SOME NEW f-DIVERGENCE MEASURES AND THEIR BASIC PROPERTIES

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract

In this paper we introduce some new f-divergence measures that we call t-asymmetric/symmetric divergence measure and integral divergence measure, establish their joint convexity and provide some inequalities that connect these f-divergences to the classical one intyroduced by Csiszar in 1963. Applications for the dichotomy class of convex functions are provided as well.

1. Introduction

Let (X, \mathcal{A}) be a measurable space satisfying $|\mathcal{A}|>2$ and μ be a σ-finite measure on (X, \mathcal{A}). Let \mathcal{P} be the set of all probability measures on (X, \mathcal{A}) which are absolutely continuous with respect to μ. For $P, Q \in \mathcal{P}$, let $p=\frac{d P}{d \mu}$ and $q=\frac{d Q}{d \mu}$ denote the Radon-Nikodym derivatives of P and Q with respect to μ.

Two probability measures $P, Q \in \mathcal{P}$ are said to be orthogonal and we denote this by $Q \perp P$ if

$$
P(\{q=0\})=Q(\{p=0\})=1 .
$$

Let $f:[0, \infty) \rightarrow(-\infty, \infty]$ be a convex function that is continuous at 0 , i.e., $f(0)=\lim _{u \downarrow 0} f(u)$.

In 1963, I. Csiszár [3] introduced the concept of f-divergence as follows.
Definition 1. Let $P, Q \in \mathcal{P}$. Then

$$
\begin{equation*}
I_{f}(Q, P)=\int_{X} p(x) f\left[\frac{q(x)}{p(x)}\right] d \mu(x), \tag{1.1}
\end{equation*}
$$

is called the f-divergence of the probability distributions Q and P.
Remark 1. Observe that, the integrand in the formula (1.1) is undefined when $p(x)=0$. The way to overcome this problem is to postulate for f as above that

$$
\begin{equation*}
0 f\left[\frac{q(x)}{0}\right]=q(x) \lim _{u \downarrow 0}\left[u f\left(\frac{1}{u}\right)\right], x \in X . \tag{1.2}
\end{equation*}
$$

We now give some examples of f-divergences that are well-known and often used in the literature (see also [2]).

[^0]1.1. The Class of χ^{α}-Divergences. The f-divergences of this class, which is generated by the function $\chi^{\alpha}, \alpha \in[1, \infty)$, defined by
$$
\chi^{\alpha}(u)=|u-1|^{\alpha}, \quad u \in[0, \infty)
$$
have the form
\[

$$
\begin{equation*}
I_{f}(Q, P)=\int_{X} p\left|\frac{q}{p}-1\right|^{\alpha} d \mu=\int_{X} p^{1-\alpha}|q-p|^{\alpha} d \mu \tag{1.3}
\end{equation*}
$$

\]

From this class only the parameter $\alpha=1$ provides a distance in the topological sense, namely the total variation distance $V(Q, P)=\int_{X}|q-p| d \mu$. The most prominent special case of this class is, however, Karl Pearson's χ^{2}-divergence

$$
\chi^{2}(Q, P)=\int_{X} \frac{q^{2}}{p} d \mu-1
$$

that is obtained for $\alpha=2$.
1.2. Dichotomy Class. From this class, generated by the function $f_{\alpha}:[0, \infty) \rightarrow$ \mathbb{R}

$$
f_{\alpha}(u)= \begin{cases}u-1-\ln u & \text { for } \alpha=0 \\ \frac{1}{\alpha(1-\alpha)}\left[\alpha u+1-\alpha-u^{\alpha}\right] & \text { for } \alpha \in \mathbb{R} \backslash\{0,1\} ; \\ 1-u+u \ln u & \text { for } \alpha=1\end{cases}
$$

only the parameter $\alpha=\frac{1}{2}\left(f_{\frac{1}{2}}(u)=2(\sqrt{u}-1)^{2}\right)$ provides a distance, namely, the Hellinger distance

$$
H(Q, P)=\left[\int_{X}(\sqrt{q}-\sqrt{p})^{2} d \mu\right]^{\frac{1}{2}}
$$

Another important divergence is the Kullback-Leibler divergence obtained for $\alpha=1$,

$$
K L(Q, P)=\int_{X} q \ln \left(\frac{q}{p}\right) d \mu
$$

1.3. Matsushita's Divergences. The elements of this class, which is generated by the function $\varphi_{\alpha}, \alpha \in(0,1]$ given by

$$
\varphi_{\alpha}(u):=\left|1-u^{\alpha}\right|^{\frac{1}{\alpha}}, \quad u \in[0, \infty),
$$

are prototypes of metric divergences, providing the distances $\left[I_{\varphi_{\alpha}}(Q, P)\right]^{\alpha}$.
1.4. Puri-Vincze Divergences. This class is generated by the functions $\Phi_{\alpha}, \alpha \in$ $[1, \infty)$ given by

$$
\Phi_{\alpha}(u):=\frac{|1-u|^{\alpha}}{(u+1)^{\alpha-1}}, \quad u \in[0, \infty)
$$

It has been shown in $[19]$ that this class provides the distances $\left[I_{\Phi_{\alpha}}(Q, P)\right]^{\frac{1}{\alpha}}$.
1.5. Divergences of Arimoto-type. This class is generated by the functions

$$
\Psi_{\alpha}(u):= \begin{cases}\frac{\alpha}{\alpha-1}\left[\left(1+u^{\alpha}\right)^{\frac{1}{\alpha}}-2^{\frac{1}{\alpha}-1}(1+u)\right] & \text { for } \alpha \in(0, \infty) \backslash\{1\} ; \\ (1+u) \ln 2+u \ln u-(1+u) \ln (1+u) & \text { for } \alpha=1 ; \\ \frac{1}{2}|1-u| & \text { for } \alpha=\infty .\end{cases}
$$

It has been shown in [21] that this class provides the distances $\left[I_{\Psi_{\alpha}}(Q, P)\right]^{\min \left(\alpha, \frac{1}{\alpha}\right)}$ for $\alpha \in(0, \infty)$ and $\frac{1}{2} V(Q, P)$ for $\alpha=\infty$.

For f continuous convex on $[0, \infty)$ we obtain the $*$-conjugate function of f by

$$
f^{*}(u)=u f\left(\frac{1}{u}\right), \quad u \in(0, \infty)
$$

and

$$
f^{*}(0)=\lim _{u \downarrow 0} f^{*}(u)
$$

It is also known that if f is continuous convex on $[0, \infty)$ then so is f^{*}.
The following two theorems contain the most basic properties of f-divergences. For their proofs we refer the reader to Chapter 1 of [20] (see also [2]).

Theorem 1 (Uniqueness and Symmetry Theorem). Let f, f_{1} be continuous convex on $[0, \infty)$. We have

$$
I_{f_{1}}(Q, P)=I_{f}(Q, P)
$$

for all $P, Q \in \mathcal{P}$ if and only if there exists a constant $c \in \mathbb{R}$ such that

$$
f_{1}(u)=f(u)+c(u-1),
$$

for any $u \in[0, \infty)$.
Theorem 2 (Range of Values Theorem). Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a continuous convex function on $[0, \infty)$.

For any $P, Q \in \mathcal{P}$, we have the double inequality

$$
\begin{equation*}
f(1) \leq I_{f}(Q, P) \leq f(0)+f^{*}(0) . \tag{1.4}
\end{equation*}
$$

(i) If $P=Q$, then the equality holds in the first part of (1.4).

If f is strictly convex at 1 , then the equality holds in the first part of (1.4) if and only if $P=Q$;
(ii) If $Q \perp P$, then the equality holds in the second part of (1.4).

If $f(0)+f^{*}(0)<\infty$, then equality holds in the second part of (1.4) if and only if $Q \perp P$.

The following result is a refinement of the second inequality in Theorem 2 (see [2, Theorem 3]).

Theorem 3. Let f be a continuous convex function on $[0, \infty)$ with $f(1)=0$ (f is normalised) and $f(0)+f^{*}(0)<\infty$. Then

$$
\begin{equation*}
0 \leq I_{f}(Q, P) \leq \frac{1}{2}\left[f(0)+f^{*}(0)\right] V(Q, P) \tag{1.5}
\end{equation*}
$$

for any $Q, P \in \mathcal{P}$.
For other inequalities for f-divergence see [1], [4]-[17].

2. Some Basic Properties

Let f be a continuous convex function on $[0, \infty)$ with $f(1)=0$ and $t \in[0,1]$. We define the t-asymmetric divergence measure $A_{f, t}$ by

$$
\begin{equation*}
A_{f, t}(Q, P, W):=\int_{X} f\left[\frac{(1-t) q(x)+t p(x)}{w(x)}\right] w(x) d \mu(x) \tag{2.1}
\end{equation*}
$$

and the t-symmetric divergence measure $S_{f, t}$ by

$$
\begin{equation*}
S_{f, t}(Q, P, W):=\frac{1}{2}\left[A_{f, t}(Q, P, W)+A_{f, 1-t}(Q, P, W)\right] \tag{2.2}
\end{equation*}
$$

for any $Q, P, W \in \mathcal{P}$.
For $t=\frac{1}{2}$ we consider the mid-point divergence measure M_{f} by

$$
\begin{aligned}
M_{f}(Q, P, W) & :=\int_{X} f\left[\frac{q(x)+p(x)}{2 w(x)}\right] w(x) d \mu(x) \\
& =A_{f, 1 / 2}(Q, P, W)=S_{f, 1 / 2}(Q, P, W)
\end{aligned}
$$

for any $Q, P, W \in \mathcal{P}$.
We can also consider the integral divergence measure

$$
\begin{aligned}
A_{f}(Q, P, W) & :=\int_{0}^{1} A_{f, t}(Q, P, W) d t=\int_{0}^{1} S_{f, t}(Q, P, W) \\
& =\int_{X}\left(\int_{0}^{1} f\left[\frac{(1-t) q(x)+t p(x)}{w(x)}\right] d t\right) w(x) d \mu(x)
\end{aligned}
$$

The following result contains some basic facts concerning the divergence measures above:

Theorem 4. Let f be a continuous convex function on $[0, \infty)$ with $f(1)=0$. Then for all $Q, P, W \in \mathcal{P}$ and $t \in[0,1]$

$$
\begin{equation*}
0 \leq A_{f, t}(Q, P, W) \leq(1-t) I_{f}(Q, W)+t I_{f}(P, W) \tag{2.3}
\end{equation*}
$$

and the mapping

$$
\begin{equation*}
\mathcal{P} \times \mathcal{P} \ni(Q, P) \mapsto A_{f, t}(Q, P, W) \in[0, \infty) \tag{2.4}
\end{equation*}
$$

is convex as a function of two variables.
We have the inequalities

$$
\begin{equation*}
0 \leq M_{f}(Q, P, W) \leq S_{f, t}(Q, P, W) \leq \frac{1}{2}\left[I_{f}(Q, W)+I_{f}(P, W)\right] \tag{2.5}
\end{equation*}
$$

for all $Q, P, W \in \mathcal{P}$ and the mapping

$$
\begin{equation*}
\mathcal{P} \times \mathcal{P} \ni(Q, P) \mapsto S_{f, t}(Q, P, W) \in[0, \infty) \tag{2.6}
\end{equation*}
$$

is convex as a function of two variables.

Proof. Let $t \in[0,1]$ and $Q, P, W \in \mathcal{P}$. We use Jensen's integral inequality to get

$$
\begin{aligned}
A_{f, t}(Q, P, W) & =\int_{X} f\left[\frac{(1-t) q(x)+t p(x)}{w(x)}\right] w(x) d \mu(x) \\
& \geq f\left(\int_{X}\left[\frac{(1-t) q(x)+t p(x)}{w(x)}\right] w(x) d \mu(x)\right) \\
& =f\left(\int_{X}[(1-t) q(x)+t p(x)] d \mu(x)\right) \\
& =f\left((1-t) \int_{X} q(x) d \mu(x)+t \int_{X} p(x) d \mu(x)\right)=f(1)=0 .
\end{aligned}
$$

By the convexity of f we also have

$$
\begin{aligned}
A_{f, t}(Q, P, W) & =\int_{X} f\left[\frac{(1-t) q(x)+t p(x)}{w(x)}\right] w(x) d \mu(x) \\
& \leq(1-t) \int_{X} f\left[\frac{q(x)}{w(x)}\right] w(x) d \mu(x)+t \int_{X} f\left[\frac{p(x)}{w(x)}\right] w(x) d \mu(x) \\
& =(1-t) I_{f}(Q, W)+t I_{f}(P, W)
\end{aligned}
$$

for $t \in[0,1]$ and $Q, P, W \in \mathcal{P}$, and the inequality (2.3) is proved.
Let $\alpha, \beta \geq 0$ and such that $\alpha+\beta=1$. If $\left(Q_{1}, P_{1}\right),\left(Q_{2}, P_{2}\right) \in \mathcal{P} \times \mathcal{P}$, then

$$
\begin{array}{r}
A_{f, t}\left(\alpha\left(Q_{1}, P_{1}, W\right)+\beta\left(Q_{2}, P_{2}, W\right)\right) \\
\quad=A_{f, t}\left(\left(\alpha Q_{1}+\beta Q_{2}, \alpha P_{1}+\beta P_{2}, W\right)\right) \\
=\int_{X} f\left[\frac{(1-t)\left(\alpha Q_{1}+\beta Q_{2}\right)+t\left(\alpha P_{1}+\beta P_{2}\right)}{w(x)}\right] w(x) d \mu(x) \\
=\int_{X} f\left[\frac{\alpha\left[(1-t) Q_{1}+t P_{1}\right]+\beta\left[(1-t) Q_{2}+t P_{2}\right]}{w(x)}\right] w(x) d \mu(x) \\
\leq \alpha \int_{X} f\left[\frac{(1-t) Q_{1}+t P_{1}}{w(x)}\right] w(x) d \mu(x)+\beta \int_{X} f\left[\frac{(1-t) Q_{2}+t P_{2}}{w(x)}\right] w(x) d \mu(x) \\
\quad=\alpha A_{f, t}\left(Q_{1}, P_{1}, W\right)+\beta A_{f, t}\left(Q_{2}, P_{2}, W\right)
\end{array}
$$

which proves the joint convexity of the mapping defined in (2.4).
Using the convexity of f we have

$$
\begin{aligned}
& f\left(\frac{1}{2}\left[\frac{(1-t) q(x)+t p(x)}{w(x)}+\frac{(1-t) p(x)+t q(x)}{w(x)}\right]\right) \\
& \leq \frac{1}{2}\left\{f\left[\frac{(1-t) q(x)+t p(x)}{w(x)}\right]+f\left[\frac{(1-t) p(x)+t q(x)}{w(x)}\right]\right\}
\end{aligned}
$$

namely

$$
\begin{align*}
& f\left(\frac{q(x)+p(x)}{2 w(x)}\right) \tag{2.7}\\
& \leq \frac{1}{2}\left\{f\left[\frac{(1-t) q(x)+t p(x)}{w(x)}\right]+f\left[\frac{(1-t) p(x)+t q(x)}{w(x)}\right]\right\}
\end{align*}
$$

for $x \in X$.
By multiplying (2.7) with $w(x)$ and integrating over $\mu(x)$ we get the second inequality inequality in (2.5).

We have, by (2.3) that

$$
\begin{aligned}
S_{f, t}(Q, P, W) & =\frac{1}{2}\left[A_{f, t}(Q, P, W)+A_{f, 1-t}(Q, P, W)\right] \\
& \leq \frac{1}{2}\left[(1-t) I_{f}(Q, W)+t I_{f}(P, W)+t I_{f}(Q, W)+(1-t I)_{f}(P, W)\right] \\
& =\frac{1}{2}\left[I_{f}(Q, W)+I_{f}(P, W)\right]
\end{aligned}
$$

which proves the third inequality in (2.5).
The convexity of the mapping defined by (2.6) follows by the same property of the mapping defined by (2.4).

Corollary 1. Let f be a continuous convex function on $[0, \infty)$ with $f(1)=0$. Then for all $Q, P, W \in \mathcal{P}$ we have the inequalities

$$
\begin{equation*}
0 \leq M_{f}(Q, P, W) \leq A_{f}(Q, P, W) \leq \frac{1}{2}\left[I_{f}(Q, W)+I_{f}(P, W)\right] \tag{2.8}
\end{equation*}
$$

The mapping

$$
\begin{equation*}
\mathcal{P} \times \mathcal{P} \ni(Q, P) \mapsto A_{f}(Q, P, W) \in[0, \infty) \tag{2.9}
\end{equation*}
$$

is convex as a function of two variables.
Proof. The inequality (2.8) follows by integrating over t in the inequality (2.5). Since the mapping

$$
\mathcal{P} \times \mathcal{P} \ni(Q, P) \mapsto S_{f, t}(Q, P, W) \in[0, \infty)
$$

is convex as a function of two variables for all $t \in[0,1]$, then it remains convex if one takes the integral over $t \in[0,1]$.

The following reverses of the Hermite-Hadamard inequality hold:
Lemma 1 (Dragomir, 2002 [6] and [7]). Let $h:[a, b] \rightarrow \mathbb{R}$ be a convex function on $[a, b]$. Then

$$
\begin{align*}
0 & \leq \frac{1}{8}\left[h_{+}\left(\frac{a+b}{2}\right)-h_{-}\left(\frac{a+b}{2}\right)\right](b-a) \tag{2.10}\\
& \leq \frac{h(a)+h(b)}{2}-\frac{1}{b-a} \int_{a}^{b} h(x) d x \\
& \leq \frac{1}{8}\left[h_{-}(b)-h_{+}(a)\right](b-a)
\end{align*}
$$

and

$$
\begin{align*}
0 & \leq \frac{1}{8}\left[h_{+}\left(\frac{a+b}{2}\right)-h_{-}\left(\frac{a+b}{2}\right)\right](b-a) \tag{2.11}\\
& \leq \frac{1}{b-a} \int_{a}^{b} h(x) d x-h\left(\frac{a+b}{2}\right) \\
& \leq \frac{1}{8}\left[h_{-}(b)-h_{+}(a)\right](b-a) .
\end{align*}
$$

The constant $\frac{1}{8}$ is best possible in all inequalities.
We have the reverse inequalities:

Theorem 5. Let f be a differentiable convex function on $[0, \infty)$ with $f(1)=0$. Then for all $Q, P, W \in \mathcal{P}$ we have

$$
\begin{equation*}
0 \leq A_{f}(Q, P, W)-M_{f}(Q, P, W) \leq \frac{1}{8} \Delta_{f^{\prime}}(Q, P, W) \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leq \frac{1}{2}\left[I_{f}(Q, W)+I_{f}(P, W)\right]-A_{f}(Q, P, W) \leq \frac{1}{8} \Delta_{f^{\prime}}(Q, P, W) \tag{2.13}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{f^{\prime}}(Q, P, W):=\int_{X}\left[f^{\prime}\left(\frac{q(x)}{w(x)}\right)-f^{\prime}\left(\frac{p(x)}{w(x)}\right)\right](q(x)-p(x)) d \mu(x) \tag{2.14}
\end{equation*}
$$

Proof. Let $Q, P, W \in \mathcal{P}$. By the inequality (2.11) we have

$$
\begin{aligned}
0 & \leq \int_{0}^{1} f\left[\frac{(1-t) q(x)+t p(x)}{w(x)}\right] d t-f\left(\frac{q(x)+p(x)}{2 w(x)}\right) \\
& \leq \frac{1}{8}\left[f^{\prime}\left(\frac{q(x)}{w(x)}\right)-f^{\prime}\left(\frac{p(x)}{w(x)}\right)\right]\left(\frac{q(x)}{w(x)}-\frac{p(x)}{w(x)}\right) .
\end{aligned}
$$

If we multiply this inequality by $w(x) \geq 0$ and integrate on X we get (2.12).
From (2.10) we also have

$$
\begin{aligned}
0 & \leq \frac{1}{2}\left[f\left(\frac{q(x)}{w(x)}\right)+f\left(\frac{p(x)}{w(x)}\right)\right]-\int_{0}^{1} f\left[\frac{(1-t) q(x)+t p(x)}{w(x)}\right] d t \\
& \leq \frac{1}{8}\left[f^{\prime}\left(\frac{q(x)}{w(x)}\right)-f^{\prime}\left(\frac{p(x)}{w(x)}\right)\right]\left(\frac{q(x)}{w(x)}-\frac{p(x)}{w(x)}\right) .
\end{aligned}
$$

If we multiply this inequality by $w(x) \geq 0$ and integrate on X we get (2.12).
Corollary 2. Let f be a differentiable convex function on $[0, \infty)$ with $f(1)=0$ and $Q, P, W \in \mathcal{P}$. If there exists $0<r<1<R<\infty$ such that the following condition holds

$$
\begin{equation*}
r \leq \frac{q(x)}{w(x)}, \frac{p(x)}{w(x)} \leq R \text { for } \mu \text {-a.e. } x \in X \tag{r,R}
\end{equation*}
$$

then

$$
\begin{equation*}
0 \leq A_{f}(Q, P, W)-M_{f}(Q, P, W) \leq \frac{1}{8}\left[f^{\prime}(R)-f^{\prime}(r)\right] d_{1}(Q, P) \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leq \frac{1}{2}\left[I_{f}(Q, W)+I_{f}(P, W)\right]-A_{f}(Q, P, W) \leq \frac{1}{8}\left[f^{\prime}(R)-f^{\prime}(r)\right] d_{1}(Q, P) \tag{2.16}
\end{equation*}
$$

where

$$
d_{1}(Q, P):=\int_{X}|q(x)-p(x)| d \mu(x)
$$

Proof. Since f^{\prime} is increasing on $[r, R]$, then

$$
\left|f^{\prime}(t)-f^{\prime}(s)\right| \leq f^{\prime}(R)-f^{\prime}(r)
$$

for all $t, s \in[r, R]$.

Therefore

$$
\begin{aligned}
\Delta_{f^{\prime}}(Q, P, W) & :=\int_{X}\left[f^{\prime}\left(\frac{q(x)}{w(x)}\right)-f^{\prime}\left(\frac{p(x)}{w(x)}\right)\right](q(x)-p(x)) d \mu(x) \\
& \leq \int_{X}\left|f^{\prime}\left(\frac{q(x)}{w(x)}\right)-f^{\prime}\left(\frac{p(x)}{w(x)}\right)\right||q(x)-p(x)| d \mu(x) \\
& \leq\left[f^{\prime}(R)-f^{\prime}(r)\right] \int_{X}|q(x)-p(x)| d \mu(x) \\
& =\left[f^{\prime}(R)-f^{\prime}(r)\right] d_{1}(Q, P)
\end{aligned}
$$

which proves the desired inequalities (2.15) and (2.16).
Corollary 3. Let f be a twice differentiable convex function on $[0, \infty)$ with $f(1)=$ 0 and $Q, P, W \in \mathcal{P}$. If there exists $0<r<1<R<\infty$ such that the condition (r, R) holds and

$$
\begin{equation*}
\left\|f^{\prime \prime}\right\|_{[r, R], \infty}:=\sup _{t \in[r, R]}\left|f^{\prime \prime}(t)\right|<\infty, \tag{2.17}
\end{equation*}
$$

then

$$
\begin{equation*}
0 \leq A_{f}(Q, P, W)-M_{f}(Q, P, W) \leq \frac{1}{8}\left\|f^{\prime \prime}\right\|_{[r, R], \infty} d_{\chi^{2}}(Q, P, W) \tag{2.18}
\end{equation*}
$$

and
(2.19)

$$
0 \leq \frac{1}{2}\left[I_{f}(Q, W)+I_{f}(P, W)\right]-A_{f}(Q, P, W) \leq \frac{1}{8}\left\|f^{\prime \prime}\right\|_{[r, R], \infty} d_{\chi^{2}}(Q, P, W)
$$

where

$$
\begin{equation*}
d_{\chi^{2}}(Q, P, W):=\int_{X} \frac{(q(x)-p(x))^{2}}{w(x)} d \mu(x) . \tag{2.20}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
\Delta_{f^{\prime}}(Q, P, W) & :=\int_{X}\left[f^{\prime}\left(\frac{q(x)}{w(x)}\right)-f^{\prime}\left(\frac{p(x)}{w(x)}\right)\right](q(x)-p(x)) d \mu(x) \\
& \leq \int_{X}\left|f^{\prime}\left(\frac{q(x)}{w(x)}\right)-f^{\prime}\left(\frac{p(x)}{w(x)}\right)\right||q(x)-p(x)| d \mu(x) \\
& \left.\leq\left\|f^{\prime \prime}\right\|_{[r, R], \infty} \int_{X} \frac{q(x)}{w(x)}-\frac{p(x)}{w(x)}| | q(x)-p(x) \right\rvert\, d \mu(x) \\
& =\left\|f^{\prime \prime}\right\|_{[r, R], \infty} \int_{X} \frac{(q(x)-p(x))^{2}}{w(x)} d \mu(x)
\end{aligned}
$$

which proves the desired results (2.18) and (2.19).

3. Further Results

We have the following result for convex functions that is of interest in itself as well:

Lemma 2. Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a convex function on the interval I, $a, b \in \stackrel{\circ}{I}$, the interior of I, with $a<b$ and $\nu \in[0,1]$. Then

$$
\begin{align*}
& \nu(1-\nu)(b-a)\left[f_{+}^{\prime}((1-\nu) a+\nu b)-f_{-}^{\prime}((1-\nu) a+\nu b)\right] \tag{3.1}\\
& \leq(1-\nu) f(a)+\nu f(b)-f((1-\nu) a+\nu b) \\
& \leq \nu(1-\nu)(b-a)\left[f_{-}^{\prime}(b)-f_{+}^{\prime}(a)\right]
\end{align*}
$$

In particular, we have

$$
\begin{align*}
\frac{1}{4}(b-a)\left[f_{+}^{\prime}\left(\frac{a+b}{2}\right)-f_{-}^{\prime}\left(\frac{a+b}{2}\right)\right] & \leq \frac{f(a)+f(b)}{2}-f\left(\frac{a+b}{2}\right) \tag{3.2}\\
& \leq \frac{1}{4}(b-a)\left[f_{-}^{\prime}(b)-f_{+}^{\prime}(a)\right]
\end{align*}
$$

The constant $\frac{1}{4}$ is best possible in both inequalities from (3.2).
Proof. The case $\nu=0$ or $\nu=1$ reduces to equality in (3.1).
Since f is convex on I it follows that the function is differentiable on $I \stackrel{\circ}{I}$ except a countably number of points, the lateral derivatives $f_{ \pm}^{\prime}$ exists in each point of I, they are increasing on $\stackrel{\circ}{I}$ and $f_{-}^{\prime} \leq f_{+}^{\prime}$ on $\stackrel{\circ}{I}$.

For any $x, y \in \stackrel{\circ}{I}$ we have for the Lebesgue integral

$$
\begin{equation*}
f(x)=f(y)+\int_{y}^{x} f^{\prime}(s) d s=f(y)+(x-y) \int_{0}^{1} f^{\prime}((1-t) y+t x) d t \tag{3.3}
\end{equation*}
$$

Assume that $a<b$ and $\nu \in(0,1)$. By (3.3) we have

$$
\begin{align*}
& f((1-\nu) a+\nu b) \tag{3.4}\\
& =f(a)+\nu(b-a) \int_{0}^{1} f^{\prime}((1-t) a+t((1-\nu) a+\nu b)) d t
\end{align*}
$$

and

$$
\begin{align*}
& f((1-\nu) a+\nu b) \tag{3.5}\\
& =f(b)-(1-\nu)(b-a) \int_{0}^{1} f^{\prime}((1-t) b+t((1-\nu) a+\nu b)) d t
\end{align*}
$$

If we multiply (3.4) by $1-\nu$, (3.4) by ν and add the obtained equalities, then we get

$$
\begin{aligned}
f((1-\nu) a+\nu b) & =(1-\nu) f(a)+\nu f(b) \\
& +(1-\nu) \nu(b-a) \int_{0}^{1} f^{\prime}((1-t) a+t((1-\nu) a+\nu b)) d t \\
& -(1-\nu) \nu(b-a) \int_{0}^{1} f^{\prime}((1-t) b+t((1-\nu) a+\nu b)) d t
\end{aligned}
$$

which is equivalent to

$$
\begin{align*}
& \quad(1-\nu) f(a)+\nu f(b)-f((1-\nu) a+\nu b)=(1-\nu) \nu(b-a) \tag{3.6}\\
& \times \int_{0}^{1}\left[f^{\prime}((1-t) b+t((1-\nu) a+\nu b))-f^{\prime}((1-t) a+t((1-\nu) a+\nu b))\right] d t
\end{align*}
$$

That is an equality of interest in itself.

Since $a<b$ and $\nu \in(0,1)$, then $(1-\nu) a+\nu b \in(a, b)$ and

$$
(1-t) a+t((1-\nu) a+\nu b) \in[a,(1-\nu) a+\nu b]
$$

while

$$
(1-t) b+t((1-\nu) a+\nu b) \in[(1-\nu) a+\nu b, b]
$$

for any $t \in[0,1]$.
By the monotonicity of the derivative we have

$$
\begin{equation*}
f_{+}^{\prime}((1-\nu) a+\nu b) \leq f^{\prime}((1-t) b+t((1-\nu) a+\nu b)) \leq f_{-}^{\prime}(b) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{+}^{\prime}(a) \leq f^{\prime}((1-t) a+t((1-\nu) a+\nu b)) \leq f_{-}^{\prime}((1-\nu) a+\nu b) \tag{3.8}
\end{equation*}
$$

for any $t \in[0,1]$.
By integrating the inequalities (3.7) and (3.8) we get

$$
f_{+}^{\prime}((1-\nu) a+\nu b) \leq \int_{0}^{1} f^{\prime}((1-t) b+t((1-\nu) a+\nu b)) d t \leq f_{-}^{\prime}(b)
$$

and

$$
f_{+}^{\prime}(a) \leq \int_{0}^{1} f^{\prime}((1-t) a+t((1-\nu) a+\nu b)) d t \leq f_{-}^{\prime}((1-\nu) a+\nu b)
$$

which implies that

$$
\begin{aligned}
& f_{+}^{\prime}((1-\nu) a+\nu b)-f_{-}^{\prime}((1-\nu) a+\nu b) \leq \int_{0}^{1} f^{\prime}((1-t) b+t((1-\nu) a+\nu b)) d t \\
& -\int_{0}^{1} f^{\prime}((1-t) a+t((1-\nu) a+\nu b)) d t \leq f_{-}^{\prime}(b)-f_{+}^{\prime}(a)
\end{aligned}
$$

Making use of the equality (3.6) we the obtain the desired result (3.1).
If we consider the convex function $f:[a, b] \rightarrow \mathbb{R}, f(x)=\left|x-\frac{a+b}{2}\right|$, then we have $f_{+}^{\prime}\left(\frac{a+b}{2}\right)=1, f_{-}^{\prime}\left(\frac{a+b}{2}\right)=-1$ and by replacing in (3.2) we get in all terms the same quantity $\frac{1}{2}(b-a)$ which show that the constant $\frac{1}{4}$ is best possible in both inequalities from (3.2).

Corollary 4. If the function $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable convex function on $\stackrel{\circ}{I}$, then for any $a, b \in \stackrel{\circ}{I}$ and $\nu \in[0,1]$ we have

$$
\begin{align*}
0 & \leq(1-\nu) f(a)+\nu f(b)-f((1-\nu) a+\nu b) \tag{3.9}\\
& \leq \nu(1-\nu)(b-a)\left[f^{\prime}(b)-f^{\prime}(a)\right]
\end{align*}
$$

Proof. If $a<b$, then the inequality (3.9) follows by (3.1). If $b<a$, then by (3.1) we get

$$
\begin{align*}
0 & \leq(1-\nu) f(b)+\nu f(a)-f((1-\nu) b+\nu a) \tag{3.10}\\
& \leq \nu(1-\nu)(b-a)\left[f^{\prime}(b)-f^{\prime}(a)\right]
\end{align*}
$$

for any $\nu \in[0,1]$. If we replace ν by $1-\nu$ in (3.10), then we get (3.9).
We can prove now the following reverse of the second inequality in (2.3) and the first inequality in (2.5).

Theorem 6. Let f be a differentiable convex function on $[0, \infty)$ with $f(1)=0$. Then for all $Q, P, W \in \mathcal{P}$ and $t \in[0,1]$ we have

$$
\begin{align*}
0 & \leq(1-t) I_{f}(Q, W)+t I_{f}(P, W)-A_{f, t}(Q, P, W) \tag{3.11}\\
& \leq t(1-t) \Delta_{f^{\prime}}(Q, P, W)
\end{align*}
$$

and

$$
\begin{equation*}
0 \leq S_{f, t}(Q, P, W)-M_{f}(Q, P, W) \leq \frac{1}{2}\left(t-\frac{1}{2}\right) \Delta_{f^{\prime}, t}(Q, P, W) \tag{3.12}
\end{equation*}
$$

where

$$
\begin{aligned}
\Delta_{f^{\prime}, t} & (Q, P, W)=\int_{X}(q(x)-p(x)) \\
& \times\left[f^{\prime}\left((1-t) \frac{p(x)}{w(x)}+t \frac{q(x)}{w(x)}\right)-f^{\prime}\left((1-t) \frac{q(x)}{w(x)}+t \frac{p(x)}{w(x)}\right)\right] d \mu(x)
\end{aligned}
$$

Proof. From the inequality (3.11) we get

$$
\begin{align*}
0 & \leq(1-t) f\left(\frac{q(x)}{w(x)}\right)+t f\left(\frac{p(x)}{w(x)}\right)-f\left((1-t) \frac{q(x)}{w(x)}+t \frac{p(x)}{w(x)}\right) \tag{3.13}\\
& \leq t(1-t)\left[f^{\prime}\left(\frac{q(x)}{w(x)}\right)-f^{\prime}\left(\frac{p(x)}{w(x)}\right)\right]\left(\frac{q(x)}{w(x)}-\frac{p(x)}{w(x)}\right)
\end{align*}
$$

If we multiply this inequality by $w(x) \geq 0$ and integrate on X we get (3.11).
For any $x, y \in I$ we have

$$
\begin{equation*}
0 \leq \frac{f(x)+f(y)}{2}-f\left(\frac{x+y}{2}\right) \leq \frac{1}{4}(x-y)\left[f^{\prime}(x)-f^{\prime}(y)\right] \tag{3.14}
\end{equation*}
$$

If in this inequality we take $x=(1-t) a+t b, y=(1-t) b+t a$ with $a, b \in \stackrel{\circ}{I}$ and $t \in[0,1]$, then we get

$$
\begin{align*}
0 & \leq \frac{f((1-t) a+t b)+f((1-t) b+t a)}{2}-f\left(\frac{a+b}{2}\right) \tag{3.15}\\
& \leq \frac{1}{4}((1-t) a+t b-(1-t) b-t a) \\
& \times\left[f^{\prime}((1-t) a+t b)-f^{\prime}((1-t) b+t a)\right] \\
& =\frac{1}{2}\left(t-\frac{1}{2}\right)(b-a)\left[f^{\prime}((1-t) a+t b)-f^{\prime}((1-t) b+t a)\right]
\end{align*}
$$

From this inequality we have

$$
\begin{aligned}
0 & \leq \frac{1}{2}\left[f\left((1-t) \frac{q(x)}{w(x)}+t \frac{p(x)}{w(x)}\right)+f\left((1-t) \frac{p(x)}{w(x)}+t \frac{q(x)}{w(x)}\right)\right] \\
& -f\left(\frac{q(x)+p(x)}{2 w(x)}\right) \\
& \leq \frac{1}{2}\left(t-\frac{1}{2}\right)\left(\frac{q(x)}{w(x)}-\frac{p(x)}{w(x)}\right) \\
& \times\left[f^{\prime}\left((1-t) \frac{p(x)}{w(x)}+t \frac{q(x)}{w(x)}\right)-f^{\prime}\left((1-t) \frac{q(x)}{w(x)}+t \frac{p(x)}{w(x)}\right)\right] .
\end{aligned}
$$

If we multiply this inequality by $w(x) \geq 0$ and integrate on X we get (3.11).

Corollary 5. Let f be a differentiable convex function on $[0, \infty)$ with $f(1)=0$ and $Q, P, W \in \mathcal{P}$. If there exists $0<r<1<R<\infty$ such that the condition ($(r, R))$ holds, then

$$
\begin{align*}
0 & \leq(1-t) I_{f}(Q, W)+t I_{f}(P, W)-A_{f, t}(Q, P, W) \tag{3.16}\\
& \leq t(1-t)\left[f^{\prime}(R)-f^{\prime}(r)\right] d_{1}(Q, P)
\end{align*}
$$

and

$$
\begin{align*}
0 & \leq S_{f, t}(Q, P, W)-M_{f}(Q, P, W) \tag{3.17}\\
& \leq \frac{1}{2}\left|t-\frac{1}{2}\right|\left[f^{\prime}(R)-f^{\prime}(r)\right] d_{1}(Q, P)
\end{align*}
$$

Proof. The inequality (3.16) is obvious. For (3.17), we have

$$
\begin{array}{r}
\frac{1}{2}\left(t-\frac{1}{2}\right) \Delta_{f^{\prime}, t}(Q, P, W)=\frac{1}{2}\left|t-\frac{1}{2}\right|\left|\Delta_{f^{\prime}, t}(Q, P, W)\right| \\
\leq \frac{1}{2}\left|t-\frac{1}{2}\right| \int_{X}|q(x)-p(x)| \\
\times\left|f^{\prime}\left((1-t) \frac{p(x)}{w(x)}+t \frac{q(x)}{w(x)}\right)-f^{\prime}\left((1-t) \frac{q(x)}{w(x)}+t \frac{p(x)}{w(x)}\right)\right| d \mu(x) \\
\leq \frac{1}{2}\left[f^{\prime}(R)-f^{\prime}(r)\right]\left|t-\frac{1}{2}\right| \int_{X}|q(x)-p(x)| d \mu(x) \\
\\
=\frac{1}{2}\left|t-\frac{1}{2}\right|\left[f^{\prime}(R)-f^{\prime}(r)\right] d_{1}(Q, P)
\end{array}
$$

Corollary 6. Let f be a twice differentiable convex function on $[0, \infty)$ with $f(1)=$ 0 and $Q, P, W \in \mathcal{P}$. If there exists $0<r<1<R<\infty$ such that the conditions ((r, R)) and (2.17) hold, then

$$
\begin{align*}
0 & \leq(1-t) I_{f}(Q, W)+t I_{f}(P, W)-A_{f, t}(Q, P, W) \tag{3.18}\\
& \leq t(1-t)\left\|f^{\prime \prime}\right\|_{[r, R], \infty} d_{\chi^{2}}(Q, P, W)
\end{align*}
$$

and

$$
\begin{equation*}
0 \leq S_{f, t}(Q, P, W)-M_{f}(Q, P, W) \leq\left|t-\frac{1}{2}\right|^{2}\left\|f^{\prime \prime}\right\|_{[r, R], \infty} d_{\chi^{2}}(Q, P, W) \tag{3.19}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
& \frac{1}{2}\left(t-\frac{1}{2}\right) \Delta_{f^{\prime}, t}(Q, P, W) \leq \frac{1}{2}\left|t-\frac{1}{2}\right| \int_{X}|q(x)-p(x)| \\
& \quad \times\left|f^{\prime}\left((1-t) \frac{p(x)}{w(x)}+t \frac{q(x)}{w(x)}\right)-f^{\prime}\left((1-t) \frac{q(x)}{w(x)}+t \frac{p(x)}{w(x)}\right)\right| d \mu(x)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{1}{2}\left|t-\frac{1}{2}\right|\left\|f^{\prime \prime}\right\|_{[r, R], \infty} \int_{X}|q(x)-p(x)| \\
& \times\left|(1-t) \frac{p(x)}{w(x)}+t \frac{q(x)}{w(x)}-(1-t) \frac{q(x)}{w(x)}-t \frac{p(x)}{w(x)}\right| d \mu(x) \\
&=\left|t-\frac{1}{2}\right|^{2}\left\|f^{\prime \prime}\right\|_{[r, R], \infty} \int_{X}|q(x)-p(x)| \frac{|q(x)-p(x)|}{w(x)} d \mu(x) \\
&=\left|t-\frac{1}{2}\right|^{2}\left\|f^{\prime \prime}\right\|_{[r, R], \infty} d_{\chi^{2}}(Q, P, W)
\end{aligned}
$$

which proves (3.19).

4. ExAMPles

Consider the dichotomy class generated by the function $f_{\alpha}:[0, \infty) \rightarrow \mathbb{R}$ that is given by

$$
f_{\alpha}(u)= \begin{cases}u-1-\ln u & \text { for } \alpha=0 \\ \frac{1}{\alpha(1-\alpha)}\left[\alpha u+1-\alpha-u^{\alpha}\right] & \text { for } \alpha \in \mathbb{R} \backslash\{0,1\} \\ 1-u+u \ln u & \text { for } \alpha=1\end{cases}
$$

We have

$$
\begin{aligned}
& A_{f_{\alpha}, t}(Q, P, W)=\int_{X} f\left[\frac{(1-t) q(x)+t p(x)}{w(x)}\right] w(x) d \mu(x) \\
& = \begin{cases}-\int_{X} w(x) \ln \left[\frac{(1-t) q(x)+t p(x)}{w(x)}\right] d \mu(x) & \text { for } \alpha=0 ; \\
\frac{1}{\alpha(1-\alpha)}\left[1-\int_{X}[(1-t) q(x)+t p(x)]^{\alpha} w^{1-\alpha}(x) d \mu(x)\right] & \text { for } \alpha \in \mathbb{R} \backslash\{0,1\} ; \\
\int_{X}[(1-t) q(x)+t p(x)] \ln \left[\frac{(1-t) q(x)+t p(x)}{w(x)}\right] d \mu(x) & \text { for } \alpha=1\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& M_{f_{\alpha}}(Q, P, W)=\int_{X} f\left[\frac{q(x)+p(x)}{2 w(x)}\right] w(x) d \mu(x) \\
& \quad= \begin{cases}-\int_{X} w(x) \ln \left[\frac{q(x)+p(x)}{2 w(x)}\right] d \mu(x) & \text { for } \alpha=0 ; \\
\frac{1}{\alpha(1-\alpha)}\left[1-\int_{X}\left[\frac{q(x)+p(x)}{2}\right]^{\alpha} w^{1-\alpha}(x) d \mu(x)\right] & \text { for } \alpha \in \mathbb{R} \backslash\{0,1\} ; \\
\int_{X}\left[\frac{q(x)+p(x)}{2}\right] \ln \left[\frac{q(x)+p(x)}{2 w(x)}\right] d \mu(x) & \text { for } \alpha=1 .\end{cases}
\end{aligned}
$$

Let us recall the following special means:
a) The arithmetic mean

$$
A(a, b):=\frac{a+b}{2}, a, b>0
$$

b) The geometric mean

$$
G(a, b):=\sqrt{a b} ; \quad a, b \geq 0
$$

c) The harmonic mean

$$
H(a, b):=\frac{2}{\frac{1}{a}+\frac{1}{b}} ; \quad a, b>0
$$

d) The identric mean

$$
I(a, b):=\left\{\begin{array}{ll}
\frac{1}{e}\left(\frac{b^{b}}{a^{a}}\right)^{\frac{1}{b-a}} & \text { if } \quad b \neq a \\
a & \text { if } \quad b=a
\end{array} ; a, b>0\right.
$$

e) The logarithmic mean

$$
L(a, b):=\left\{\begin{array}{lll}
\frac{b-a}{\ln b-\ln a} & \text { if } & b \neq a \\
a & \text { if } & b=a
\end{array} ; a, b>0\right.
$$

f) The p-logarithmic mean

$$
L_{p}(a, b):= \begin{cases}\left(\frac{b^{p+1}-a^{p+1}}{(p+1)(b-a)}\right)^{\frac{1}{p}} & \text { if } b \neq a, p \in \mathbb{R} \backslash\{-1,0\} \\ a & \text { if } \quad b=a\end{cases}
$$

If we put $L_{0}(a, b):=I(a, b)$ and $L_{-1}(a, b):=L(a, b)$, then it is well known that the function $\mathbb{R} \ni p \mapsto L_{p}(a, b)$ is monotonic increasing on \mathbb{R}.

We observe that for $p \in \mathbb{R} \backslash\{-1,0\}$ we have

$$
\int_{0}^{1}[(1-t) a+t b]^{p} d t=L_{p}^{p}(a, b), \int_{0}^{1}[(1-t) a+t b]^{-1} d t=L^{-1}(a, b)
$$

and

$$
\int_{0}^{1} \ln [(1-t) a+t b] d t=\ln I(a, b)
$$

We also have

$$
\begin{aligned}
& \int_{0}^{1}[(1-t) a+t b] \ln [(1-t) a+t b] d t \\
& =\frac{1}{b-a} \int_{a}^{b} t \ln t d t=\frac{1}{2} \frac{1}{b-a} \int_{a}^{b} \ln t d\left(t^{2}\right) \\
& =\frac{1}{2} \frac{1}{b-a}\left[b^{2} \ln b-a^{2} \ln a-\frac{b^{2}-a^{2}}{2}\right] \\
& =\frac{1}{2} \frac{1}{b-a}\left[\frac{b^{2} \ln b^{2}-a^{2} \ln a^{2}}{2}-\frac{b^{2}-a^{2}}{2}\right] \\
& =\frac{1}{2} \frac{1}{b-a} \frac{b^{2}-a^{2}}{2}\left[\frac{b^{2} \ln b^{2}-a^{2} \ln a^{2}}{b^{2}-a^{2}}-1\right] \\
& =\frac{1}{4}(b+a) \ln I\left(a^{2}, b^{2}\right)=\frac{1}{2} A(a, b) \ln I\left(a^{2}, b^{2}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& A_{f_{\alpha}}(Q, P, W):=\int_{0}^{1} A_{f_{\alpha}, t}(Q, P, W) d t \\
& =\int_{X}\left(\int_{0}^{1} f\left[\frac{(1-t) q(x)+t p(x)}{w(x)}\right] d t\right) w(x) d \mu(x) \\
& = \begin{cases}-\int_{X}\left(\int_{0}^{1} \ln \left[\frac{(1-t) q(x)+t p(x)}{w(x)}\right] d t\right) w(x) d \mu(x) & \text { for } \alpha=0 ; \\
\frac{1}{\alpha(1-\alpha)}\left[1-\int_{X}\left(\int_{0}^{1}\left[\frac{(1-t) q(x)+t p(x)}{w(x)}\right]^{\alpha} d t\right) w(x) d \mu(x)\right] & \text { for } \alpha \in \mathbb{R} \backslash\{0,1\} ; \\
\int_{X} \int_{0}^{1}\left(\left[\frac{(1-t) q(x)+t p(x)}{w(x)}\right] \ln \left[\frac{(1-t) q(x)+t p(x)}{w(x)}\right] d t\right) w(x) d \mu(x) & \text { for } \alpha=1 \\
\frac{1}{\alpha(1-\alpha)}\left[1-\int_{X} L_{\alpha}^{\alpha}\left(\frac{q(x)}{w(x)}, \frac{p(x)}{w(x)}\right) w(x) d \mu(x)\right] & \text { for } \alpha=0 ; \\
\frac{1}{2} \int_{X} A\left(\frac{q(x)}{w(x)}, \frac{p(x)}{w(x)}\right) \ln I\left(\left(\frac{q(x)}{w(x)}\right)^{2},\left(\frac{p(x)}{w(x)}\right)^{2}\right) w(x) d \mu(x) & \text { for } \alpha=1 .\end{cases} \\
& = \begin{cases}-\int_{X} \ln I\left(x(x), \frac{p(x)}{w(x)}\right) w(x) d \mu(x) & \text { for } \alpha \in \mathbb{R} \backslash\{0,1\}\end{cases}
\end{aligned}
$$

According to Corollary 1 we have

$$
\begin{equation*}
0 \leq M_{f_{\alpha}}(Q, P, W) \leq A_{f_{\alpha}}(Q, P, W) \leq \frac{1}{2}\left[I_{f_{\alpha}}(Q, W)+I_{f_{\alpha}}(P, W)\right] \tag{4.1}
\end{equation*}
$$

and the mapping

$$
\begin{equation*}
\mathcal{P} \times \mathcal{P} \ni(Q, P) \mapsto A_{f_{\alpha}}(Q, P, W) \in[0, \infty) \tag{4.2}
\end{equation*}
$$

is convex.
Observe also that

$$
f_{\alpha}^{\prime}(u)= \begin{cases}1-\frac{1}{u} & \text { for } \alpha=0 \\ \frac{1}{1-\alpha}\left(1-u^{\alpha-1}\right) & \text { for } \alpha \in \mathbb{R} \backslash\{0,1\} \\ \ln u & \text { for } \alpha=1\end{cases}
$$

which implies that

$$
\begin{aligned}
\Delta_{f_{\alpha}^{\prime}}(Q, P, W):=\int_{X}\left[f_{\alpha}^{\prime}\left(\frac{q(x)}{w(x)}\right)-f_{\alpha}^{\prime}\left(\frac{p(x)}{w(x)}\right)\right](q(x)-p(x)) d \mu(x) \\
\quad= \begin{cases}\int_{X} \frac{(q(x)-p(x))^{2}}{p(x) q(x)} w(x) d \mu(x) & \text { for } \alpha=0 ; \\
\frac{1}{\alpha-1} \int_{X} \frac{q^{\alpha-1}(x)-p^{\alpha-1}(x)}{w^{\alpha}(x)}(q(x)-p(x)) d \mu(x) & \text { for } \alpha \in \mathbb{R} \backslash\{0,1\} ; \\
\int_{X}(q(x)-p(x)) \ln \left(\frac{q(x)}{p(x)}\right) d \mu(x) & \text { for } \alpha=1 .\end{cases}
\end{aligned}
$$

For all $Q, P, W \in \mathcal{P}$ we have by Theorem 5 that

$$
\begin{equation*}
0 \leq A_{f_{\alpha}}(Q, P, W)-M f_{\alpha}(Q, P, W) \leq \frac{1}{8} \Delta_{f_{\alpha}^{\prime}}(Q, P, W) \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leq \frac{1}{2}\left[I_{f_{\alpha}}(Q, W)+I_{f_{\alpha}}(P, W)\right]-A_{f_{\alpha}}(Q, P, W) \leq \frac{1}{8} \Delta_{f_{\alpha}^{\prime}}(Q, P, W) \tag{4.4}
\end{equation*}
$$

If there exists $0<r<1<R<\infty$ such that the following condition holds

$$
\begin{equation*}
r \leq \frac{q(x)}{w(x)}, \frac{p(x)}{w(x)} \leq R \text { for } \mu \text {-a.e. } x \in X \tag{r,R}
\end{equation*}
$$

then by Corollary 2

$$
\begin{align*}
& 0 \leq A_{f_{\alpha}}(Q, P, W)-M_{f_{\alpha}}(Q, P, W) \tag{4.5}\\
& \quad \leq \frac{1}{8} d_{1}(Q, P) \begin{cases}\frac{R-r}{r R} & \text { for } \alpha=0 \\
\frac{R^{\alpha-1}-r^{\alpha-1}}{\alpha-1} & \text { for } \alpha \in \mathbb{R} \backslash\{0,1\} \\
\ln \left(\frac{R}{r}\right) & \text { for } \alpha=1\end{cases}
\end{align*}
$$

and

$$
\begin{align*}
& 0 \leq \frac{1}{2}\left[I_{f}(Q, W)+I_{f}(P, W)\right]-A_{f}(Q, P, W) \tag{4.6}\\
& \leq \frac{1}{8} d_{1}(Q, P) \begin{cases}\frac{R-r}{r R} & \text { for } \alpha=0 \\
\frac{R^{\alpha-1}-r^{\alpha-1}}{\alpha-1} & \text { for } \alpha \in \mathbb{R} \backslash\{0,1\} \\
\ln \left(\frac{R}{r}\right) & \text { for } \alpha=1\end{cases}
\end{align*}
$$

Further, since

$$
f_{\alpha}^{\prime \prime}(u)= \begin{cases}\frac{1}{u^{2}} & \text { for } \alpha=0 \\ u^{\alpha-2} & \text { for } \alpha \in \mathbb{R} \backslash\{0,1\} \\ \frac{1}{u} & \text { for } \alpha=1\end{cases}
$$

hence by Corollary 3 we have

$$
\begin{align*}
0 \leq A_{f}(Q, P, W)- & M_{f}(Q, P, W) \tag{4.7}\\
& \leq \frac{1}{8} d_{\chi^{2}}(Q, P, W) \begin{cases}\frac{1}{r^{2}} & \text { for } \alpha=0 \\
R^{\alpha-2} & \text { for } \alpha \geq 2 \\
r^{\alpha-2} & \text { for } \alpha<2, \alpha \in \mathbb{R} \backslash\{0,1\} ; \\
\frac{1}{r} & \text { for } \alpha=1\end{cases}
\end{align*}
$$

and

$$
\begin{align*}
0 \leq \frac{1}{2}\left[I_{f}(Q, W)+\right. & \left.I_{f}(P, W)\right]-A_{f}(Q, P, W) \tag{4.8}\\
& \leq \frac{1}{8} d_{\chi^{2}}(Q, P, W) \begin{cases}\frac{1}{r^{2}} & \text { for } \alpha=0 ; \\
R^{\alpha-2} & \text { for } \alpha \geq 2 ; \\
r^{\alpha-2} & \text { for } \alpha<2, \alpha \in \mathbb{R} \backslash\{0,1\} ; \\
\frac{1}{r} & \text { for } \alpha=1 .\end{cases}
\end{align*}
$$

The interested reader may apply the above general results for other particular divergences of interest generated by the convex functions provided in the introduction. We omit the details.

References

[1] P. Cerone and S. S. Dragomir, Approximation of the integral mean divergence and f divergence via mean results. Math. Comput. Modelling 42 (2005), no. 1-2, 207-219.
[2] P. Cerone, S. S. Dragomir and F. Österreicher, Bounds on extended f-divergences for a variety of classes, Kybernetika (Prague) 40 (2004), no. 6, 745-756. Preprint, RGMIA Res. Rep. Coll. 6(2003), No.1, Article 5. [ONLINE: http://rgmia.vu.edu.au/v6n1.html].
[3] I. Csiszár, Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. (German) Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 (1963) 85-108.
[4] S. S. Dragomir, Some inequalities for (m, M)-convex mappings and applications for the Csiszár Φ-divergence in information theory. Math. J. Ibaraki Univ. 33 (2001), 35-50.
[5] S. S. Dragomir, Some inequalities for two Csiszár divergences and applications. Mat. Bilten No. 25 (2001), 73-90.
[6] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure and Appl. Math., 3 (2) (2002), Art. 31.
[7] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure and Appl. Math., 3 (3) (2002), Art. 35.
[8] S. S. Dragomir, An upper bound for the Csiszár f-divergence in terms of the variational distance and applications. Panamer. Math. J. 12 (2002), no. 4, 43-54.
[9] S. S. Dragomir, Upper and lower bounds for Csiszár f-divergence in terms of Hellinger discrimination and applications. Nonlinear Anal. Forum 7 (2002), no. 1, 1-13
[10] S. S. Dragomir, Bounds for f-divergences under likelihood ratio constraints. Appl. Math. 48 (2003), no. 3, 205-223.
[11] S. S. Dragomir, New inequalities for Csiszár divergence and applications. Acta Math. Vietnam. 28 (2003), no. 2, 123-134.
[12] S. S. Dragomir, A generalized f-divergence for probability vectors and applications. Panamer. Math. J. 13 (2003), no. 4, 61-69.
[13] S. S. Dragomir, Some inequalities for the Csiszár φ-divergence when φ is an L-Lipschitzian function and applications. Ital. J. Pure Appl. Math. No. 15 (2004), 57-76.
[14] S. S. Dragomir, A converse inequality for the Csiszár Φ-divergence. Tamsui Oxf. J. Math. Sci. 20 (2004), no. 1, 35-53.
[15] S. S. Dragomir, Some general divergence measures for probability distributions. Acta Math. Hungar. 109 (2005), no. 4, 331-345.
[16] S. S. Dragomir, Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. $74(3)(2006), 471-476$.
[17] S. S. Dragomir, A refinement of Jensen's inequality with applications for f-divergence measures. Taiwanese J. Math. 14 (2010), no. 1, 153-164.
[18] S. S. Dragomir, A generalization of f-divergence measure to convex functions defined on linear spaces. Commun. Math. Anal. 15 (2013), no. 2, 1-14.
[19] P. Kafka, F. Österreicher and I. Vincze, On powers of f-divergence defining a distance, Studia Sci. Math. Hungar., 26 (1991), 415-422.
[20] F. Liese and I. Vajda, Convex Statistical Distances, Teubuer - Texte zur Mathematik, Band 95, Leipzig, 1987.
[21] F. Österreicher and I. Vajda, A new class of metric divergences on probability spaces and its applicability in statistics. Ann. Inst. Statist. Math. 55 (2003), no. 3, 639-653.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand,, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 94A17, 26D15.
 Key words and phrases. f-divergence measures, HH f-divergence measures, Kullback-Leibler divergence, Hellinger discrimination, χ^{2}-divergence, Jeffrey's distance.

