\alpha}\right|^{\frac{1}{\alpha}}, \quad u \in[0, \infty),
$$

are prototypes of metric divergences, providing the distances $\left[I_{\varphi_{\alpha}}(Q, P)\right]^{\alpha}$.
1.4. Puri-Vincze Divergences. This class is generated by the functions $\Phi_{\alpha}, \alpha \in$ $[1, \infty)$ given by

$$
\Phi_{\alpha}(u):=\frac{|1-u|^{\alpha}}{(u+1)^{\alpha-1}}, \quad u \in[0, \infty)
$$

It has been shown in $[26]$ that this class provides the distances $\left[I_{\Phi_{\alpha}}(Q, P)\right]^{\frac{1}{\alpha}}$.
1.5. Divergences of Arimoto-type. This class is generated by the functions

$$
\Psi_{\alpha}(u):= \begin{cases}\frac{\alpha}{\alpha-1}\left[\left(1+u^{\alpha}\right)^{\frac{1}{\alpha}}-2^{\frac{1}{\alpha}-1}(1+u)\right] & \text { for } \alpha \in(0, \infty) \backslash\{1\} \\ (1+u) \ln 2+u \ln u-(1+u) \ln (1+u) & \text { for } \alpha=1 \\ \frac{1}{2}|1-u| & \text { for } \alpha=\infty\end{cases}
$$

It has been shown in [28] that this class provides the distances $\left[I_{\Psi_{\alpha}}(Q, P)\right]^{\min \left(\alpha, \frac{1}{\alpha}\right)}$ for $\alpha \in(0, \infty)$ and $\frac{1}{2} V(Q, P)$ for $\alpha=\infty$.

For f continuous convex on $[0, \infty)$ we obtain the $*$-conjugate function of f by

$$
f^{*}(u)=u f\left(\frac{1}{u}\right), \quad u \in(0, \infty)
$$

and

$$
f^{*}(0)=\lim _{u \downarrow 0} f^{*}(u)
$$

It is also known that if f is continuous convex on $[0, \infty)$ then so is f^{*}.
The following two theorems contain the most basic properties of f-divergences. For their proofs we refer the reader to Chapter 1 of [27] (see also [3]).

Theorem 1 (Uniqueness and Symmetry Theorem). Let f, f_{1} be continuous convex on $[0, \infty)$. We have

$$
I_{f_{1}}(Q, P)=I_{f}(Q, P)
$$

for all $P, Q \in \mathcal{P}$ if and only if there exists a constant $c \in \mathbb{R}$ such that

$$
f_{1}(u)=f(u)+c(u-1),
$$

for any $u \in[0, \infty)$.
Theorem 2 (Range of Values Theorem). Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a continuous convex function on $[0, \infty)$.

For any $P, Q \in \mathcal{P}$, we have the double inequality

$$
\begin{equation*}
f(1) \leq I_{f}(Q, P) \leq f(0)+f^{*}(0) . \tag{1.4}
\end{equation*}
$$

(i) If $P=Q$, then the equality holds in the first part of (1.4).

If f is strictly convex at 1 , then the equality holds in the first part of (1.4) if and only if $P=Q$;
(ii) If $Q \perp P$, then the equality holds in the second part of (1.4).

If $f(0)+f^{*}(0)<\infty$, then equality holds in the second part of (1.4) if and only if $Q \perp P$.

The following result is a refinement of the second inequality in Theorem 2 (see [3, Theorem 3]).

Theorem 3. Let f be a continuous convex function on $[0, \infty)$ with $f(1)=0$ (f is normalised) and $f(0)+f^{*}(0)<\infty$. Then

$$
\begin{equation*}
0 \leq I_{f}(Q, P) \leq \frac{1}{2}\left[f(0)+f^{*}(0)\right] V(Q, P) \tag{1.5}
\end{equation*}
$$

for any $Q, P \in \mathcal{P}$.
For other inequalities for f-divergence see [2], [7]-[20].

2. Some Preliminary Facts

For a function f defined on an interval I of the real line \mathbb{R}, by following the paper by Burbea \& Rao [1], we consider the \mathcal{J}-divergence between the elements t, $s \in I$ given by

$$
\mathcal{J}_{f}(t, s):=\frac{1}{2}[f(t)+f(s)]-f\left(\frac{t+s}{2}\right) .
$$

As important examples of such divergences, we can consider [1],

$$
\mathcal{J}_{\alpha}(t, s):=\left\{\begin{array}{l}
(\alpha-1)^{-1}\left[\frac{1}{2}\left(t^{\alpha}+s^{\alpha}\right)-\left(\frac{t+s}{2}\right)^{\alpha}\right], \alpha \neq 1 \\
{\left[t \ln (t)+s \ln (s)-(t+s) \ln \left(\frac{t+s}{2}\right)\right], \alpha=1}
\end{array}\right.
$$

If f is convex on I, then $\mathcal{J}_{f}(t, s) \geq 0$ for all $(t, s) \in I \times I$.
The following result concerning the joint convexity of \mathcal{J}_{f} also holds:
Theorem 4 (Burbea-Rao, 1982 [1]). Let f be a C^{2} function on an interval I. Then \mathcal{J}_{f} is convex (concave) on $I \times I$, if and only if f is convex (concave) and $\frac{1}{f^{\prime \prime}}$ is concave (convex) on I.

We define the Hermite-Hadamard trapezoid and mid-point divergences

$$
\begin{equation*}
\mathcal{T}_{f}(t, s):=\frac{1}{2}[f(t)+f(s)]-\int_{0}^{1} f((1-\tau) t+\tau s) d \tau \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{M}_{f}(t, s):=\int_{0}^{1} f((1-\tau) t+\tau s) d \tau-f\left(\frac{t+s}{2}\right) \tag{2.2}
\end{equation*}
$$

for all $(t, s) \in I \times I$.
We observe that

$$
\begin{equation*}
\mathcal{J}_{f}(t, s)=\mathcal{T}_{f}(t, s)+\mathcal{M}_{f}(t, s) \tag{2.3}
\end{equation*}
$$

for all $(t, s) \in I \times I$.
If f is convex on I, then by Hermite-Hadamard inequalities

$$
\frac{f(a)+f(b)}{2} \geq \int_{0}^{1} f((1-\tau) a+\tau b) d \tau \geq f\left(\frac{a+b}{2}\right)
$$

for all $a, b \in I$, we have the following fundamental facts

$$
\begin{equation*}
\mathcal{T}_{f}(t, s) \geq 0 \text { and } \mathcal{M}_{f}(t, s) \geq 0 \tag{2.4}
\end{equation*}
$$

for all $(t, s) \in I \times I$.
Using Bullen's inequality, see for instance [22, p. 2],

$$
\begin{aligned}
0 & \leq \int_{0}^{1} f((1-\tau) a+\tau b) d \tau-f\left(\frac{a+b}{2}\right) \\
& \leq \frac{f(a)+f(b)}{2}-\int_{0}^{1} f((1-\tau) a+\tau b) d \tau
\end{aligned}
$$

we also have

$$
\begin{equation*}
0 \leq \mathcal{M}_{f}(t, s) \leq \mathcal{T}_{f}(t, s) \tag{2.5}
\end{equation*}
$$

Let us recall the following special means:
a) The arithmetic mean

$$
A(a, b):=\frac{a+b}{2}, a, b>0
$$

b) The geometric mean

$$
G(a, b):=\sqrt{a b} ; \quad a, b \geq 0
$$

c) The harmonic mean

$$
H(a, b):=\frac{2}{\frac{1}{a}+\frac{1}{b}} ; \quad a, b>0
$$

d) The identric mean

$$
I(a, b):=\left\{\begin{array}{ll}
\frac{1}{e}\left(\frac{b^{b}}{a^{a}}\right)^{\frac{1}{b-a}} & \text { if } \quad b \neq a \\
a & \text { if } \quad b=a
\end{array} ; a, b>0\right.
$$

e) The logarithmic mean

$$
L(a, b):=\left\{\begin{array}{lll}
\frac{b-a}{\ln b-\ln a} & \text { if } & b \neq a \\
a & \text { if } \quad b=a
\end{array} ; a, b>0\right.
$$

f) The p-logarithmic mean

$$
L_{p}(a, b):=\left\{\begin{array}{ll}
\left(\frac{b^{p+1}-a^{p+1}}{(p+1)(b-a)}\right)^{\frac{1}{p}} & \text { if } b \neq a, p \in \mathbb{R} \backslash\{-1,0\} \\
a & \text { if } b=a
\end{array} ; a, b>0 .\right.
$$

If we put $L_{0}(a, b):=I(a, b)$ and $L_{-1}(a, b):=L(a, b)$, then it is well known that the function $\mathbb{R} \ni p \mapsto L_{p}(a, b)$ is monotonic increasing on \mathbb{R}.

We observe that for $p \in \mathbb{R} \backslash\{-1,0\}$ we have

$$
\int_{0}^{1}[(1-\tau) a+\tau b]^{p} d \tau=L_{p}^{p}(a, b), \int_{0}^{1}[(1-\tau) a+\tau b]^{-1} d \tau=L^{-1}(a, b)
$$

and

$$
\int_{0}^{1} \ln [(1-\tau) a+\tau b] d \tau=\ln I(a, b)
$$

Using these notations we can define the following divergences for $(t, s) \in I^{n} \times I^{n}$ where I is an interval of positive numbers:

$$
\mathcal{T}_{p}(t, s):=A\left(t^{p}, s^{p}\right)-L_{p}^{p}(t, s)
$$

and

$$
\mathcal{M}_{p}(t, s):=L_{p}^{p}(t, s)-A^{p}(t, s)
$$

for all $p \in \mathbb{R} \backslash\{-1,0\}$,

$$
\mathcal{T}_{-1}(t, s):=H^{-1}(t, s)-L^{-1}(t, s)
$$

and

$$
\mathcal{M}_{-1}(t, s):=L^{-1}(t, s)-A^{-1}(t, s)
$$

for $p=-1$ and

$$
\mathcal{T}_{0}(t, s):=\ln \left(\frac{G(t, s)}{I(t, s)}\right)
$$

and

$$
\mathcal{M}_{0}(t, s):=\ln \left(\frac{I(t, s)}{A(t, s)}\right)
$$

for $p=0$.
Since the function $f(\tau)=\tau^{p}, \tau>0$ is convex for $p \in(-\infty, 0) \cup(1, \infty)$, then we have

$$
\begin{equation*}
\mathcal{T}_{p}(t, s), \mathcal{M}_{p}(t, s) \geq 0 \tag{2.6}
\end{equation*}
$$

for all $(t, s) \in I \times I$.
For $p \in(0,1)$ the function $f(\tau)=\tau^{p}, \tau>0$ and for $p=0$, the function $f(\tau)=\ln \tau$ are concave, then we have for $p \in[0,1)$ that

$$
\begin{equation*}
\mathcal{T}_{p}(t, s), \mathcal{M}_{p}(t, s) \leq 0 \tag{2.7}
\end{equation*}
$$

for all $(t, s) \in I \times I$.
Finally for $p=1$ we have both $\mathcal{T}_{1}(t, s)=\mathcal{M}_{1}(t, s)=0$ for all $(t, s) \in I \times I$.
We need the following convexity result that is a consequence of Burbea-Rao's theorem above:

Lemma 1. Let f be a C^{2} function on an interval I. Then \mathcal{T}_{f} and \mathcal{M}_{f} are convex (concave) on $I \times I$, if and only if f is convex (concave) and $\frac{1}{f^{\prime \prime}}$ is concave (convex) on I.

Proof. If \mathcal{T}_{f} and \mathcal{M}_{f} are convex on $I \times I$ then the sum $\mathcal{T}_{f}+\mathcal{M}_{f}=\mathcal{J}_{f}$ is convex on $I \times I$, which, by Burbea-Rao theorem implies that f is convex and $\frac{1}{f^{\prime \prime}}$ is concave on I.

Now, if f is convex and $\frac{1}{f^{\prime \prime}}$ is concave on I, then by the same theorem we have that the function $\mathcal{J}_{f}: I \times I \rightarrow \mathbb{R}$

$$
\mathcal{J}_{f}(t, s):=\frac{1}{2}[f(t)+f(s)]-f\left(\frac{t+s}{2}\right)
$$

is convex.
Let $t, s, u, v \in I$. We define

$$
\begin{aligned}
\varphi(\tau) & :=\mathcal{J}_{f}((1-\tau)(t, s)+\tau(u, v))=\mathcal{J}_{f}(((1-\tau) t+\tau u,(1-\tau) s+\tau v)) \\
& =\frac{1}{2}[f((1-\tau) t+\tau u)+f((1-\tau) s+\tau v)] \\
& -f\left(\frac{(1-\tau) t+\tau u+(1-\tau) s+\tau v}{2}\right) \\
& =\frac{1}{2}[f((1-\tau) t+\tau u)+f((1-\tau) s+\tau v)] \\
& -f\left((1-\tau) \frac{t+s}{2}+\tau \frac{u+v}{2}\right)
\end{aligned}
$$

for $\tau \in[0,1]$.

Let $\tau_{1}, \tau_{2} \in[0,1]$ and $\alpha, \beta \geq 0$ with $\alpha+\beta=1$. By the convexity of \mathcal{J}_{f} we have

$$
\begin{aligned}
& \varphi\left(\alpha \tau_{1}+\beta \tau_{2}\right) \\
& =\mathcal{J}_{f}\left(\left(1-\alpha \tau_{1}-\beta \tau_{2}\right)(t, s)+\left(\alpha \tau_{1}+\beta \tau_{2}\right)(u, v)\right) \\
& =\mathcal{J}_{f}\left(\left(\alpha+\beta-\alpha \tau_{1}-\beta \tau_{2}\right)(t, s)+\left(\alpha \tau_{1}+\beta \tau_{2}\right)(u, v)\right) \\
& =\mathcal{J}_{f}\left(\alpha\left(1-\tau_{1}\right)(t, s)+\beta\left(1-\tau_{2}\right)(t, s)+\alpha \tau_{1}(u, v)+\beta \tau_{2}(u, v)\right) \\
& =\mathcal{J}_{f}\left(\alpha\left[\left(1-\tau_{1}\right)(t, s)+\tau_{1}(u, v)\right]+\beta\left[\left(1-\tau_{2}\right)(t, s)+\tau_{2}(u, v)\right]\right) \\
& \leq \alpha \mathcal{J}_{f}\left(\left(1-\tau_{1}\right)(t, s)+\tau_{1}(u, v)\right)+\beta \mathcal{J}_{f}\left(\left(1-\tau_{2}\right)(t, s)+\tau_{2}(u, v)\right) \\
& =\alpha \varphi\left(\tau_{1}\right)+\beta \varphi\left(\tau_{2}\right)
\end{aligned}
$$

which proves that φ is convex on $[0,1]$ for all $t, s, u, v \in I$.
Applying the Hermite-Hadamard inequality for φ we get

$$
\begin{equation*}
\frac{1}{2}[\varphi(0)+\varphi(1)] \geq \int_{0}^{1} \varphi(\tau) d \tau \tag{2.8}
\end{equation*}
$$

and since

$$
\begin{aligned}
& \varphi(0)=\frac{1}{2}[f(t)+f(s)]-f\left(\frac{t+s}{2}\right), \\
& \varphi(1)=\frac{1}{2}[f(u)+f(v)]-f\left(\frac{u+v}{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{1} \varphi(\tau) d \tau & =\frac{1}{2}\left[\int_{0}^{1} f((1-\tau) t+\tau u) d \tau+\int_{0}^{1} f((1-\tau) s+\tau v) d \tau\right] \\
& -\int_{0}^{1} f\left((1-\tau) \frac{t+s}{2}+\tau \frac{u+v}{2}\right) d \tau
\end{aligned}
$$

hence by (2.8) we get

$$
\begin{aligned}
& \frac{1}{2}\left\{\frac{1}{2}[f(t)+f(s)]-f\left(\frac{t+s}{2}\right)+\frac{1}{2}[f(u)+f(v)]-f\left(\frac{u+v}{2}\right)\right\} \\
& \geq \frac{1}{2}\left[\int_{0}^{1} f((1-\tau) t+\tau u) d \tau+\int_{0}^{1} f((1-\tau) s+\tau v) d \tau\right] \\
& -\int_{0}^{1} f\left((1-\tau) \frac{t+s}{2}+\tau \frac{u+v}{2}\right) d \tau
\end{aligned}
$$

Re-arranging this inequality, we get

$$
\begin{aligned}
& \frac{1}{2}\left[\frac{f(t)+f(u)}{2}-\int_{0}^{1} f((1-\tau) t+\tau u) d \tau\right] \\
& +\frac{1}{2}\left[\frac{f(s)+f(v)}{2}-\int_{0}^{1} f((1-\tau) s+\tau v) d \tau\right] \\
& \geq \frac{1}{2}\left[f\left(\frac{t+s}{2}\right)+f\left(\frac{u+v}{2}\right)-\int_{0}^{1} f\left((1-\tau) \frac{t+s}{2}+\tau \frac{u+v}{2}\right) d \tau\right]
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
\frac{1}{2}\left[\mathcal{T}_{f}(t, u)+\mathcal{T}_{f}(s, v)\right] & \geq \mathcal{T}_{f}\left(\frac{t+s}{2}, \frac{u+v}{2}\right) \\
& =\mathcal{T}_{f}\left(\frac{1}{2}(t, u)+\frac{1}{2}(s, v)\right)
\end{aligned}
$$

for all $(t, u),(s, v) \in I \times I$, which shows that \mathcal{T}_{f} is Jensen's convex on $I \times I$. Since \mathcal{T}_{f} is continuous on $I \times I$, hence \mathcal{T}_{f} is convex in the usual sense on $I \times I$.

Now, if we use the second Hermite-Hadamard inequality for φ on $[0,1]$, we have

$$
\begin{equation*}
\int_{0}^{1} \varphi(\tau) d \tau \geq \varphi\left(\frac{1}{2}\right) \tag{2.9}
\end{equation*}
$$

Since

$$
\varphi\left(\frac{1}{2}\right)=\frac{1}{2}\left[f\left(\frac{t+u}{2}\right)+f\left(\frac{s+v}{2}\right)\right]-f\left(\frac{1}{2} \frac{t+s}{2}+\frac{1}{2} \frac{u+v}{2}\right)
$$

hence by (2.9) we have

$$
\begin{aligned}
& \frac{1}{2}\left[\int_{0}^{1} f((1-\tau) t+\tau u) d \tau+\int_{0}^{1} f((1-\tau) s+\tau v) d \tau\right] \\
& -\int_{0}^{1} f\left((1-\tau) \frac{t+s}{2}+\tau \frac{u+v}{2}\right) d \tau \\
& \geq \frac{1}{2}\left[f\left(\frac{t+u}{2}\right)+f\left(\frac{s+v}{2}\right)\right]-f\left(\frac{1}{2}\left(\frac{t+s}{2}+\frac{u+v}{2}\right)\right)
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
& \frac{1}{2}\left[\int_{0}^{1} f((1-\tau) t+\tau u) d \tau-f\left(\frac{t+u}{2}\right)\right] \\
& +\frac{1}{2}\left[\int_{0}^{1} f((1-\tau) s+\tau v) d \tau-f\left(\frac{s+v}{2}\right)\right] \\
& \geq \int_{0}^{1} f\left((1-\tau) \frac{t+s}{2}+\tau \frac{u+v}{2}\right) d \tau-f\left(\frac{1}{2}\left(\frac{t+s}{2}+\frac{u+v}{2}\right)\right)
\end{aligned}
$$

that can be written as

$$
\begin{aligned}
\frac{1}{2}\left[\mathcal{M}_{f}(t, u)+\mathcal{M}_{f}(s, v)\right] & \geq \mathcal{M}_{f}\left(\frac{t+s}{2}, \frac{u+v}{2}\right) \\
& =\mathcal{M}_{f}\left(\frac{1}{2}(t, u)+\frac{1}{2}(s, v)\right)
\end{aligned}
$$

for all $(t, u),(s, v) \in I \times I$, which shows that \mathcal{M}_{f} is Jensen's convex on $I \times I$. Since \mathcal{M}_{f} is continuous on $I \times I$, hence \mathcal{M}_{f} is convex in the usual sense on $I \times I$.

The following reverses of the Hermite-Hadamard inequality hold:

Lemma 2 (Dragomir, 2002 [10] and [11]). Let $h:[a, b] \rightarrow \mathbb{R}$ be a convex function on $[a, b]$. Then

$$
\begin{align*}
0 & \leq \frac{1}{8}\left[h_{+}\left(\frac{a+b}{2}\right)-h_{-}\left(\frac{a+b}{2}\right)\right](b-a) \tag{2.10}\\
& \leq \frac{h(a)+h(b)}{2}-\frac{1}{b-a} \int_{a}^{b} h(\tau) d \tau \\
& \leq \frac{1}{8}\left[h_{-}(b)-h_{+}(a)\right](b-a)
\end{align*}
$$

and

$$
\begin{align*}
0 & \leq \frac{1}{8}\left[h_{+}\left(\frac{a+b}{2}\right)-h_{-}\left(\frac{a+b}{2}\right)\right](b-a) \tag{2.11}\\
& \leq \frac{1}{b-a} \int_{a}^{b} h(\tau) d \tau-h\left(\frac{a+b}{2}\right) \\
& \leq \frac{1}{8}\left[h_{-}(b)-h_{+}(a)\right](b-a) .
\end{align*}
$$

The constant $\frac{1}{8}$ is best possible in all inequalities from (2.10) and (2.11).
We also have:
Lemma 3. Let f be a C^{1} convex function on an interval I. If $\stackrel{\circ}{I}$ is the interior of I, then for all $(t, s) \in \stackrel{\circ}{I} \times \stackrel{\circ}{I}$ we have

$$
\begin{equation*}
0 \leq \mathcal{M}_{f}(t, s) \leq \mathcal{T}_{f}(t, s) \leq \frac{1}{8} \mathcal{C}_{f^{\prime}}(t, s) \tag{2.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{C}_{f^{\prime}}(t, s):=\left[f^{\prime}(t)-f^{\prime}(s)\right](t-s) . \tag{2.13}
\end{equation*}
$$

Proof. Since for $b \neq a$

$$
\frac{1}{b-a} \int_{a}^{b} f(t) d t=\int_{0}^{1} f((1-t) a+t b) d t
$$

then from (2.10) we get

$$
\frac{f(t)+f(s)}{2}-\int_{0}^{1} f((1-\tau) t+\tau s) d t \leq \frac{1}{8}\left[f^{\prime}(t)-f^{\prime}(s)\right](t-s)
$$

for all $(t, s) \in \stackrel{\circ}{I} \times \stackrel{\circ}{I}$.
Remark 2. If

$$
\gamma=\inf _{t \in I} f^{\prime}(t) \text { and } \Gamma=\sup _{t \in \check{I}} f^{\prime}(t)
$$

are finite, then

$$
\mathcal{C}_{f^{\prime}}(t, s) \leq(\Gamma-\gamma)|t-s|
$$

and by (2.12) we get the simpler upper bound

$$
0 \leq \mathcal{M}_{f}(t, s) \leq \mathcal{T}_{f}(t, s) \leq \frac{1}{8}(\Gamma-\gamma)|t-s|
$$

Moreover, if $t, s \in[a, b] \subset \stackrel{\circ}{I}$ and since f^{\prime} is increasing on $\stackrel{\circ}{I}$, then we have the inequalities

$$
\begin{equation*}
0 \leq \mathcal{M}_{f}(t, s) \leq \mathcal{T}_{f}(t, s) \leq \frac{1}{8}\left[f^{\prime}(b)-f^{\prime}(a)\right]|t-s| \tag{2.14}
\end{equation*}
$$

Since $\mathcal{J}_{f}(t, s)=\mathcal{T}_{f}(t, s)+\mathcal{M}_{f}(t, s)$, hence

$$
0 \leq \mathcal{J}_{f}(t, s) \leq \frac{1}{4}\left[f^{\prime}(b)-f^{\prime}(a)\right]|t-s|
$$

Corollary 1. With the assumptions of Lemma 3 and if the derivative f^{\prime} is Lipschitzian with the constant $K>0$, namely

$$
\left|f^{\prime}(t)-f^{\prime}(s)\right| \leq K|t-s| \text { for all } t, s \in \stackrel{\circ}{I}
$$

then we have the inequality

$$
\begin{equation*}
0 \leq \mathcal{M}_{f}(t, s) \leq \mathcal{T}_{f}(t, s) \leq \frac{1}{8} K(t-s)^{2} \tag{2.15}
\end{equation*}
$$

3. Main Results

Let $P, Q, W \in \mathcal{P}$ and $f:(0, \infty) \rightarrow \mathbb{R}$. We define the following f-divergence

$$
\begin{align*}
& \mathcal{J}_{f}(P, Q, W):=\int_{X} w(x) \mathcal{J}_{f}\left(\frac{p(x)}{w(x)}, \frac{q(x)}{w(x)}\right) d \mu(x) \tag{3.1}\\
&=\frac{1}{2}\left[\int_{X} w(x) f\left(\frac{p(x)}{w(x)}\right) d \mu(x)+\int_{X} w(x) f\left(\frac{q(x)}{w(x)}\right) d \mu(x)\right] \\
& \quad-\int_{X} w(x) f\left(\frac{p(x)+q(x)}{2 w(x)}\right)
\end{align*}
$$

If we consider the mid-point divergence measure M_{f} defined by

$$
M_{f}(Q, P, W):=\int_{X} f\left[\frac{q(x)+p(x)}{2 w(x)}\right] w(x) d \mu(x)
$$

for any $Q, P, W \in \mathcal{P}$, then from (3.1) we get

$$
\begin{equation*}
\mathcal{J}_{f}(P, Q, W)=\frac{1}{2}\left[I_{f}(P, W)+I_{f}(Q, W)\right]-M_{f}(Q, P, W) \tag{3.2}
\end{equation*}
$$

We can also consider the integral divergence measure

$$
A_{f}(Q, P, W):=\int_{X}\left(\int_{0}^{1} f\left[\frac{(1-t) q(x)+t p(x)}{w(x)}\right] d t\right) w(x) d \mu(x)
$$

We introduce the related f-divergences

$$
\begin{align*}
\mathcal{T}_{f}(P, Q, W) & :=\int_{X} w(x) \mathcal{T}_{f}\left(\frac{p(x)}{w(x)}, \frac{q(x)}{w(x)}\right) d \mu(x) \tag{3.3}\\
& =\frac{1}{2}\left[I_{f}(P, W)+I_{f}(Q, W)\right]-A_{f}(Q, P, W)
\end{align*}
$$

and

$$
\begin{align*}
\mathcal{M}_{f}(P, Q, W) & :=\int_{X} w(x) \mathcal{M}_{f}\left(\frac{p(x)}{w(x)}, \frac{q(x)}{w(x)}\right) d \mu(x) \tag{3.4}\\
& =A_{f}(Q, P, W)-M_{f}(Q, P, W)
\end{align*}
$$

We observe that

$$
\mathcal{J}_{f}(P, Q, W)=\mathcal{T}_{f}(P, Q, W)+\mathcal{M}_{f}(P, Q, W)
$$

If f is convex on $(0, \infty)$ then by the Hermite-Hadamard and Bullen's inequalities we have the positivity properties

$$
0 \leq \mathcal{M}_{f}(P, Q, W) \leq \mathcal{T}_{f}(P, Q, W)
$$

and

$$
0 \leq \mathcal{J}_{f}(P, Q, W)
$$

for $P, Q, W \in \mathcal{P}$.
We have the following result:
Theorem 5. Let f be a C^{2} function on an interval $(0, \infty)$. If f is convex on $(0, \infty)$ and $\frac{1}{f^{\prime \prime}}$ is concave on $(0, \infty)$, then for all $W \in \mathcal{P}$, the mappings

$$
\mathcal{P} \times \mathcal{P} \ni(P, Q) \mapsto \mathcal{J}_{f}(P, Q, W), \mathcal{M}_{f}(P, Q, W), \mathcal{T}_{f}(P, Q, W)
$$

are convex.
Proof. Let $\left(P_{1}, Q_{1}\right),\left(P_{2}, Q_{2}\right) \in \mathcal{P} \times \mathcal{P}$ and $\alpha, \beta \geq 0$ with $\alpha+\beta=1$. We have

$$
\begin{gathered}
\mathcal{J}_{f}\left(\alpha\left(P_{1}, Q_{1}, W\right)+\beta\left(P_{2}, Q_{2}, W\right)\right)=\mathcal{J}_{f}\left(\alpha P_{1}+\beta P_{2}, \alpha Q_{1}+\beta Q_{2}, W\right) \\
=\int_{X} w(x) \mathcal{J}_{f}\left(\frac{\alpha p_{1}(x)+\beta p_{2}(x)}{w(x)}, \frac{\alpha q_{1}(x)+\beta q_{2}(x)}{w(x)}\right) d \mu(x) \\
=\int_{X} w(x) \mathcal{J}_{f}\left(\alpha \frac{p_{1}(x)}{w(x)}+\beta \frac{p_{2}(x)}{w(x)}, \alpha \frac{q_{1}(x)}{w(x)}+\beta \frac{q_{2}(x)}{w(x)}\right) d \mu(x) \\
=\int_{X} w(x) \mathcal{J}_{f}\left(\alpha\left(\frac{p_{1}(x)}{w(x)}, \frac{q_{1}(x)}{w(x)}\right)+\beta\left(\frac{p_{2}(x)}{w(x)}, \frac{q_{2}(x)}{w(x)}\right)\right) d \mu(x) \\
\leq \int_{X} w(x)\left[\alpha \mathcal{J}_{f}\left(\frac{p_{1}(x)}{w(x)}, \frac{q_{1}(x)}{w(x)}\right)+\beta \mathcal{J}_{f}\left(\frac{p_{2}(x)}{w(x)}, \frac{q_{2}(x)}{w(x)}\right)\right] d \mu(x) \\
=\alpha \int_{X} w(x) \mathcal{J}_{f}\left(\frac{p_{1}(x)}{w(x)}, \frac{q_{1}(x)}{w(x)}\right) d \mu(x)+\beta \int_{X} w(x) \mathcal{J}_{f}\left(\frac{p_{2}(x)}{w(x)}, \frac{q_{2}(x)}{w(x)}\right) d \mu(x) \\
=\alpha \mathcal{J}_{f}\left(P_{1}, Q_{1}, W\right)+\beta \mathcal{J}_{f}\left(P_{2}, Q_{2}, W\right)
\end{gathered}
$$

which proves the convexity of $\mathcal{P} \times \mathcal{P} \ni(P, Q) \mapsto \mathcal{J}_{f}(P, Q, W)$ for all $W \in \mathcal{P}$.
The convexity of the other two mappings follows in a similar way and we omit the details.

Theorem 6. Let f be a C^{1} function on an interval $(0, \infty)$. If f is convex on $(0, \infty)$, then for all $W \in \mathcal{P}$

$$
\begin{equation*}
0 \leq \mathcal{M}_{f}(P, Q, W) \leq \mathcal{T}_{f}(P, Q, W) \leq \frac{1}{8} \Delta_{f^{\prime}}(Q, P, W) \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{f^{\prime}}(Q, P, W):=\int_{X}\left[f^{\prime}\left(\frac{q(x)}{w(x)}\right)-f^{\prime}\left(\frac{p(x)}{w(x)}\right)\right](q(x)-p(x)) d \mu(x) \tag{3.6}
\end{equation*}
$$

Proof. From the inequality (2.12) we have

$$
\begin{aligned}
& \frac{1}{2}\left[f\left(\frac{p(x)}{w(x)}\right)+f\left(\frac{q(x)}{w(x)}\right)\right]-\int_{0}^{1} f\left((1-t) \frac{p(x)}{w(x)}+t \frac{q(x)}{w(x)}\right) d t \\
& \leq \frac{1}{8}\left(f^{\prime}\left(\frac{p(x)}{w(x)}\right)-f^{\prime}\left(\frac{q(x)}{w(x)}\right)\right)\left(\frac{p(x)}{w(x)}-\frac{q(x)}{w(x)}\right)
\end{aligned}
$$

for all $x \in X$.

If we multiply by $w(x)>0$ and integrate on X we get

$$
\begin{aligned}
& \frac{1}{2}\left[I_{f}(P, W)+I_{f}(P, W)\right]-A_{f}(Q, P, W) \\
& \leq \frac{1}{8} \int_{X} w(x)\left(f^{\prime}\left(\frac{p(x)}{w(x)}\right)-f^{\prime}\left(\frac{q(x)}{w(x)}\right)\right)\left(\frac{p(x)}{w(x)}-\frac{q(x)}{w(x)}\right) d \mu(x) \\
& =\frac{1}{8} \int_{X}\left(f^{\prime}\left(\frac{p(x)}{w(x)}\right)-f^{\prime}\left(\frac{q(x)}{w(x)}\right)\right)(p(x)-q(x)) d \mu(x)
\end{aligned}
$$

which implies the desired inequality.
Corollary 2. With the assumptions of Theorem 6 and if f^{\prime} is Lipschitzian with the constant $K>0$, namely

$$
\left|f^{\prime}(s)-f^{\prime}(t)\right| \leq K|s-t| \text { for all } t, s \in(0, \infty)
$$

then

$$
\begin{equation*}
0 \leq \mathcal{M}_{f}(P, Q, W) \leq \mathcal{T}_{f}(P, Q, W) \leq \frac{1}{8} K d_{\chi^{2}}(Q, P, W) \tag{3.7}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{\chi^{2}}(Q, P, W):=\int_{X} \frac{(q(x)-p(x))^{2}}{w(x)} d \mu(x) . \tag{3.8}
\end{equation*}
$$

Remark 3. If there exists $0<r<1<R<\infty$ such that the following condition holds
$((\mathrm{r}, \mathrm{R})) \quad r \leq \frac{q(x)}{w(x)}, \frac{p(x)}{w(x)} \leq R$ for μ-a.e. $x \in X$,
then

$$
\begin{equation*}
0 \leq \mathcal{M}_{f}(P, Q, W) \leq \mathcal{T}_{f}(P, Q, W) \leq \frac{1}{8}\left[f^{\prime}(R)-f^{\prime}(r)\right] d_{1}(Q, P) \tag{3.9}
\end{equation*}
$$

where

$$
d_{1}(Q, P):=\int_{X}|q(x)-p(x)| d \mu(x)
$$

Moreover, if f is twice differentiable and

$$
\begin{equation*}
\left\|f^{\prime \prime}\right\|_{[r, R], \infty}:=\sup _{t \in[r, R]}\left|f^{\prime \prime}(t)\right|<\infty \tag{3.10}
\end{equation*}
$$

then

$$
\begin{equation*}
0 \leq \mathcal{M}_{f}(P, Q, W) \leq \mathcal{T}_{f}(P, Q, W) \leq \frac{1}{8}\left\|f^{\prime \prime}\right\|_{[r, R], \infty} d_{\chi^{2}}(Q, P, W) \tag{3.11}
\end{equation*}
$$

We also have:
Theorem 7. Let f be a C^{2} function on an interval $(0, \infty)$. If f is convex on $(0, \infty)$ and $\frac{1}{f^{\prime \prime}}$ is concave on $(0, \infty)$, then for all $W \in \mathcal{P}$,

$$
\begin{equation*}
0 \leq \mathcal{J}_{f}(P, Q, W) \leq \frac{1}{2}\left[\Psi_{f^{\prime}}(P, Q, W)+\Psi_{f^{\prime}}(Q, P, W)\right] \tag{3.12}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Psi_{f^{\prime}}(P, Q, W) \\
& :=\int_{X}\left[f^{\prime}\left(\frac{p(x)}{w(x)}\right)-f^{\prime}\left(\frac{q(x)+p(x)}{2 w(x)}\right)\right](p(x)-w(x)) d \mu(x)
\end{aligned}
$$

Proof. It is well known that if the function of two independent variables $F: D \subset$ $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is convex on the convex domain D and has partial derivatives $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial y}$ on D then for all $(t, s),(u, v) \in D$ we have the gradient inequalities

$$
\begin{align*}
& \frac{\partial F(t, s)}{\partial x}(t-u)+\frac{\partial F(t, s)}{\partial y}(s-v) \tag{3.13}\\
& \geq F(t, s)-F(u, v) \\
& \geq \frac{\partial F(u, v)}{\partial x}(t-u)+\frac{\partial F(u, v)}{\partial y}(s-v)
\end{align*}
$$

Now, if we take $F:(0, \infty) \times(0, \infty) \rightarrow \mathbb{R}$ given by

$$
F(t, s)=\frac{1}{2}[f(t)+f(s)]-f\left(\frac{t+s}{2}\right)
$$

and observe that

$$
\frac{\partial F(t, s)}{\partial x}=\frac{1}{2}\left[f^{\prime}(t)-f^{\prime}\left(\frac{t+s}{2}\right)\right]
$$

and

$$
\frac{\partial F(t, s)}{\partial y}=\frac{1}{2}\left[f^{\prime}(s)-f^{\prime}\left(\frac{t+s}{2}\right)\right]
$$

and since F is convex on $(0, \infty) \times(0, \infty)$, then by (3.13) we get

$$
\begin{align*}
& \frac{1}{2}\left[f^{\prime}(t)-f^{\prime}\left(\frac{t+s}{2}\right)\right](t-u)+\frac{1}{2}\left[f^{\prime}(s)-f^{\prime}\left(\frac{t+s}{2}\right)\right](s-v) \tag{3.14}\\
& \geq \frac{1}{2}[f(t)+f(s)]-f\left(\frac{t+s}{2}\right)-\frac{1}{2}[f(u)+f(v)]+f\left(\frac{u+v}{2}\right) \\
& \geq \frac{1}{2}\left[f^{\prime}(u)-f^{\prime}\left(\frac{u+v}{2}\right)\right](t-u)+\frac{1}{2}\left[f^{\prime}(v)-f^{\prime}\left(\frac{u+v}{2}\right)\right](s-v)
\end{align*}
$$

If we take $u=v=1$ in (3.14), then we have

$$
\begin{align*}
& \frac{1}{2}\left[f^{\prime}(t)-f^{\prime}\left(\frac{t+s}{2}\right)\right](t-1)+\frac{1}{2}\left[f^{\prime}(s)-f^{\prime}\left(\frac{t+s}{2}\right)\right](s-1) \tag{3.15}\\
& \geq \frac{1}{2}[f(t)+f(s)]-f\left(\frac{t+s}{2}\right) \geq 0
\end{align*}
$$

for all $(t, s) \in(0, \infty) \times(0, \infty)$.
If we take $t=\frac{p(x)}{w(x)}$ and $s=\frac{q(x)}{w(x)}$ in (3.15) then we obtain

$$
\begin{align*}
& \frac{1}{2}\left[f^{\prime}\left(\frac{p(x)}{w(x)}\right)-f^{\prime}\left(\frac{q(x)+p(x)}{2 w(x)}\right)\right]\left(\frac{p(x)}{w(x)}-1\right) \tag{3.16}\\
& +\frac{1}{2}\left[f^{\prime}\left(\frac{q(x)}{w(x)}\right)-f^{\prime}\left(\frac{q(x)+p(x)}{2 w(x)}\right)\right]\left(\frac{q(x)}{w(x)}-1\right) \\
& \geq \frac{1}{2}\left[f\left(\frac{p(x)}{w(x)}\right)+f\left(\frac{q(x)}{w(x)}\right)\right]-f\left(\frac{q(x)+p(x)}{2 w(x)}\right) \geq 0 .
\end{align*}
$$

By multiplying this inequality with $w(x)>0$ we get

$$
\begin{aligned}
0 & \leq \frac{1}{2}\left[w(x) f\left(\frac{p(x)}{w(x)}\right)+w(x) f\left(\frac{q(x)}{w(x)}\right)\right]-w(x) f\left(\frac{q(x)+p(x)}{2 w(x)}\right) \\
& \leq \frac{1}{2}\left[f^{\prime}\left(\frac{p(x)}{w(x)}\right)-f^{\prime}\left(\frac{q(x)+p(x)}{2 w(x)}\right)\right](p(x)-w(x)) \\
& +\frac{1}{2}\left[f^{\prime}\left(\frac{q(x)}{w(x)}\right)-f^{\prime}\left(\frac{q(x)+p(x)}{2 w(x)}\right)\right](q(x)-w(x))
\end{aligned}
$$

for all $x \in X$.
Corollary 3. With the assumptions of Theorem 6 and if f^{\prime} is Lipschitzian with the constant $K>0$, then

$$
\begin{align*}
0 \leq \mathcal{J}_{f}(P, Q & W) \tag{3.17}\\
& \leq \frac{1}{4} K \int_{X}|p(x)-q(x)|\left[\left|\frac{p(x)}{w(x)}-1\right|+\left|\frac{q(x)}{w(x)}-1\right|\right] d \mu(x)
\end{align*}
$$

Proof. We have that

$$
\begin{aligned}
& \Psi_{f^{\prime}}(P, Q, W) \\
& \leq \int_{X}\left|f^{\prime}\left(\frac{p(x)}{w(x)}\right)-f^{\prime}\left(\frac{q(x)+p(x)}{2 w(x)}\right)\right||p(x)-w(x)| d \mu(x) \\
& \leq K \int_{X}\left|\frac{p(x)}{w(x)}-\frac{q(x)+p(x)}{2 w(x)}\right||p(x)-w(x)| d \mu(x) \\
& =K \int_{X}\left|\frac{p(x)-q(x)}{2 w(x)}\right||p(x)-w(x)| d \mu(x) \\
& =\frac{1}{2} K \int_{X} \frac{|p(x)-q(x)||p(x)-w(x)| d \mu(x)}{w(x)} \\
& =\frac{1}{2} K \int_{X}|p(x)-q(x)|\left|\frac{p(x)}{w(x)}-1\right| d \mu(x)
\end{aligned}
$$

and similarly

$$
\Psi_{f^{\prime}}(P, Q, W) \leq \frac{1}{2} K \int_{X}|p(x)-q(x)|\left|\frac{q(x)}{w(x)}-1\right| d \mu(x)
$$

Finally, by the use of (3.12) we get the desired result.
Remark 4. If there exist $0<r<1<R<\infty$ such that the following condition (r, R) holds and if f is twice differentiable and (3.10) is valid, then

$$
\begin{align*}
0 \leq \mathcal{J}_{f}(P, Q, W) & \leq \frac{1}{4}\left\|f^{\prime \prime}\right\|_{[r, R], \infty} \tag{3.18}\\
& \times \int_{X}|p(x)-q(x)|\left[\left|\frac{p(x)}{w(x)}-1\right|+\left|\frac{q(x)}{w(x)}-1\right|\right] d \mu(x)
\end{align*}
$$

Since

$$
\left|\frac{p(x)}{w(x)}-1\right|,\left|\frac{q(x)}{w(x)}-1\right| \leq \max \{R-1,1-r\}
$$

and

$$
\left|\frac{p(x)}{w(x)}-\frac{q(x)}{w(x)}\right| \leq R-r
$$

hence by (3.18) we get the simpler bound

$$
\begin{equation*}
0 \leq \mathcal{J}_{f}(P, Q, W) \leq \frac{1}{2}\left\|f^{\prime \prime}\right\|_{[r, R], \infty}(R-r) \max \{R-1,1-r\} \tag{3.19}
\end{equation*}
$$

We also have:
Theorem 8. With the assumptions of Theorem 6 and if f^{\prime} is Lipschitzian with the constant $K>0$, then

$$
\begin{align*}
0 & \leq \mathcal{T}_{f}(P, Q, W) \tag{3.20}\\
& \leq \frac{1}{6} K \int_{X}|p(x)-q(x)|\left[\left|\frac{p(x)}{w(x)}-1\right|+\left|\frac{q(x)}{w(x)}-1\right|\right] d \mu(x)
\end{align*}
$$

Proof. Let $(x, y),(u, v) \in(0, \infty) \times(0, \infty)$. If we take $F:(0, \infty) \times(0, \infty) \rightarrow \mathbb{R}$ given by

$$
F(t, s)=\frac{f(t)+f(s)}{2}-\int_{0}^{1} f((1-\tau) t+\tau s) d \tau
$$

then

$$
\begin{aligned}
\frac{\partial F(t, s)}{\partial x} & =\frac{1}{2} f^{\prime}(t)-\int_{0}^{1}(1-\tau) f^{\prime}((1-\tau) t+\tau s) d \tau \\
& =\int_{0}^{1}(1-\tau)\left[f^{\prime}(t)-f^{\prime}((1-\tau) t+\tau s)\right] d \tau
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial F(t, s)}{\partial y} & =\frac{1}{2} f^{\prime}(s)-\int_{0}^{1} \tau f^{\prime}((1-\tau) t+\tau s) d \tau \\
& =\int_{0}^{1} \tau\left[f^{\prime}(s)-f^{\prime}((1-\tau) t+\tau s)\right] d \tau
\end{aligned}
$$

and since F is convex on $(0, \infty) \times(0, \infty)$, then by (3.1) we get

$$
\begin{align*}
& (t-u) \int_{0}^{1}(1-\tau)\left[f^{\prime}(t)-f^{\prime}((1-\tau) t+\tau s)\right] d \tau \tag{3.21}\\
& +(s-v) \int_{0}^{1} \tau\left[f^{\prime}(s)-f^{\prime}((1-\tau) t+\tau s)\right] d \tau \\
& \geq \frac{f(t)+f(s)}{2}-\int_{0}^{1} f((1-\tau) t+\tau s) d \tau \\
& -\frac{f(u)+f(v)}{2}+\int_{0}^{1} f((1-\tau) u+\tau v) d \tau \\
& \geq(t-u) \int_{0}^{1}(1-\tau)\left[f^{\prime}(u)-f^{\prime}((1-\tau) u+\tau v)\right] d \tau \\
& +(s-v) \int_{0}^{1} \tau\left[f^{\prime}(v)-f^{\prime}((1-\tau) u+\tau v)\right] d \tau
\end{align*}
$$

for all $(t, s),(u, v) \in(0, \infty) \times(0, \infty)$.

If we take $u=v=1$ in (3.21), then we have

$$
\begin{align*}
& (t-1) \int_{0}^{1}(1-\tau)\left[f^{\prime}(t)-f^{\prime}((1-\tau) t+\tau s)\right] d \tau \tag{3.22}\\
& +(s-1) \int_{0}^{1} \tau\left[f^{\prime}(s)-f^{\prime}((1-\tau) t+\tau s)\right] d \tau \\
& \geq \frac{f(t)+f(s)}{2}-\int_{0}^{1} f((1-\tau) t+\tau s) d \tau \geq 0
\end{align*}
$$

for all $(u, v) \in(0, \infty) \times(0, \infty)$.
If we take $t=\frac{p(x)}{w(x)}$ and $s=\frac{q(x)}{w(x)}$ in (3.22) then we get

$$
\begin{align*}
& \left(\frac{p(x)}{w(x)}-1\right) \int_{0}^{1}(1-\tau)\left[f^{\prime}\left(\frac{p(x)}{w(x)}\right)-f^{\prime}\left((1-\tau) \frac{p(x)}{w(x)}+\tau \frac{q(x)}{w(x)}\right)\right] d \tau \tag{3.23}\\
& +\left(\frac{q(x)}{w(x)}-1\right) \int_{0}^{1} \tau\left[f^{\prime}\left(\frac{q(x)}{w(x)}\right)-f^{\prime}\left((1-\tau) \frac{p(x)}{w(x)}+\tau \frac{q(x)}{w(x)}\right)\right] d \tau \\
& \geq \frac{f\left(\frac{p(x)}{w(x)}\right)+f\left(\frac{q(x)}{w(x)}\right)}{2}-\int_{0}^{1} f\left((1-\tau) \frac{p(x)}{w(x)}+\tau \frac{q(x)}{w(x)}\right) d \tau \geq 0
\end{align*}
$$

Since f^{\prime} is Lipschitzian with the constant $K>0$, hence

$$
\begin{aligned}
0 & \leq \frac{f\left(\frac{p(x)}{w(x)}\right)+f\left(\frac{q(x)}{w(x)}\right)}{2}-\int_{0}^{1} f\left((1-\tau) \frac{p(x)}{w(x)}+\tau \frac{q(x)}{w(x)}\right) d \tau \\
& \leq\left|\frac{p(x)}{w(x)}-1\right| \int_{0}^{1}(1-\tau)\left|f^{\prime}\left(\frac{p(x)}{w(x)}\right)-f^{\prime}\left((1-\tau) \frac{p(x)}{w(x)}+\tau \frac{q(x)}{w(x)}\right)\right| d \tau \\
& +\left|\frac{q(x)}{w(x)}-1\right| \int_{0}^{1} \tau\left|f^{\prime}\left(\frac{q(x)}{w(x)}\right)-f^{\prime}\left((1-\tau) \frac{p(x)}{w(x)}+\tau \frac{q(x)}{w(x)}\right)\right| d \tau \\
& \leq K\left|\frac{p(x)}{w(x)}-1\right|\left|\frac{p(x)}{w(x)}-\frac{q(x)}{w(x)}\right| \int_{0}^{1}(1-\tau) \tau d \tau \\
& +K\left|\frac{q(x)}{w(x)}-1\right|\left|\frac{p(x)}{w(x)}-\frac{q(x)}{w(x)}\right| \int_{0}^{1}(1-\tau) \tau d \tau \\
& =\frac{1}{6} K\left|\frac{p(x)}{w(x)}-\frac{q(x)}{w(x)}\right|\left[\left|\frac{p(x)}{w(x)}-1\right|+\left|\frac{q(x)}{w(x)}-1\right|\right]
\end{aligned}
$$

If we multiply this inequality by $w(x)>0$ and integrate, then we get the desired result (3.20).

Corollary 4. If there exist $0<r<1<R<\infty$ such that the condition (r, R) holds and if f is twice differentiable and (3.10) is valid, then

$$
\begin{equation*}
0 \leq \mathcal{T}_{f}(P, Q, W) \leq \frac{1}{3}\left\|f^{\prime \prime}\right\|_{[r, R], \infty}(R-r) \max \{R-1,1-r\} \tag{3.24}
\end{equation*}
$$

Finally, we also have:

Theorem 9. With the assumptions of Theorem 6 and if f^{\prime} is Lipschitzian with the constant $K>0$, then

$$
\begin{align*}
0 & \leq \mathcal{M}_{f}(P, Q, W) \tag{3.25}\\
& \leq \frac{1}{8} K \int_{X}|p(x)-q(x)|\left[\left|\frac{p(x)}{w(x)}-1\right|+\left|\frac{q(x)}{w(x)}-1\right|\right] d \mu(x)
\end{align*}
$$

Proof. Let $(t, s),(u, v) \in(0, \infty) \times(0, \infty)$. If we take $F:(0, \infty) \times(0, \infty) \rightarrow \mathbb{R}$ given by

$$
F(t, s)=\int_{0}^{1} f((1-\tau) t+\tau s) d \tau-f\left(\frac{t+s}{2}\right)
$$

then

$$
\begin{aligned}
\frac{\partial F(t, s)}{\partial x} & =\int_{0}^{1}(1-\tau) f^{\prime}((1-\tau) t+\tau s) d \tau-\frac{1}{2} f^{\prime}\left(\frac{t+s}{2}\right) \\
& =\int_{0}^{1}(1-\tau)\left[f^{\prime}((1-\tau) t+\tau s)-f^{\prime}\left(\frac{t+s}{2}\right)\right] d \tau \\
\frac{\partial F(t, s)}{\partial y} & =\int_{0}^{1} \tau f^{\prime}((1-\tau) t+\tau s) d \tau-\frac{1}{2} f^{\prime}\left(\frac{t+s}{2}\right) \\
& =\int_{0}^{1} \tau\left[f^{\prime}((1-\tau) t+\tau s)-f^{\prime}\left(\frac{t+s}{2}\right)\right] d \tau
\end{aligned}
$$

and since F is convex on $(0, \infty) \times(0, \infty)$, then by (3.1) we get

$$
\begin{align*}
& (t-u)\left[\int_{0}^{1}(1-\tau)\left[f^{\prime}((1-\tau) t+\tau s)-f^{\prime}\left(\frac{t+s}{2}\right)\right] d \tau\right] \tag{3.26}\\
& +(s-v)\left[\int_{0}^{1} \tau\left[f^{\prime}((1-\tau) t+\tau s)-f^{\prime}\left(\frac{t+s}{2}\right)\right] d \tau\right] \\
& \geq \int_{0}^{1} f((1-\tau) t+\tau s) d \tau-f\left(\frac{t+s}{2}\right) \\
& -\int_{0}^{1} f((1-\tau) u+\tau v) d \tau+f\left(\frac{u+v}{2}\right) \\
& \geq(t-u)\left[\int_{0}^{1}(1-\tau)\left[f^{\prime}((1-\tau) u+\tau v)-f^{\prime}\left(\frac{u+v}{2}\right)\right] d \tau\right] \\
& +(s-v) \int_{0}^{1} \tau\left[f^{\prime}((1-\tau) u+\tau v)-f^{\prime}\left(\frac{u+v}{2}\right)\right] d \tau
\end{align*}
$$

If we take $u=v=1$ in (3.26), then we have

$$
\begin{align*}
& (t-1)\left[\int_{0}^{1}(1-\tau)\left[f^{\prime}((1-\tau) t+\tau s)-f^{\prime}\left(\frac{t+s}{2}\right)\right] d \tau\right] \tag{3.27}\\
& +(s-1)\left[\int_{0}^{1} \tau\left[f^{\prime}((1-\tau) t+\tau s)-f^{\prime}\left(\frac{t+s}{2}\right)\right] d \tau\right] \\
& \geq \int_{0}^{1} f((1-\tau) t+\tau s) d \tau-f\left(\frac{t+s}{2}\right) \geq 0
\end{align*}
$$

for all $(t, s) \in(0, \infty) \times(0, \infty)$.

If we take $t=\frac{p(x)}{w(x)}$ and $s=\frac{q(x)}{w(x)}$ in (3.27) then we get

$$
\begin{align*}
& 0 \leq \int_{0}^{1} f\left((1-\tau) \frac{p(x)}{w(x)}\right.\left.+\tau \frac{q(x)}{w(x)}\right) d \tau-f\left(\frac{p(x)+q(x)}{2 w(x)}\right) \tag{3.28}\\
& \leq\left(\frac{p(x)}{w(x)}-1\right) \\
& \times\left[\int_{0}^{1}(1-\tau)\left[f^{\prime}\left((1-\tau) \frac{p(x)}{w(x)}+\tau \frac{q(x)}{w(x)}\right)-f^{\prime}\left(\frac{p(x)+q(x)}{2 w(x)}\right)\right] d \tau\right] \\
&+\left(\frac{q(x)}{w(x)}-1\right) \\
& \times {\left[\int_{0}^{1} \tau\left[f^{\prime}\left((1-\tau) \frac{p(x)}{w(x)}+\tau \frac{q(x)}{w(x)}\right)-f^{\prime}\left(\frac{p(x)+q(x)}{2 w(x)}\right)\right] d \tau\right] }
\end{align*}
$$

$$
\leq\left|\frac{p(x)}{w(x)}-1\right|
$$

$$
\times\left[\int_{0}^{1}(1-\tau)\left|f^{\prime}\left((1-\tau) \frac{p(x)}{w(x)}+\tau \frac{q(x)}{w(x)}\right)-f^{\prime}\left(\frac{p(x)+q(x)}{2 w(x)}\right)\right| d \tau\right]
$$

$$
+\left|\frac{q(x)}{w(x)}-1\right|
$$

$$
\times\left[\int_{0}^{1} \tau\left|f^{\prime}\left((1-\tau) \frac{p(x)}{w(x)}+\tau \frac{q(x)}{w(x)}\right)-f^{\prime}\left(\frac{p(x)+q(x)}{2 w(x)}\right)\right| d \tau\right]
$$

$$
\leq K\left|\frac{p(x)}{w(x)}-1\right|\left|\frac{p(x)}{w(x)}-\frac{q(x)}{w(x)}\right| \int_{0}^{1}(1-\tau)\left|\tau-\frac{1}{2}\right| d \tau
$$

$$
+K\left|\frac{q(x)}{w(x)}-1\right|\left|\frac{p(x)}{w(x)}-\frac{q(x)}{w(x)}\right| \int_{0}^{1}(1-\tau)\left|\tau-\frac{1}{2}\right| d \tau
$$

Since

$$
\int_{0}^{1}(1-\tau)\left|\tau-\frac{1}{2}\right| d \tau=\frac{1}{8}
$$

hence

$$
\begin{aligned}
0 & \leq \int_{0}^{1} f\left((1-\tau) \frac{p(x)}{w(x)}+\tau \frac{q(x)}{w(x)}\right) d \tau-f\left(\frac{p(x)+q(x)}{2 w(x)}\right) \\
& \leq \frac{1}{8} K\left|\frac{p(x)}{w(x)}-\frac{q(x)}{w(x)}\right|\left[\left|\frac{p(x)}{w(x)}-1\right|+\left|\frac{q(x)}{w(x)}-1\right|\right]
\end{aligned}
$$

for all $x \in X$.
If we multiply this inequality by $w(x)>0$ and integrate, then we get the desired result (3.20).

Corollary 5. If there exist $0<r<1<R<\infty$ such that the condition (r, R) holds and if f is twice differentiable and (3.10) is valid, then

$$
\begin{equation*}
0 \leq \mathcal{M}_{f}(P, Q, W) \leq \frac{1}{4}\left\|f^{\prime \prime}\right\|_{[r, R], \infty}(R-r) \max \{R-1,1-r\} \tag{3.29}
\end{equation*}
$$

4. Some Examples

The Dichotomy Class of f-divergences are generated by the functions f_{α} : $[0, \infty) \rightarrow \mathbb{R}$ defined as

$$
f_{\alpha}(u)= \begin{cases}u-1-\ln u & \text { for } \alpha=0 \\ \frac{1}{\alpha(1-\alpha)}\left[\alpha u+1-\alpha-u^{\alpha}\right] & \text { for } \alpha \in \mathbb{R} \backslash\{0,1\} ; \\ 1-u+u \ln u & \text { for } \alpha=1\end{cases}
$$

Observe that

$$
f_{\alpha}^{\prime \prime}(u)= \begin{cases}\frac{1}{u^{2}} & \text { for } \alpha=0 \\ u^{\alpha-2} & \text { for } \alpha \in \mathbb{R} \backslash\{0,1\} \\ \frac{1}{u} & \text { for } \alpha=1\end{cases}
$$

In this family of functions only the functions f_{α} with $\alpha \in[1,2)$ are both convex and with $\frac{1}{f_{\alpha}^{\prime \prime}}$ concave on $(0, \infty)$.

We have

$$
\begin{aligned}
& I_{f_{\alpha}}(P, W)=\int_{X} w(x) f_{\alpha}\left(\frac{p(x)}{w(x)}\right) d \mu(x) \\
&=\left\{\begin{array}{l}
\frac{1}{\alpha(\alpha-1)}\left[\int_{X} w^{1-\alpha}(x) p^{\alpha}(x) d \mu(x)-1\right], \alpha \in(1,2) \\
\int_{X} p(x) \ln \left(\frac{p(x)}{w(x)}\right) d \mu(x), \alpha=1
\end{array}\right.
\end{aligned}
$$

and

$$
\begin{aligned}
M_{f_{\alpha}}(Q, P, W) & =\int_{X} f\left[\frac{q(x)+p(x)}{2 w(x)}\right] w(x) d \mu(x) \\
& =\left\{\begin{array}{l}
\frac{1}{\alpha(\alpha-1)}\left[\int_{X}\left[\frac{q(x)+p(x)}{2}\right]^{\alpha} w^{1-\alpha}(x) d \mu(x)-1\right], \alpha \in(1,2) \\
\int_{X}\left[\frac{q(x)+p(x)}{2}\right] \ln \left[\frac{q(x)+p(x)}{2 w(x)}\right] d \mu(x), \alpha=1
\end{array}\right.
\end{aligned}
$$

We also have

$$
\begin{aligned}
& \int_{0}^{1}[(1-t) a+t b] \ln [(1-t) a+t b] d t \\
& =\frac{1}{4}(b+a) \ln I\left(a^{2}, b^{2}\right)=\frac{1}{2} A(a, b) \ln I\left(a^{2}, b^{2}\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
A_{f_{\alpha}} & (Q, P, W):=\int_{X}\left(\int_{0}^{1} f\left[\frac{(1-t) q(x)+t p(x)}{w(x)}\right] d t\right) w(x) d \mu(x) \\
& =\left\{\begin{array}{l}
\frac{1}{\alpha(\alpha-1)}\left[\int_{X} L_{\alpha}^{\alpha}\left(\frac{q(x)}{w(x)}, \frac{p(x)}{w(x)}\right) w(x) d \mu(x)-1\right], \alpha \in(1,2) \\
\frac{1}{2} \int_{X} A\left(\frac{q(x)}{w(x)}, \frac{p(x)}{w(x)}\right) \ln I\left(\left(\frac{q(x)}{w(x)}\right)^{2},\left(\frac{p(x)}{w(x)}\right)^{2}\right) w(x) d \mu(x), \alpha=1 .
\end{array}\right.
\end{aligned}
$$

We have

$$
\begin{aligned}
\mathcal{J}_{f_{\alpha}}(P, Q, W) & =\frac{1}{2}\left[I_{f_{\alpha}}(P, W)+I_{f_{\alpha}}(Q, W)\right]-M_{f_{\alpha}}(Q, P, W) \\
\mathcal{T}_{f_{\alpha}}(P, Q, W) & =\frac{1}{2}\left[I_{f_{\alpha}}(P, W)+I_{f_{\alpha}}(Q, W)\right]-A_{f_{\alpha}}(Q, P, W)
\end{aligned}
$$

and

$$
\mathcal{M}_{f_{\alpha}}(P, Q, W)=A_{f_{\alpha}}(Q, P, W)-M_{f_{\alpha}}(Q, P, W)
$$

According to Theorem 5, for all $\alpha \in[1,2)$, the mappings

$$
\mathcal{P} \times \mathcal{P} \ni(P, Q) \mapsto \mathcal{J}_{f_{\alpha}}(P, Q, W), \mathcal{M}_{f_{\alpha}}(P, Q, W), \mathcal{T}_{f_{\alpha}}(P, Q, W)
$$

are convex for all $W \in \mathcal{P}$.
If $0<r<1<R$, then

$$
\left\|f_{\alpha}^{\prime \prime}\right\|_{[r, R], \infty}=\sup _{t \in[r, R]} f_{\alpha}^{\prime \prime}(t)=\frac{1}{r^{2-\alpha}} \text { for } \alpha \in[1,2)
$$

If there exists $0<r<1<R<\infty$ such that the following condition holds

$$
((\mathrm{r}, \mathrm{R})) \quad r \leq \frac{q(x)}{w(x)}, \frac{p(x)}{w(x)} \leq R \text { for } \mu \text {-a.e. } x \in X
$$

then by (3.19), (3.24) and (3.29) we get

$$
\begin{gather*}
0 \leq \mathcal{J}_{f_{\alpha}}(P, Q, W) \leq \frac{1}{2}\left\|f^{\prime \prime}\right\|_{[r, R], \infty}(R-r) \max \{R-1,1-r\} \tag{4.1}\\
0 \leq \mathcal{T}_{f_{\alpha}}(P, Q, W) \leq \frac{1}{3} \frac{(R-r)}{r^{2-\alpha}} \max \{R-1,1-r\} \tag{4.2}
\end{gather*}
$$

and

$$
\begin{equation*}
0 \leq \mathcal{M}_{f_{\alpha}}(P, Q, W) \leq \frac{1}{4} \frac{(R-r)}{r^{2-\alpha}} \max \{R-1,1-r\} \tag{4.3}
\end{equation*}
$$

for all $\alpha \in[1,2)$ and $W \in \mathcal{P}$.
The interested reader may apply the above general results for other particular divergences of interest generated by the convex functions provided in the introduction. We omit the details.

References

[1] J. Burbea and C. R. Rao, On the convexity of some divergence measures based on entropy functions, IEEE Tran. Inf. Theor., Vol. IT-28, No. 3, 1982, 489-495.
[2] P. Cerone and S. S. Dragomir, Approximation of the integral mean divergence and f divergence via mean results. Math. Comput. Modelling 42 (2005), no. 1-2, 207-219.
[3] P. Cerone, S. S. Dragomir and F. Österreicher, Bounds on extended f-divergences for a variety of classes, Kybernetika (Prague) 40 (2004), no. 6, 745-756. Preprint, RGMIA Res. Rep. Coll. 6(2003), No.1, Article 5. [ONLINE: http://rgmia.vu.edu.au/v6n1.html].
[4] I. Csiszár, Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. (German) Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 (1963) 85-108.
[5] I. Csiszár, Information-type measures of difference of probability distributions and indirect observations, Studia Math. Hungarica, 2 (1967), 299-318.
[6] I. Csiszár, On topological properties of f-divergences, Studia Math. Hungarica, 2 (1967), 329-339.
[7] S. S. Dragomir, Some inequalities for (m, M)-convex mappings and applications for the Csiszár Φ-divergence in information theory. Math. J. Ibaraki Univ. 33 (2001), 35-50.
[8] S. S. Dragomir, Some inequalities for two Csiszár divergences and applications. Mat. Bilten No. 25 (2001), 73-90.
[9] S. S. Dragomir, An upper bound for the Csiszár f-divergence in terms of the variational distance and applications. Panamer. Math. J. 12 (2002), no. 4, 43-54.
[10] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure and Appl. Math., 3 (2) (2002), Art. 31.
[11] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure and Appl. Math., 3 (3) (2002), Art. 35.
[12] S. S. Dragomir, Upper and lower bounds for Csiszár f-divergence in terms of Hellinger discrimination and applications. Nonlinear Anal. Forum 7 (2002), no. 1, 1-13
[13] S. S. Dragomir, Bounds for f-divergences under likelihood ratio constraints. Appl. Math. 48 (2003), no. 3, 205-223.
[14] S. S. Dragomir, New inequalities for Csiszár divergence and applications. Acta Math. Vietnam. 28 (2003), no. 2, 123-134.
[15] S. S. Dragomir, A generalized f-divergence for probability vectors and applications. Panamer. Math. J. 13 (2003), no. 4, 61-69.
[16] S. S. Dragomir, Some inequalities for the Csiszár φ-divergence when φ is an L-Lipschitzian function and applications. Ital. J. Pure Appl. Math. No. 15 (2004), 57-76.
[17] S. S. Dragomir, A converse inequality for the Csiszár Φ-divergence. Tamsui Oxf. J. Math. Sci. 20 (2004), no. 1, 35-53.
[18] S. S. Dragomir, Some general divergence measures for probability distributions. Acta Math. Hungar. 109 (2005), no. 4, 331-345.
[19] S. S. Dragomir, Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. 74(3)(2006), 471-476.
[20] S. S. Dragomir, A refinement of Jensen's inequality with applications for f-divergence measures. Taiwanese J. Math. 14 (2010), no. 1, 153-164.
[21] S. S. Dragomir, A generalization of f-divergence measure to convex functions defined on linear spaces. Commun. Math. Anal. 15 (2013), no. 2, 1-14.
[22] S. S. Dragomir and C. E. M. Pearce, Selected Topics on HermiteHadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online https://rgmia.org/monographs/hermite_hadamard.html].
[23] S. Kullback and R. A. Leibler, On information and sufficiency, Ann. Math. Stat., 22 (1951), 79-86.
[24] J. Lin and S. K. M. Wong, A new directed divergence measure and its characterization, Int. J. General Systems, 17 (1990), 73-81.
[25] H. Shioya and T. Da-Te, A generalisation of Lin divergence and the derivative of a new information divergence, Elec. and Comm. in Japan, 78 (7) (1995), 37-40.
[26] P. Kafka, F. Österreicher and I. Vincze, On powers of f-divergence defining a distance, Studia Sci. Math. Hungar., 26 (1991), 415-422.
[27] F. Liese and I. Vajda, Convex Statistical Distances, Teubuer - Texte zur Mathematik, Band 95, Leipzig, 1987.
[28] F. Österreicher and I. Vajda, A new class of metric divergences on probability spaces and its applicability in statistics. Ann. Inst. Statist. Math. 55 (2003), no. 3, 639-653.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand,, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 94A17, 26D15.
 Key words and phrases. Jensen divergence, f-divergence measures, HH f-divergence measures, χ^{2}-divergence.

