
SOME NEW f-DIVERGENCE MEASURES AND THEIR BASIC
PROPERTIES

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we introduce some new f -divergence measures that
we call t-asymmetric/symmetric divergence measure and integral divergence
measure, establish their joint convexity and provide some inequalities that
connect these f -divergences to the classical one intyroduced by Csiszar in
1963. Applications for the dichotomy class of convex functions are provided
as well.

1. Introduction

Let (X;A) be a measurable space satisfying jAj > 2 and � be a �-�nite measure
on (X;A) : Let P be the set of all probability measures on (X;A) which are ab-
solutely continuous with respect to �: For P; Q 2 P, let p = dP

d� and q =
dQ
d� denote

the Radon-Nikodym derivatives of P and Q with respect to �:
Two probability measures P; Q 2 P are said to be orthogonal and we denote

this by Q ? P if
P (fq = 0g) = Q (fp = 0g) = 1:

Let f : [0;1) ! (�1;1] be a convex function that is continuous at 0; i.e.,
f (0) = limu#0 f (u) :
In 1963, I. Csiszár [3] introduced the concept of f -divergence as follows.

De�nition 1. Let P; Q 2 P. Then

(1.1) If (Q;P ) =

Z
X

p (x) f

�
q (x)

p (x)

�
d� (x) ;

is called the f-divergence of the probability distributions Q and P:

Remark 1. Observe that, the integrand in the formula (1.1) is unde�ned when
p (x) = 0: The way to overcome this problem is to postulate for f as above that

(1.2) 0f

�
q (x)

0

�
= q (x) lim

u#0

�
uf

�
1

u

��
; x 2 X:

We now give some examples of f -divergences that are well-known and often used
in the literature (see also [2]).
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1.1. The Class of ��-Divergences. The f -divergences of this class, which is
generated by the function ��; � 2 [1;1); de�ned by

�� (u) = ju� 1j� ; u 2 [0;1)

have the form

(1.3) If (Q;P ) =

Z
X

p

����qp � 1
����� d� = Z

X

p1�� jq � pj� d�:

From this class only the parameter � = 1 provides a distance in the topologi-
cal sense, namely the total variation distance V (Q;P ) =

R
X
jq � pj d�: The most

prominent special case of this class is, however, Karl Pearson�s �2-divergence

�2 (Q;P ) =

Z
X

q2

p
d�� 1

that is obtained for � = 2:

1.2. Dichotomy Class. From this class, generated by the function f� : [0;1)!
R

f� (u) =

8>>>><>>>>:
u� 1� lnu for � = 0;

1
�(1��) [�u+ 1� �� u

�] for � 2 Rn f0; 1g ;

1� u+ u lnu for � = 1;

only the parameter � = 1
2

�
f 1
2
(u) = 2 (

p
u� 1)2

�
provides a distance, namely, the

Hellinger distance

H (Q;P ) =

�Z
X

(
p
q �pp)2 d�

� 1
2

:

Another important divergence is the Kullback-Leibler divergence obtained for
� = 1;

KL (Q;P ) =

Z
X

q ln

�
q

p

�
d�:

1.3. Matsushita�s Divergences. The elements of this class, which is generated
by the function '�; � 2 (0; 1] given by

'� (u) := j1� u�j
1
� ; u 2 [0;1);

are prototypes of metric divergences, providing the distances
�
I'� (Q;P )

��
:

1.4. Puri-Vincze Divergences. This class is generated by the functions ��; � 2
[1;1) given by

�� (u) :=
j1� uj�

(u+ 1)
��1 ; u 2 [0;1):

It has been shown in [19] that this class provides the distances [I�� (Q;P )]
1
� :
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1.5. Divergences of Arimoto-type. This class is generated by the functions

	� (u) :=

8>>>>><>>>>>:

�
��1

h
(1 + u�)

1
� � 2 1

��1 (1 + u)
i

for � 2 (0;1) n f1g ;

(1 + u) ln 2 + u lnu� (1 + u) ln (1 + u) for � = 1;

1
2 j1� uj for � =1:

It has been shown in [21] that this class provides the distances [I	�
(Q;P )]

min(�; 1� )

for � 2 (0;1) and 1
2V (Q;P ) for � =1:

For f continuous convex on [0;1) we obtain the �-conjugate function of f by

f� (u) = uf

�
1

u

�
; u 2 (0;1)

and
f� (0) = lim

u#0
f� (u) :

It is also known that if f is continuous convex on [0;1) then so is f�:
The following two theorems contain the most basic properties of f -divergences.

For their proofs we refer the reader to Chapter 1 of [20] (see also [2]).

Theorem 1 (Uniqueness and Symmetry Theorem). Let f; f1 be continuous convex
on [0;1): We have

If1 (Q;P ) = If (Q;P ) ;

for all P; Q 2 P if and only if there exists a constant c 2 R such that
f1 (u) = f (u) + c (u� 1) ;

for any u 2 [0;1):

Theorem 2 (Range of Values Theorem). Let f : [0;1) ! R be a continuous
convex function on [0;1):
For any P;Q 2 P, we have the double inequality

(1.4) f (1) � If (Q;P ) � f (0) + f� (0) :
(i) If P = Q; then the equality holds in the �rst part of (1.4).

If f is strictly convex at 1; then the equality holds in the �rst part of (1.4) if and
only if P = Q;

(ii) If Q ? P; then the equality holds in the second part of (1.4).
If f (0) + f� (0) <1; then equality holds in the second part of (1.4) if and only

if Q ? P:

The following result is a re�nement of the second inequality in Theorem 2 (see
[2, Theorem 3]).

Theorem 3. Let f be a continuous convex function on [0;1) with f (1) = 0 (f is
normalised) and f (0) + f� (0) <1: Then

(1.5) 0 � If (Q;P ) �
1

2
[f (0) + f� (0)]V (Q;P )

for any Q; P 2 P.

For other inequalities for f -divergence see [1], [4]-[17].
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2. Some Basic Properties

Let f be a continuous convex function on [0;1) with f (1) = 0 and t 2 [0; 1] :
We de�ne the t-asymmetric divergence measure Af;t by

(2.1) Af;t (Q;P;W ) :=

Z
X

f

�
(1� t) q (x) + tp (x)

w (x)

�
w (x) d� (x)

and the t-symmetric divergence measure Sf;t by

(2.2) Sf;t (Q;P;W ) :=
1

2
[Af;t (Q;P;W ) +Af;1�t (Q;P;W )]

for any Q; P; W 2 P.
For t = 1

2 we consider the mid-point divergence measure Mf by

Mf (Q;P;W ) :=

Z
X

f

�
q (x) + p (x)

2w (x)

�
w (x) d� (x)

= Af;1=2 (Q;P;W ) = Sf;1=2 (Q;P;W ) ;

for any Q; P; W 2 P.
We can also consider the integral divergence measure

Af (Q;P;W ) :=

Z 1

0

Af;t (Q;P;W ) dt =

Z 1

0

Sf;t (Q;P;W )

=

Z
X

�Z 1

0

f

�
(1� t) q (x) + tp (x)

w (x)

�
dt

�
w (x) d� (x) :

The following result contains some basic facts concerning the divergence mea-
sures above:

Theorem 4. Let f be a continuous convex function on [0;1) with f (1) = 0: Then
for all Q; P; W 2 P and t 2 [0; 1]

(2.3) 0 � Af;t (Q;P;W ) � (1� t) If (Q;W ) + tIf (P;W )

and the mapping

(2.4) P � P 3 (Q;P ) 7! Af;t (Q;P;W ) 2 [0;1)

is convex as a function of two variables.
We have the inequalities

(2.5) 0 �Mf (Q;P;W ) � Sf;t (Q;P;W ) �
1

2
[If (Q;W ) + If (P;W )]

for all Q; P; W 2 P and the mapping

(2.6) P � P 3 (Q;P ) 7! Sf;t (Q;P;W ) 2 [0;1)

is convex as a function of two variables.
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Proof. Let t 2 [0; 1] and Q; P; W 2 P. We use Jensen�s integral inequality to get

Af;t (Q;P;W ) =

Z
X

f

�
(1� t) q (x) + tp (x)

w (x)

�
w (x) d� (x)

� f
�Z

X

�
(1� t) q (x) + tp (x)

w (x)

�
w (x) d� (x)

�
= f

�Z
X

[(1� t) q (x) + tp (x)] d� (x)
�

= f

�
(1� t)

Z
X

q (x) d� (x) + t

Z
X

p (x) d� (x)

�
= f (1) = 0:

By the convexity of f we also have

Af;t (Q;P;W ) =

Z
X

f

�
(1� t) q (x) + tp (x)

w (x)

�
w (x) d� (x)

� (1� t)
Z
X

f

�
q (x)

w (x)

�
w (x) d� (x) + t

Z
X

f

�
p (x)

w (x)

�
w (x) d� (x)

= (1� t) If (Q;W ) + tIf (P;W )

for t 2 [0; 1] and Q; P; W 2 P, and the inequality (2.3) is proved.
Let �; � � 0 and such that �+ � = 1. If (Q1; P1) ; (Q2; P2) 2 P � P, then

Af;t (� (Q1; P1;W ) + � (Q2; P2;W ))

= Af;t ((�Q1 + �Q2; �P1 + �P2;W ))

=

Z
X

f

�
(1� t) (�Q1 + �Q2) + t (�P1 + �P2)

w (x)

�
w (x) d� (x)

=

Z
X

f

�
� [(1� t)Q1 + tP1] + � [(1� t)Q2 + tP2]

w (x)

�
w (x) d� (x)

� �
Z
X

f

�
(1� t)Q1 + tP1

w (x)

�
w (x) d� (x) + �

Z
X

f

�
(1� t)Q2 + tP2

w (x)

�
w (x) d� (x)

= �Af;t (Q1; P1;W ) + �Af;t (Q2; P2;W ) ;

which proves the joint convexity of the mapping de�ned in (2.4).
Using the convexity of f we have

f

�
1

2

�
(1� t) q (x) + tp (x)

w (x)
+
(1� t) p (x) + tq (x)

w (x)

��
� 1

2

�
f

�
(1� t) q (x) + tp (x)

w (x)

�
+ f

�
(1� t) p (x) + tq (x)

w (x)

��
;

namely

f

�
q (x) + p (x)

2w (x)

�
(2.7)

� 1

2

�
f

�
(1� t) q (x) + tp (x)

w (x)

�
+ f

�
(1� t) p (x) + tq (x)

w (x)

��
;

for x 2 X:
By multiplying (2.7) with w (x) and integrating over � (x) we get the second

inequality inequality in (2.5).
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We have, by (2.3) that

Sf;t (Q;P;W ) =
1

2
[Af;t (Q;P;W ) +Af;1�t (Q;P;W )]

� 1

2

h
(1� t) If (Q;W ) + tIf (P;W ) + tIf (Q;W ) + (1� tI)f (P;W )

i
=
1

2
[If (Q;W ) + If (P;W )] ;

which proves the third inequality in (2.5).
The convexity of the mapping de�ned by (2.6) follows by the same property of

the mapping de�ned by (2.4). �

Corollary 1. Let f be a continuous convex function on [0;1) with f (1) = 0: Then
for all Q; P; W 2 P we have the inequalities

(2.8) 0 �Mf (Q;P;W ) � Af (Q;P;W ) �
1

2
[If (Q;W ) + If (P;W )] :

The mapping

(2.9) P � P 3 (Q;P ) 7! Af (Q;P;W ) 2 [0;1)

is convex as a function of two variables.

Proof. The inequality (2.8) follows by integrating over t in the inequality (2.5).
Since the mapping

P � P 3 (Q;P ) 7! Sf;t (Q;P;W ) 2 [0;1)

is convex as a function of two variables for all t 2 [0; 1] ; then it remains convex if
one takes the integral over t 2 [0; 1] : �

The following reverses of the Hermite-Hadamard inequality hold:

Lemma 1 (Dragomir, 2002 [6] and [7]). Let h : [a; b]! R be a convex function on
[a; b] : Then

0 � 1

8

�
h+

�
a+ b

2

�
� h�

�
a+ b

2

��
(b� a)(2.10)

� h (a) + h (b)

2
� 1

b� a

Z b

a

h (x) dx

� 1

8
[h� (b)� h+ (a)] (b� a)

and

0 � 1

8

�
h+

�
a+ b

2

�
� h�

�
a+ b

2

��
(b� a)(2.11)

� 1

b� a

Z b

a

h (x) dx� h
�
a+ b

2

�
� 1

8
[h� (b)� h+ (a)] (b� a) :

The constant 18 is best possible in all inequalities.

We have the reverse inequalities:
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Theorem 5. Let f be a di¤erentiable convex function on [0;1) with f (1) = 0:
Then for all Q; P; W 2 P we have

(2.12) 0 � Af (Q;P;W )�Mf (Q;P;W ) �
1

8
�f 0 (Q;P;W )

and

(2.13) 0 � 1

2
[If (Q;W ) + If (P;W )]�Af (Q;P;W ) �

1

8
�f 0 (Q;P;W )

where

(2.14) �f 0 (Q;P;W ) :=

Z
X

�
f 0
�
q (x)

w (x)

�
� f 0

�
p (x)

w (x)

��
(q (x)� p (x)) d� (x) :

Proof. Let Q; P; W 2 P. By the inequality (2.11) we have

0 �
Z 1

0

f

�
(1� t) q (x) + tp (x)

w (x)

�
dt� f

�
q (x) + p (x)

2w (x)

�
� 1

8

�
f 0
�
q (x)

w (x)

�
� f 0

�
p (x)

w (x)

���
q (x)

w (x)
� p (x)

w (x)

�
:

If we multiply this inequality by w (x) � 0 and integrate on X we get (2.12).
From (2.10) we also have

0 � 1

2

�
f

�
q (x)

w (x)

�
+ f

�
p (x)

w (x)

��
�
Z 1

0

f

�
(1� t) q (x) + tp (x)

w (x)

�
dt

� 1

8

�
f 0
�
q (x)

w (x)

�
� f 0

�
p (x)

w (x)

���
q (x)

w (x)
� p (x)

w (x)

�
:

If we multiply this inequality by w (x) � 0 and integrate on X we get (2.12). �

Corollary 2. Let f be a di¤erentiable convex function on [0;1) with f (1) = 0
and Q; P; W 2 P. If there exists 0 < r < 1 < R < 1 such that the following
condition holds

((r,R)) r � q (x)

w (x)
;
p (x)

w (x)
� R for �-a.e. x 2 X;

then

(2.15) 0 � Af (Q;P;W )�Mf (Q;P;W ) �
1

8
[f 0 (R)� f 0 (r)] d1 (Q;P )

and

(2.16) 0 � 1

2
[If (Q;W ) + If (P;W )]�Af (Q;P;W ) �

1

8
[f 0 (R)� f 0 (r)] d1 (Q;P )

where

d1 (Q;P ) :=

Z
X

jq (x)� p (x)j d� (x) :

Proof. Since f 0 is increasing on [r;R] ; then

jf 0 (t)� f 0 (s)j � f 0 (R)� f 0 (r)

for all t; s 2 [r;R] :
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Therefore

�f 0 (Q;P;W ) :=

Z
X

�
f 0
�
q (x)

w (x)

�
� f 0

�
p (x)

w (x)

��
(q (x)� p (x)) d� (x)

�
Z
X

����f 0� q (x)w (x)

�
� f 0

�
p (x)

w (x)

����� jq (x)� p (x)j d� (x)
� [f 0 (R)� f 0 (r)]

Z
X

jq (x)� p (x)j d� (x)

= [f 0 (R)� f 0 (r)] d1 (Q;P ) ;

which proves the desired inequalities (2.15) and (2.16). �

Corollary 3. Let f be a twice di¤erentiable convex function on [0;1) with f (1) =
0 and Q; P; W 2 P. If there exists 0 < r < 1 < R < 1 such that the condition
(r,R) holds and

(2.17) kf 00k[r;R];1 := sup
t2[r;R]

jf 00 (t)j <1;

then

(2.18) 0 � Af (Q;P;W )�Mf (Q;P;W ) �
1

8
kf 00k[r;R];1 d�2 (Q;P;W )

and
(2.19)

0 � 1

2
[If (Q;W ) + If (P;W )]�Af (Q;P;W ) �

1

8
kf 00k[r;R];1 d�2 (Q;P;W ) ;

where

(2.20) d�2 (Q;P;W ) :=

Z
X

(q (x)� p (x))2

w (x)
d� (x) :

Proof. We have

�f 0 (Q;P;W ) :=

Z
X

�
f 0
�
q (x)

w (x)

�
� f 0

�
p (x)

w (x)

��
(q (x)� p (x)) d� (x)

�
Z
X

����f 0� q (x)w (x)

�
� f 0

�
p (x)

w (x)

����� jq (x)� p (x)j d� (x)
� kf 00k[r;R];1

Z
X

���� q (x)w (x)
� p (x)

w (x)

���� jq (x)� p (x)j d� (x)
= kf 00k[r;R];1

Z
X

(q (x)� p (x))2

w (x)
d� (x) ;

which proves the desired results (2.18) and (2.19). �

3. Further Results

We have the following result for convex functions that is of interest in itself as
well:
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Lemma 2. Let f : I � R! R be a convex function on the interval I, a; b 2 �I; the
interior of I; with a < b and � 2 [0; 1] : Then

� (1� �) (b� a)
�
f 0+ ((1� �) a+ �b)� f 0� ((1� �) a+ �b)

�
(3.1)

� (1� �) f (a) + �f (b)� f ((1� �) a+ �b)
� � (1� �) (b� a)

�
f 0� (b)� f 0+ (a)

�
:

In particular, we have

1

4
(b� a)

�
f 0+

�
a+ b

2

�
� f 0�

�
a+ b

2

��
� f (a) + f (b)

2
� f

�
a+ b

2

�
(3.2)

� 1

4
(b� a)

�
f 0� (b)� f 0+ (a)

�
:

The constant 14 is best possible in both inequalities from (3.2).

Proof. The case � = 0 or � = 1 reduces to equality in (3.1).
Since f is convex on I it follows that the function is di¤erentiable on �I except

a countably number of points, the lateral derivatives f 0� exists in each point of �I;
they are increasing on �I and f 0� � f 0+ on �I:
For any x; y 2 �I we have for the Lebesgue integral

(3.3) f (x) = f (y) +

Z x

y

f 0 (s) ds = f (y) + (x� y)
Z 1

0

f 0 ((1� t) y + tx) dt:

Assume that a < b and � 2 (0; 1) : By (3.3) we have

f ((1� �) a+ �b)(3.4)

= f (a) + � (b� a)
Z 1

0

f 0 ((1� t) a+ t ((1� �) a+ �b)) dt

and

f ((1� �) a+ �b)(3.5)

= f (b)� (1� �) (b� a)
Z 1

0

f 0 ((1� t) b+ t ((1� �) a+ �b)) dt:

If we multiply (3.4) by 1 � �, (3.4) by � and add the obtained equalities, then we
get

f ((1� �) a+ �b) = (1� �) f (a) + �f (b)

+ (1� �) � (b� a)
Z 1

0

f 0 ((1� t) a+ t ((1� �) a+ �b)) dt

� (1� �) � (b� a)
Z 1

0

f 0 ((1� t) b+ t ((1� �) a+ �b)) dt;

which is equivalent to

(3.6) (1� �) f (a) + �f (b)� f ((1� �) a+ �b) = (1� �) � (b� a)

�
Z 1

0

[f 0 ((1� t) b+ t ((1� �) a+ �b))� f 0 ((1� t) a+ t ((1� �) a+ �b))] dt:

That is an equality of interest in itself.
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Since a < b and � 2 (0; 1) ; then (1� �) a+ �b 2 (a; b) and

(1� t) a+ t ((1� �) a+ �b) 2 [a; (1� �) a+ �b]

while
(1� t) b+ t ((1� �) a+ �b) 2 [(1� �) a+ �b; b]

for any t 2 [0; 1] :
By the monotonicity of the derivative we have

(3.7) f 0+ ((1� �) a+ �b) � f 0 ((1� t) b+ t ((1� �) a+ �b)) � f 0� (b)

and

(3.8) f 0+ (a) � f 0 ((1� t) a+ t ((1� �) a+ �b)) � f 0� ((1� �) a+ �b)

for any t 2 [0; 1] :
By integrating the inequalities (3.7) and (3.8) we get

f 0+ ((1� �) a+ �b) �
Z 1

0

f 0 ((1� t) b+ t ((1� �) a+ �b)) dt � f 0� (b)

and

f 0+ (a) �
Z 1

0

f 0 ((1� t) a+ t ((1� �) a+ �b)) dt � f 0� ((1� �) a+ �b) ;

which implies that

f 0+ ((1� �) a+ �b)� f 0� ((1� �) a+ �b) �
Z 1

0

f 0 ((1� t) b+ t ((1� �) a+ �b)) dt

�
Z 1

0

f 0 ((1� t) a+ t ((1� �) a+ �b)) dt � f 0� (b)� f 0+ (a) :

Making use of the equality (3.6) we the obtain the desired result (3.1).
If we consider the convex function f : [a; b] ! R, f (x) =

��x� a+b
2

�� ; then we
have f 0+

�
a+b
2

�
= 1; f 0�

�
a+b
2

�
= �1 and by replacing in (3.2) we get in all terms

the same quantity 1
2 (b� a) which show that the constant

1
4 is best possible in both

inequalities from (3.2). �

Corollary 4. If the function f : I � R! R is a di¤erentiable convex function on
�I; then for any a; b 2 �I and � 2 [0; 1] we have

0 � (1� �) f (a) + �f (b)� f ((1� �) a+ �b)(3.9)

� � (1� �) (b� a) [f 0 (b)� f 0 (a)] :

Proof. If a < b; then the inequality (3.9) follows by (3.1). If b < a; then by (3.1)
we get

0 � (1� �) f (b) + �f (a)� f ((1� �) b+ �a)(3.10)

� � (1� �) (b� a) [f 0 (b)� f 0 (a)]

for any � 2 [0; 1] : If we replace � by 1� � in (3.10), then we get (3.9). �

We can prove now the following reverse of the second inequality in (2.3) and the
�rst inequality in (2.5).
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Theorem 6. Let f be a di¤erentiable convex function on [0;1) with f (1) = 0:
Then for all Q; P; W 2 P and t 2 [0; 1] we have

0 � (1� t) If (Q;W ) + tIf (P;W )�Af;t (Q;P;W )(3.11)

� t (1� t)�f 0 (Q;P;W )
and

(3.12) 0 � Sf;t (Q;P;W )�Mf (Q;P;W ) �
1

2

�
t� 1

2

�
�f 0;t (Q;P;W ) ;

where

�f 0;t (Q;P;W ) =

Z
X

(q (x)� p (x))

�
�
f 0
�
(1� t) p (x)

w (x)
+ t

q (x)

w (x)

�
� f 0

�
(1� t) q (x)

w (x)
+ t

p (x)

w (x)

��
d� (x) :

Proof. From the inequality (3.11) we get

0 � (1� t) f
�
q (x)

w (x)

�
+ tf

�
p (x)

w (x)

�
� f

�
(1� t) q (x)

w (x)
+ t

p (x)

w (x)

�
(3.13)

� t (1� t)
�
f 0
�
q (x)

w (x)

�
� f 0

�
p (x)

w (x)

���
q (x)

w (x)
� p (x)

w (x)

�
:

If we multiply this inequality by w (x) � 0 and integrate on X we get (3.11).
For any x; y 2 �I we have

(3.14) 0 � f (x) + f (y)

2
� f

�
x+ y

2

�
� 1

4
(x� y) [f 0 (x)� f 0 (y)] :

If in this inequality we take x = (1� t) a+ tb; y = (1� t) b+ ta with a; b 2 �I and
t 2 [0; 1], then we get

0 � f ((1� t) a+ tb) + f ((1� t) b+ ta)
2

� f
�
a+ b

2

�
(3.15)

� 1

4
((1� t) a+ tb� (1� t) b� ta)

� [f 0 ((1� t) a+ tb)� f 0 ((1� t) b+ ta)]

=
1

2

�
t� 1

2

�
(b� a) [f 0 ((1� t) a+ tb)� f 0 ((1� t) b+ ta)] :

From this inequality we have

0 � 1

2

�
f

�
(1� t) q (x)

w (x)
+ t

p (x)

w (x)

�
+ f

�
(1� t) p (x)

w (x)
+ t

q (x)

w (x)

��
� f

�
q (x) + p (x)

2w (x)

�
� 1

2

�
t� 1

2

��
q (x)

w (x)
� p (x)

w (x)

�
�
�
f 0
�
(1� t) p (x)

w (x)
+ t

q (x)

w (x)

�
� f 0

�
(1� t) q (x)

w (x)
+ t

p (x)

w (x)

��
:

If we multiply this inequality by w (x) � 0 and integrate on X we get (3.11). �
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Corollary 5. Let f be a di¤erentiable convex function on [0;1) with f (1) = 0
and Q; P; W 2 P. If there exists 0 < r < 1 < R < 1 such that the condition
((r,R)) holds, then

0 � (1� t) If (Q;W ) + tIf (P;W )�Af;t (Q;P;W )(3.16)

� t (1� t) [f 0 (R)� f 0 (r)] d1 (Q;P )

and

0 � Sf;t (Q;P;W )�Mf (Q;P;W )(3.17)

� 1

2

����t� 12
���� [f 0 (R)� f 0 (r)] d1 (Q;P )

Proof. The inequality (3.16) is obvious. For (3.17), we have

1

2

�
t� 1

2

�
�f 0;t (Q;P;W ) =

1

2

����t� 12
���� j�f 0;t (Q;P;W )j

� 1

2

����t� 12
���� Z

X

jq (x)� p (x)j

�
����f 0�(1� t) p (x)w (x)

+ t
q (x)

w (x)

�
� f 0

�
(1� t) q (x)

w (x)
+ t

p (x)

w (x)

����� d� (x)
� 1

2
[f 0 (R)� f 0 (r)]

����t� 12
���� Z

X

jq (x)� p (x)j d� (x)

=
1

2

����t� 12
���� [f 0 (R)� f 0 (r)] d1 (Q;P ) :

�

Corollary 6. Let f be a twice di¤erentiable convex function on [0;1) with f (1) =
0 and Q; P; W 2 P. If there exists 0 < r < 1 < R < 1 such that the conditions
((r,R)) and (2.17) hold, then

0 � (1� t) If (Q;W ) + tIf (P;W )�Af;t (Q;P;W )(3.18)

� t (1� t) kf 00k[r;R];1 d�2 (Q;P;W )

and

(3.19) 0 � Sf;t (Q;P;W )�Mf (Q;P;W ) �
����t� 12

����2 kf 00k[r;R];1 d�2 (Q;P;W ) :
Proof. We have

1

2

�
t� 1

2

�
�f 0;t (Q;P;W ) �

1

2

����t� 12
���� Z

X

jq (x)� p (x)j

�
����f 0�(1� t) p (x)w (x)

+ t
q (x)

w (x)

�
� f 0

�
(1� t) q (x)

w (x)
+ t

p (x)

w (x)

����� d� (x)
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� 1

2

����t� 12
���� kf 00k[r;R];1 Z

X

jq (x)� p (x)j

�
����(1� t) p (x)w (x)

+ t
q (x)

w (x)
� (1� t) q (x)

w (x)
� t p (x)
w (x)

���� d� (x)
=

����t� 12
����2 kf 00k[r;R];1 Z

X

jq (x)� p (x)j jq (x)� p (x)j
w (x)

d� (x)

=

����t� 12
����2 kf 00k[r;R];1 d�2 (Q;P;W ) ;

which proves (3.19). �

4. Examples

Consider the dichotomy class generated by the function f� : [0;1)! R that is
given by

f� (u) =

8>>>><>>>>:
u� 1� lnu for � = 0;

1
�(1��) [�u+ 1� �� u

�] for � 2 Rn f0; 1g ;

1� u+ u lnu for � = 1:

We have

Af�;t (Q;P;W ) =

Z
X

f

�
(1� t) q (x) + tp (x)

w (x)

�
w (x) d� (x)

=

8>>>>>><>>>>>>:

�
R
X
w (x) ln

h
(1�t)q(x)+tp(x)

w(x)

i
d� (x) for � = 0;

1
�(1��)

�
1�

R
X
[(1� t) q (x) + tp (x)]� w1�� (x) d� (x)

�
for � 2 Rn f0; 1g ;

R
X
[(1� t) q (x) + tp (x)] ln

h
(1�t)q(x)+tp(x)

w(x)

i
d� (x) for � = 1

and

Mf� (Q;P;W ) =

Z
X

f

�
q (x) + p (x)

2w (x)

�
w (x) d� (x)

=

8>>>>>>><>>>>>>>:

�
R
X
w (x) ln

h
q(x)+p(x)
2w(x)

i
d� (x) for � = 0;

1
�(1��)

h
1�

R
X

h
q(x)+p(x)

2

i�
w1�� (x) d� (x)

i
for � 2 Rn f0; 1g ;

R
X

h
q(x)+p(x)

2

i
ln
h
q(x)+p(x)
2w(x)

i
d� (x) for � = 1:

Let us recall the following special means:
a) The arithmetic mean

A (a; b) :=
a+ b

2
; a; b > 0;

b) The geometric mean

G (a; b) :=
p
ab; a; b � 0;
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c) The harmonic mean

H (a; b) :=
2

1
a +

1
b

; a; b > 0;

d) The identric mean

I (a; b) :=

8>><>>:
1

e

�
bb

aa

� 1
b�a

if b 6= a

a if b = a

; a; b > 0

e) The logarithmic mean

L (a; b) :=

8><>:
b� a

ln b� ln a if b 6= a

a if b = a

; a; b > 0

f) The p-logarithmic mean

Lp (a; b) :=

8>><>>:
�
bp+1 � ap+1
(p+ 1) (b� a)

� 1
p

if b 6= a; p 2 Rn f�1; 0g

a if b = a

; a; b > 0:

If we put L0 (a; b) := I (a; b) and L�1 (a; b) := L (a; b) ; then it is well known that
the function R 3p 7! Lp (a; b) is monotonic increasing on R.
We observe that for p 2 Rn f�1; 0g we haveZ 1

0

[(1� t) a+ tb]p dt = Lpp (a; b) ;
Z 1

0

[(1� t) a+ tb]�1 dt = L�1 (a; b)

and Z 1

0

ln [(1� t) a+ tb] dt = ln I (a; b) :

We also have Z 1

0

[(1� t) a+ tb] ln [(1� t) a+ tb] dt

=
1

b� a

Z b

a

t ln tdt =
1

2

1

b� a

Z b

a

ln td
�
t2
�

=
1

2

1

b� a

�
b2 ln b� a2 ln a� b

2 � a2
2

�
=
1

2

1

b� a

�
b2 ln b2 � a2 ln a2

2
� b

2 � a2
2

�
=
1

2

1

b� a
b2 � a2
2

�
b2 ln b2 � a2 ln a2

b2 � a2 � 1
�

=
1

4
(b+ a) ln I

�
a2; b2

�
=
1

2
A (a; b) ln I

�
a2; b2

�
:
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Therefore

Af� (Q;P;W ) :=

Z 1

0

Af�;t (Q;P;W ) dt

=

Z
X

�Z 1

0

f

�
(1� t) q (x) + tp (x)

w (x)

�
dt

�
w (x) d� (x)

=

8>>>>>>><>>>>>>>:

�
R
X

�R 1
0
ln
h
(1�t)q(x)+tp(x)

w(x)

i
dt
�
w (x) d� (x) for � = 0;

1
�(1��)

h
1�

R
X

�R 1
0

h
(1�t)q(x)+tp(x)

w(x)

i�
dt
�
w (x) d� (x)

i
for � 2 Rn f0; 1g ;

R
X

R 1
0

�h
(1�t)q(x)+tp(x)

w(x)

i
ln
h
(1�t)q(x)+tp(x)

w(x)

i
dt
�
w (x) d� (x) for � = 1

=

8>>>>>>>><>>>>>>>>:

�
R
X
ln I

�
q(x)
w(x) ;

p(x)
w(x)

�
w (x) d� (x) for � = 0;

1
�(1��)

h
1�

R
X
L��

�
q(x)
w(x) ;

p(x)
w(x)

�
w (x) d� (x)

i
for � 2 Rn f0; 1g ;

1
2

R
X
A
�
q(x)
w(x) ;

p(x)
w(x)

�
ln I

��
q(x)
w(x)

�2
;
�
p(x)
w(x)

�2�
w (x) d� (x) for � = 1:

According to Corollary 1 we have

(4.1) 0 �Mf� (Q;P;W ) � Af� (Q;P;W ) �
1

2
[If� (Q;W ) + If� (P;W )]

and the mapping

(4.2) P � P 3 (Q;P ) 7! Af� (Q;P;W ) 2 [0;1)
is convex.
Observe also that

f 0� (u) =

8>>>><>>>>:
1� 1

u for � = 0;

1
1��

�
1� u��1

�
for � 2 Rn f0; 1g ;

lnu for � = 1;

which implies that

�f 0� (Q;P;W ) :=

Z
X

�
f 0�

�
q (x)

w (x)

�
� f 0�

�
p (x)

w (x)

��
(q (x)� p (x)) d� (x)

=

8>>>>>><>>>>>>:

R
X
(q(x)�p(x))2
p(x)q(x) w (x) d� (x) for � = 0;

1
��1

R
X
q��1(x)�p��1(x)

w�(x) (q (x)� p (x)) d� (x) for � 2 Rn f0; 1g ;

R
X
(q (x)� p (x)) ln

�
q(x)
p(x)

�
d� (x) for � = 1:

For all Q; P; W 2 P we have by Theorem 5 that

(4.3) 0 � Af� (Q;P;W )�Mf� (Q;P;W ) �
1

8
�f 0� (Q;P;W )
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and

(4.4) 0 � 1

2
[If� (Q;W ) + If� (P;W )]�Af� (Q;P;W ) �

1

8
�f 0� (Q;P;W ) :

If there exists 0 < r < 1 < R <1 such that the following condition holds

((r,R)) r � q (x)

w (x)
;
p (x)

w (x)
� R for �-a.e. x 2 X;

then by Corollary 2

(4.5) 0 � Af� (Q;P;W )�Mf� (Q;P;W )

� 1

8
d1 (Q;P )

8>>>><>>>>:

R�r
rR for � = 0;

R��1�r��1
��1 for � 2 Rn f0; 1g ;

ln
�
R
r

�
for � = 1

and

(4.6) 0 � 1

2
[If (Q;W ) + If (P;W )]�Af (Q;P;W )

� 1

8
d1 (Q;P )

8>>>><>>>>:

R�r
rR for � = 0;

R��1�r��1
��1 for � 2 Rn f0; 1g ;

ln
�
R
r

�
for � = 1:

Further, since

f 00� (u) =

8>>>><>>>>:
1
u2 for � = 0;

u��2 for � 2 Rn f0; 1g ;

1
u for � = 1;

hence by Corollary 3 we have

(4.7) 0 � Af (Q;P;W )�Mf (Q;P;W )

� 1

8
d�2 (Q;P;W )

8>>>>>>>><>>>>>>>>:

1
r2 for � = 0;

R��2 for � � 2;

r��2 for � < 2; � 2 Rn f0; 1g ;

1
r for � = 1;
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and

(4.8) 0 � 1

2
[If (Q;W ) + If (P;W )]�Af (Q;P;W )

� 1

8
d�2 (Q;P;W )

8>>>>>>>><>>>>>>>>:

1
r2 for � = 0;

R��2 for � � 2;

r��2 for � < 2; � 2 Rn f0; 1g ;

1
r for � = 1:

The interested reader may apply the above general results for other particular
divergences of interest generated by the convex functions provided in the introduc-
tion. We omit the details.
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