
SOME INEQUALITIES FOR AN INTEGRAL OPERATOR AND
n-TIME DIFFERENTIABLE FUNCTIONS

SILVESTRU S. DRAGOMIR1;2 AND STEVEN G. FROM3

Abstract. In this paper we establish some trapezoid type inequalities for the
operator

Da+;b�f (x) :=
1

2

�
1

x� a

Z x

a
f (t) dt+

1

b� x

Z b

x
f (t) dt

�
; x 2 (a; b)

in the case of functions f : [a; b] ! C whose n-derivatives f (n) are absolutely
continuous on [a; b]. Several Hermite-Hadamard type inequalities are also pro-
vided.

1. Introduction

The following theorem is well known in the literature as Taylor�s formula or
Taylor�s theorem with the integral remainder.

Theorem 1. Let I � R be a closed interval, c 2 I and let n be a positive integer.
If f : I �! C is such that the n-derivative f (n) is absolutely continuous on I, then
for each z 2 I
(1.1) f (z) = Tn (f ; c; z) +Rn (f ; c; z) ;

where Tn (f ; c; z) is Taylor�s polynomial, i.e.,

(1.2) Tn (f ; c; z) :=
nX
k=0

(z � c)k

k!
f (k) (c) :

Note that f (0) := f and 0! := 1 and the remainder is given by

(1.3) Rn (f ; c; z) :=
1

n!

Z z

c

(z � t)n f (n+1) (t) dt:

A simple proof of this theorem can be achieved by mathematical induction using
the integration by parts formula in the Lebesgue integral.
Assume that the function f : (a; b) ! C is Lebesgue integrable on (a; b) : We

consider the following operator [7]

(1.4) Da+;b�f (x) :=
1

2

"
1

x� a

Z x

a

f (t) dt+
1

b� x

Z b

x

f (t) dt

#
; x 2 (a; b) :

We observe that if we take x = a+b
2 ; then we have

Da+;b�f

�
a+ b

2

�
=

1

b� a

Z b

a

f (t) dt:
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Moreover, if f (a+) := limx!a+ f (x) exists and is �nite, then we have

lim
x!a+

Da+;b�f (x) =
1

2

"
f (a+) +

1

b� a

Z b

a

f (t) dt

#
and if f (b�) := limx!b� f (x) exists and is �nite, then we have

lim
x!b�

Da+;b�f (x) =
1

2

"
f (b�) + 1

b� a

Z b

a

f (t) dt

#
:

So, if f : [a; b]! C is Lebesgue integrable on [a; b] and continuous at right in a and
at left in b, then we can extend the operator on the whole interval by putting

Da+;b�f (a) :=
1

2

"
f (a) +

1

b� a

Z b

a

f (t) dt

#
and

Da+;b�f (b) :=
1

2

"
f (b) +

1

b� a

Z b

a

f (t) dt

#
:

We say that the function f : [a; b]! C is of H-r-Hölder type if

jf (t)� f (s)j � H jt� sjr

for any t; s 2 [a; b] ; where H > 0 and r 2 (0; 1] : If r = 1 and we put H = L; then
we call the function of L-Lipschitz type.
In the recent paper [7] we obtained amongst other the following trapezoid type

inequalities:

Theorem 2. If f is of H-r-Hölder type on [a; b] with H > 0 and r 2 (0; 1] ; then
for any x 2 (a; b) we have

(1.5)

����Da+;b�f (x)� f (a) + f (b)2

���� � 1

2 (r + 1)
H [(x� a)r + (b� x)r] :

In particular, if f is of L-Lipschitz type, then

(1.6)

����Da+;b�f (x)� f (a) + f (b)2

���� � 1

4
L (b� a)

for any x 2 (a; b) :

If we take in Theorem 2 x = a+b
2 ; then we get the following trapezoid type

inequality

(1.7)

����� 1

b� a

Z b

a

f (t) dt� f (a) + f (b)
2

����� � 1

2r (r + 1)
H (b� a)r :

In particular, if f is of L-Lipschitz type, then we get the result from [16]:

(1.8)

����� 1

b� a

Z b

a

f (t) dt� f (a) + f (b)
2

����� � 1

4
L (b� a) :

Motivated by the above results, by the use of Taylor�s formula with integral re-
mainder (1.1), in this paper we establish a trapezoid type representation for the
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operator Da+;b�f (x) ; x 2 (a; b) in the case of functions f : [a; b] ! C whose n-
derivatives f (n) are absolutely continuous on [a; b] : As applications, several trape-
zoid type inequalities are also provided. Moreover, several Hermite-Hadamard type
inequalities are also established.

2. Some Trapezoid Type Identities

We have the following representation:

Theorem 3. Let I � R be an interval, [a; b] � I and f : I �! C is such that the
n-derivative f (n) is absolutely continuous on [a; b] : Then for any x 2 (a; b) we have
the representation

(2.1) Da+;b�f (x) =
nX
k=0

1

(k + 1)!

"
f (k) (a) (x� a)k + (�1)k f (k) (b) (b� x)k

2

#

+
1

2n!
(x� a)n+1

Z 1

0

Z 1

0

un+1snf (n+1) (sa+ (1� s) [(1� u) a+ ux]) dsdu

+
(�1)n+1

2n!
(b� x)n+1

Z 1

0

Z 1

0

un+1snf (n+1) ((1� s) [ux+ (1� u) b] + sb) dsdu:

Proof. Using Taylor�s representation with the integral remainder (1.1) we can write
the following two identities

(2.2) f (y) =
nX
k=0

1

k!
f (k) (a) (y � a)k + 1

n!

Z y

a

f (n+1) (t) (y � t)n dt

and

(2.3) f (y) =

nX
k=0

(�1)k

k!
f (k) (b) (b� y)k + (�1)

n+1

n!

Z b

y

f (n+1) (t) (t� y)n dt

for any y; a; b 2 �I:
For any integrable function h on an interval and any distinct numbers c; d in

that interval, we have, by the change of variable t = (1� s) c+ sd; s 2 [0; 1] thatZ d

c

h (t) dt = (d� c)
Z 1

0

h ((1� s) c+ sd) ds:

Therefore,Z y

a

f (n+1) (t) (y � t)n dt = (y � a)
Z 1

0

f (n+1) ((1� s) a+ sy) (y � (1� s) a� sy)n ds

= (y � a)n+1
Z 1

0

f (n+1) ((1� s) a+ sy) (1� s)n ds

andZ b

y

f (n+1) (t) (t� y)n dt = (b� y)
Z 1

0

f (n+1) ((1� s) y + sb) ((1� s) y + sb� y)n ds

= (b� y)n+1
Z 1

0

f (n+1) ((1� s) y + sb) snds:
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The identities (2.2) and (2.3) can then be written as

(2.4) f (y) =
nX
k=0

1

k!
f (k) (a) (y � a)k

+
1

n!
(y � a)n+1

Z 1

0

f (n+1) ((1� s) a+ sy) (1� s)n ds

and

(2.5) f (y) =
nX
k=0

(�1)k

k!
f (k) (b) (b� y)k

+ (�1)n+1 (b� y)
n+1

n!

Z 1

0

f (n+1) ((1� s) y + sb) snds:

Now, for x 2 (a; b) ; if we integrate (2.4) on [a; x] over y; then we getZ x

a

f (y) dy =
nX
k=0

1

(k + 1)!
f (k) (a) (x� a)k+1

+
1

n!

Z x

a

(y � a)n+1
�Z 1

0

f (n+1) ((1� s) a+ sy) (1� s)n ds
�
dy;

which gives

(2.6)
1

x� a

Z x

a

f (y) dy =
nX
k=0

1

(k + 1)!
f (k) (a) (x� a)k

+
1

n!

1

x� a

Z x

a

(y � a)n+1
�Z 1

0

f (n+1) ((1� s) a+ sy) (1� s)n ds
�
dy:

Also, if we integrate (2.5) on [x; b] over y; then we getZ b

x

f (y) dy =

nX
k=0

(�1)k

(k + 1)!
f (k) (b) (b� x)k+1

+
(�1)n+1

n!

Z b

x

(b� y)n+1
�Z 1

0

f (n+1) ((1� s) y + sb) snds
�
dy;

which gives

(2.7)
1

b� x

Z b

x

f (y) dy =
nX
k=0

(�1)k

(k + 1)!
f (k) (b) (b� x)k

+
(�1)n+1

n!

1

b� x

Z b

x

(b� y)n+1
�Z 1

0

f (n+1) ((1� s) y + sb) snds
�
dy:

Now, if we make the change of variable y = (1� u) a+ ux; u 2 [0; 1] ; thenZ x

a

(y � a)n+1
�Z 1

0

f (n+1) ((1� s) a+ sy) (1� s)n ds
�
dy

= (x� a)n+2
Z 1

0

un+1
�Z 1

0

f (n+1) ((1� s) a+ s [(1� u) a+ ux]) (1� s)n ds
�
du
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and by (2.6) we get

(2.8)
1

x� a

Z x

a

f (y) dy =
nX
k=0

1

(k + 1)!
f (k) (a) (x� a)k

+
1

n!
(x� a)n+1

Z 1

0

un+1
�Z 1

0

f (n+1) ((1� s) a+ s [(1� u) a+ ux]) (1� s)n ds
�
du

=
nX
k=0

1

(k + 1)!
f (k) (a) (x� a)k

+
1

n!
(x� a)n+1

Z 1

0

un+1
�Z 1

0

f (n+1) (sa+ (1� s) [(1� u) a+ ux]) snds
�
du

for x 2 (a; b) ; where for the last equality we replaced s by 1� s:
Also, if we make the change of variable y = (1� v)x+ vb; v 2 [0; 1] ; thenZ b

x

(b� y)n+1
�Z 1

0

f (n+1) ((1� s) y + sb) snds
�
dy

= (b� x)n+2
Z 1

0

(1� v)n+1
�Z 1

0

f (n+1) ((1� s) [(1� v)x+ vb] + sb) snds
�
dv

and by changing again the variable u = 1� v; v 2 [0; 1] ; we haveZ b

x

(b� y)n+1
�Z 1

0

f (n+1) ((1� s) y + sb) snds
�
dy

= (b� x)n+2
Z 1

0

un+1
�Z 1

0

f (n+1) ((1� s) [ux+ (1� u) b] + sb) snds
�
du:

From (2.7) we get

(2.9)
1

b� x

Z b

x

f (y) dy =
nX
k=0

(�1)k

(k + 1)!
f (k) (b) (b� x)k

+
(�1)n+1

n!
(b� x)n+1

Z 1

0

un+1
�Z 1

0

f (n+1) ((1� s) [ux+ (1� u) b] + sb) snds
�
du

for x 2 (a; b) :
Therefore, by (2.8) and (2.9) we get

Da+;b�f (x) =
1

2

"
1

x� a

Z x

a

f (t) dt+
1

b� x

Z b

x

f (t) dt

#

=
1

2

"
nX
k=0

1

(k + 1)!
f (k) (a) (x� a)k +

nX
k=0

(�1)k

(k + 1)!
f (k) (b) (b� x)k

#

+
1

2n!
(x� a)n+1

Z 1

0

un+1
�Z 1

0

f (n+1) (sa+ (1� s) [(1� u) a+ ux]) snds
�
du

+
(�1)n+1

2n!
(b� x)n+1

Z 1

0

un+1
�Z 1

0

f (n+1) ((1� s) [ux+ (1� u) b] + sb) snds
�
du;

which proves the desired result (2.1). �

The case when x = a+b
2 is of interest.
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Corollary 1. With the assumption of Theorem 3 we have

(2.10)
1

b� a

Z b

a

f (t) dt =
nX
k=0

1

(k + 1)!

"
f (k) (a) + (�1)k f (k) (b)

2k+1

#
(b� a)k

+
1

2n+2n!
(b� a)n+1

Z 1

0

Z 1

0

un+1sn
�
f (n+1)

�
sa+ (1� s)

�
(1� u) a+ ua+ b

2

��
dsdu

+(�1)n+1 f (n+1)
�
(1� s)

�
u
a+ b

2
+ (1� u) b

�
+ sb

��
dsdu:

The proof follows by Theorem 3 on taking x = a+b
2 .

Remark 1. For n = 0; we get from (2.1) that

(2.11) Da+;b�f (x) =
f (a) + f (b)

2

+
1

2
(x� a)

Z 1

0

Z 1

0

uf 0 (sa+ (1� s) [(1� u) a+ ux]) dsdu

� 1
2
(b� x)

Z 1

0

Z 1

0

uf 0 ((1� s) [ux+ (1� u) b] + sb) dsdu

for x 2 (a; b) and, in particular

(2.12)
1

b� a

Z b

a

f (t) dt =
f (a) + f (b)

2

+
1

4
(b� a)

Z 1

0

Z 1

0

u

�
f 0
�
sa+ (1� s)

�
(1� u) a+ ua+ b

2

��
�f 0

�
(1� s)

�
u
a+ b

2
+ (1� u) b

�
+ sb

��
dsdu:

For n = 1; we get from (2.1) that

(2.13) Da+;b�f (x) =
f (a) + f (b)

2
+
f 0 (a) (x� a)� f 0 (b) (b� x)

4

+
1

2
(x� a)2

Z 1

0

Z 1

0

u2sf 00 (sa+ (1� s) [(1� u) a+ ux]) dsdu

+
1

2
(b� x)2

Z 1

0

Z 1

0

u2sf 00 ((1� s) [ux+ (1� u) b] + sb) dsdu

for x 2 (a; b) and, in particular

(2.14)
1

b� a

Z b

a

f (t) dt =
f (a) + f (b)

2
� 1
8
(f 0 (b)� f 0 (a)) (b� a)

+
1

8
(b� a)2

Z 1

0

Z 1

0

u2s

�
f 00
�
sa+ (1� s)

�
(1� u) a+ ua+ b

2

��
+f 00

�
(1� s)

�
u
a+ b

2
+ (1� u) b

�
+ sb

��
dsdu:

In [7] the �rst author obtained the following equality:
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Lemma 1. Assume that the function f : (a; b)! C is Lebesgue integrable on (a; b)
and f (a+) ; f (b�) exists and are �nite. Then we have

(2.15)
Z b

a

Da+;b�f (x) dx =

Z b

a

ln

 
b� ap

(x� a) (b� x)

!
f (x) dx:

Using this equality we can state the following corollary as well:

Corollary 2. With the assumption of Theorem 3 we have

(2.16)
1

b� a

Z b

a

ln

 
b� ap

(x� a) (b� x)

!
f (x) dx

=
nX
k=0

1

(k + 1)! (k + 1)

"
f (k) (a) + (�1)k f (k) (b)

2

#
(b� a)k

+
1

2n!

1

b� a

Z b

a

(x� a)n+1

�
�Z 1

0

Z 1

0

snun+1f (n+1) (sa+ (1� s) [(1� u) a+ ux]) dsdu
�
dx

+
(�1)n+1

2n!

1

b� a

Z b

a

(b� x)n+1

�
�Z 1

0

Z 1

0

un+1snf (n+1) ((1� s) [ux+ (1� u) b] + sb) dsdu
�
dx:

Remark 2. For n = 0 we obtain

(2.17)
1

b� a

Z b

a

ln

 
b� ap

(x� a) (b� x)

!
f (x) dx =

f (a) + f (b)

2

+
1

2

1

b� a

Z b

a

(x� a)
�Z 1

0

u

�Z 1

0

f 0 (sa+ (1� s) [(1� u) a+ ux]) ds
�
du

�
dx

� 1
2

1

b� a

Z b

a

(b� x)
�Z 1

0

u

�Z 1

0

f 0 ((1� s) [ux+ (1� u) b] + sb) ds
�
du

�
dx

while for n = 1; we get

(2.18)
1

b� a

Z b

a

ln

 
b� ap

(x� a) (b� x)

!
f (x) dx

=
f (a) + f (b)

2
� f

0 (b)� f 0 (a)
8

(b� a)

+
1

2

1

b� a

Z b

a

(x� a)2
�Z 1

0

Z 1

0

u2sf 00 (sa+ (1� s) [(1� u) a+ ux]) dsdu
�
dx

+
1

2

1

b� a

Z b

a

(b� x)2
�Z 1

0

Z 1

0

u2sf 00 ((1� s) [ux+ (1� u) b] + sb) dsdu
�
dx:
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3. Some Trapezoid Type Inequalities

The following integral inequality

(3.1) f

�
a+ b

2

�
� 1

b� a

Z b

a

f (t) dt � f (a) + f (b)

2
;

which holds for any convex function f : [a; b] ! R; is well known in the literature
as the Hermite-Hadamard inequality.
There is an extensive amount of literature devoted to this simple and nice result

which has many applications in the Theory of Special Means and in Information
Theory for divergence measures, from which we would like to refer the reader to
the monograph [9], the recent survey paper [6], the research papers [1]-[2], [12]-[23]
and the references therein.
The following result provides an inequality related to the second Hermite-Hadamard

inequality in (3.1).

Theorem 4. Let I � R be an interval, [a; b] � I and f : I �! C is such that
the 2m+ 2-derivative f (2m+2) is nonnegative on [a; b] ; where m � 0; then for any
x 2 (a; b) we have the trapezoid type inequality

(3.2) Da+;b�f (x) �
2m+1X
k=0

1

(k + 1)!

"
f (k) (a) (x� a)k + (�1)k f (k) (b) (b� x)k

2

#
:

In particular, we have

(3.3)
1

b� a

Z b

a

f (t) dt �
2m+1X
k=0

1

(k + 1)!

"
f (k) (a) + (�1)k f (k) (b)

2k+1

#
(b� a)k :

Proof. By the representation (2.1) we have

Da+;b�f (x) =
2m+1X
k=0

1

(k + 1)!

"
f (k) (a) (x� a)k + (�1)k f (k) (b) (b� x)k

2

#

+
1

2 (2m+ 1)!
(x� a)2m+2

�
Z 1

0

Z 1

0

u2m+2s2m+1f (2m+2) (sa+ (1� s) [(1� u) a+ ux]) dsdu

+
1

2 (2m+ 1)!
(b� x)2m+2

�
Z 1

0

Z 1

0

u2m+2s2m+1f (2m+2) ((1� s) [ux+ (1� u) b] + sb) dsdu

�
2m+1X
k=0

1

(k + 1)!

"
f (k) (a) (x� a)k + (�1)k f (k) (b) (b� x)k

2

#
since the last two integrals are nonnegative due to the fact that f (2m+2) is nonneg-
ative on [a; b] : �

Remark 3. For m = 0 we obtain from Theorem 4 that

(3.4) Da+;b�f (x) �
f (a) + f (b)

2
+
f 0 (a) (x� a)� f 0 (b) (b� x)

4
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for any x 2 (a; b) and, see also [5] for a slightly more general version,

(3.5)
1

8
(b� a) (f 0 (b)� f 0 (a)) � f (a) + f (b)

2
� 1

b� a

Z b

a

f (t) dt � 0;

where f is di¤erentiable and convex on [a; b] :

Corollary 3. With the assumptions of Theorem 4, we have

1

b� a

Z b

a

ln

 
b� ap

(x� a) (b� x)

!
f (x) dx(3.6)

�
2m+1X
k=0

1

(k + 1)! (k + 1)

"
f (k) (a) + (�1)k f (k) (b)

2

#
(b� a)k :

Remark 4. If the function f is di¤erentiable and convex on [a; b] ; then for m = 0
in (3.6) we get

1

8
(b� a) (f 0 (b)� f 0 (a))(3.7)

� f (a) + f (b)

2
� 1

b� a

Z b

a

ln

 
b� ap

(x� a) (b� x)

!
f (x) dx � 0:

We use the 1-norm of an essentially bounded function f on the interval [c; d]
de�ned by

kfk[c;d];1 := essup
t2[c;d]

jf (t)j <1, f 2 L1 [c; d] :

Theorem 5. Let I � R be an interval, [a; b] � I and f : I �! C is such that the
n-derivative f (n) is absolutely continuous on [a; b] and f (n+1) 2 L1 [a; b] : Then for
any x 2 (a; b) we have the inequality

(3.8)

�����Da+;b�f (x)�
nX
k=0

1

(k + 1)!

"
f (k) (a) (x� a)k + (�1)k f (k) (b) (b� x)k

2

#�����
� 1

2 (n+ 2)!

�
(x� a)n+1

f (n+1)
[a;x];1

+ (b� x)n+1
f (n+1)

[x;b];1

�
� 1

2 (n+ 2)!

h
(x� a)n+1 + (b� x)n+1

i f (n+1)
[a;b];1

:

In particular,

(3.9)

����� 1

b� a

Z b

a

f (t) dt�
nX
k=0

1

(k + 1)!

"
f (k) (a) + (�1)k f (k) (b)

2k+1

#
(b� a)k

�����
� 1

2n+2 (n+ 2)!

�f (n+1)
[a; a+b2 ];1

+
f (n+1)

[ a+b2 ;b];1

�
(b� a)n+1

� 1

2n+1 (n+ 2)!

f (n+1)
[a;b];1

(b� a)n+1 :
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Proof. By taking the modulus in the equality (2.1) we get

(3.10)

�����Da+;b�f (x)�
nX
k=0

1

(k + 1)!

"
f (k) (a) (x� a)k + (�1)k f (k) (b) (b� x)k

2

#�����
� 1

2n!
(x� a)n+1

Z 1

0

Z 1

0

un+1sn
���f (n+1) (sa+ (1� s) [(1� u) a+ ux])��� dsdu

+
1

2n!
(b� x)n+1

Z 1

0

Z 1

0

un+1sn
���f (n+1) ((1� s) [ux+ (1� u) b] + sb)��� dsdu

=: B (x; n) :

Observe that (1� u) a+ux 2 [a; x] for any u 2 [0; 1] and sa+(1� s) [(1� u) a+ ux] 2
[a; x] for any u; s 2 [0; 1] : Therefore

sup
(s;u)2[0;1]2

���f (n+1) (sa+ (1� s) [(1� u) a+ ux])��� � f (n+1)
[a;x];1

and Z 1

0

Z 1

0

un+1sn
���f (n+1) (sa+ (1� s) [(1� u) a+ ux])��� dsdu

�
f (n+1)

[a;x];1

Z 1

0

Z 1

0

un+1sndsdu

=
1

(n+ 1) (n+ 2)

f (n+1)
[a;x];1

:

Similarly, we haveZ 1

0

Z 1

0

un+1sn
���f (n+1) ((1� s) [ux+ (1� u) b] + sb)��� dsdu

� 1

(n+ 1) (n+ 2)

f (n+1)
[x;b];1

:

Therefore

B (x; n)

� 1

2n!
(x� a)n+1 1

(n+ 1) (n+ 2)

f (n+1)
[a;x];1

+
1

2n!
(b� x)n+1 1

(n+ 1) (n+ 2)

f (n+1)
[x;b];1

=
1

2 (n+ 2)!

�
(x� a)n+1

f (n+1)
[a;x];1

+ (b� x)n+1
f (n+1)

[x;b];1

�
� 1

2 (n+ 2)!

h
(x� a)n+1 + (b� x)n+1

i
max

�f (n+1)
[a;x];1

;
f (n+1)

[x;b];1

�
=

1

2 (n+ 2)!

h
(x� a)n+1 + (b� x)n+1

i f (n+1)
[a;b];1

and the inequality (3.8) is thus proved. �
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Remark 5. If we take in (3.8) n = 0; then we get����Da+;b�f (x)� f (a) + f (b)2

����(3.11)

� 1

4

h
(x� a) kf 0k[a;x];1 + (b� x) kf 0k[x;b];1

i
� 1

4
(b� a) kf 0k[a;b];1 :

for any x 2 (a; b) ; and in particular����� 1

b� a

Z b

a

f (t) dt� f (a) + f (b)
2

�����(3.12)

� 1

8

h
kf 0k[a; a+b2 ];1 + kf 0k[ a+b2 ;b];1

i
(b� a) � 1

4
(b� a) kf 0k[a;b];1 :

If we take in (3.8) n = 1; then we get

(3.13)

����Da+;b�f (x)� f (a) + f (b)2
� 1
4
[f 0 (a) (x� a)� f 0 (b) (b� x)]

����
� 1

12

h
(x� a)2 kf 00k[a;x];1 + (b� x)2 kf 00k[x;b];1

i
� 1

6

"
1

4
(b� a)2 +

�
x� a+ b

2

�2#
kf 00k[a;b];1

for any x 2 (a; b) ; and in particular

(3.14)

����� 1

b� a

Z b

a

f (t) dt� f (a) + f (b)
2

� 1
8
[f 0 (a)� f 0 (b)] (b� a)

�����
� 1

48

h
kf 00k[a; a+b2 ];1 + kf 00k[ a+b2 ;b];1

i
(b� a)2 � 1

24
(b� a)2 kf 00k[a;b];1 :

Corollary 4. With the assumptions of Theorem 5 we have

(3.15)

����� 1

b� a

Z b

a

ln

 
b� ap

(x� a) (b� x)

!
f (x) dx

�
nX
k=0

1

(k + 1)! (k + 1)

"
f (k) (a) + (�1)k f (k) (b)

2

#
(b� a)k

�����
� 1

2 (n+ 2)!

"
1

b� a

Z b

a

(x� a)n+1
f (n+1)

[a;x];1
dx

+
1

b� a

Z b

a

(b� x)n+1
f (n+1)

[x;b];1
dx

#

� 1

(n+ 2)! (n+ 2)

f (n+1)
[a;b];1

(b� a)n+1 :
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If we take n = 0 in (3.15), then we get����� 1

b� a

Z b

a

ln

 
b� ap

(x� a) (b� x)

!
f (x) dx� f (a) + f (b)

2

�����(3.16)

� 1

4

"
1

b� a

Z b

a

(x� a) kf 0k[a;x];1 dx+
1

b� a

Z b

a

(b� x) kf 0k[x;b];1 dx
#

� 1

4
kf 0k[a;b];1 (b� a)

while for n = 1 we get

(3.17)

����� 1

b� a

Z b

a

ln

 
b� ap

(x� a) (b� x)

!
f (x) dx

�f (a) + f (b)
2

� 1
8
[f 0 (a)� f 0 (b)] (b� a)

����
� 1

12

"
1

b� a

Z b

a

(x� a)2 kf 00k[a;x];1 dx+
1

b� a

Z b

a

(b� x)2 kf 00k[x;b];1 dx
#

� 1

18
kf 00k[a;b];1 (b� a)

2
:

4. Some Other Inequalities

To prove some more inequalities involving the operator Da+;b� we need the
following lemmas:

Lemma 2 ([13, p. 21]). Suppose g is a real-valued function on [a; b] that satis�es
g000 (x) � 0 on [a; b] : If g000 is continuous on [a; b] then

(4.1)
1

b� a

Z b

a

g (x) dx � g
�
a+ b

2

�
+
1

12
(b� a)

�
g0 (b)� g0

�
a+ b

2

��
and

(4.2)
1

b� a

Z b

a

g (x) dx � g
�
a+ b

2

�
+
1

12
(b� a)

�
g0
�
a+ b

2

�
� g0 (a)

�
:

If g000 (x) � 0 on [a; b] instead, then (4.1) and (4.2) hold with the inequality signs
reversed.

and

Lemma 3 (Theorem 1.4 of [11]). Let ' be continuous on [a; b] ; twice di¤erentiable
on (a; b) : Suppose w and p are continuous on [a; b] and p (x) � 0 with

R b
a
p (x) dx >

0:

(a) If m = infx2(a;b) '
00 (x) exists, then

(4.3) G :=

R b
a
p (x)' (w (x)) dxR b

a
p (x) dx

� '
 R b

a
p (x)w (x) dxR b
a
p (x) dx

!
� 1

2
mV;

where

V :=

R b
a
p (x)w2 (x) dxR b
a
p (x) dx

�
 R b

a
p (x)w (x) dxR b
a
p (x) dx

!2
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is the variance of w (X) :
(b) If M = supx2(a;b) '

00 (x) exists, then

(4.4) G � 1

2
MV:

The inequalities (4.3) and (4.4) are particular cases of the Jensen�s type inequal-
ities for positive linear functionals obtained in 2002, [3].
We have the following result:

Theorem 6. Suppose f 00 exists on [a; b] andm = infx2(a;b) f
00 (x),M = supx2(a;b) '

00 (x)
exist, then

(4.5)
1

18
m (b� a)2 � 1

b� a

Z b

a

Da+;b�f (x) dx� f
�
a+ b

2

�
� 1

18
M (b� a)2 :

Proof. A change of variable givesZ b

a

ln

 
b� ap

(x� a) (b� x)

!
dx =

b� a
2

Z 1

0

(� lnu� ln (1� u)) du = b� a:

We also haveZ b

a

f (x) ln

 
b� ap

(x� a) (b� x)

!
dx

= (b� a)
Z 1

0

1

2
(� lnu� ln (1� u)) f (ua+ (1� u) b) du:

It is easy veri�ed that p (u) := 1
2 (� lnu� ln (1� u)) ; u 2 [0; 1] is a probability

density function with mean Z 1

0

up (u) du =
1

2

and variance

V =

Z 1

0

u2p (u) du� 1
4
=
1

9
:

The inequality (4.5) follows immediately by Lemma 3 upon letting p (u) = 1
2 (� lnu� ln (1� u)) ;

w (u) = u and ' (u) = f (ua+ (1� u) b) : �

Next, we show how improved bounds for the integrals in Theorem 6 can often
be found if we have functions f satisfying f 000 (x) � 0 on [a; b] :

Theorem 7. Suppose that f 00 is continuous on [a; b] : Let

M = sup
t2[a;b]

f 00 (t) ; M1 = sup
t2[ a+b2 ;b]

f 00 (t) ; M2 = sup
t2[a; a+b2 ]

f 00 (t)

and

m = inf
t2[a;b]

f 00 (t) ; m1 = inf
t2[ a+b2 ;b]

f 00 (t) ; m2 = inf
t2[a; a+b2 ]

f 00 (t) ;
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then

(4.6)
1

192
(m1 +m2) (b� a)2 +

1

72
m (b� a)2

� 1

b� a

Z b

a

Da+;b�f (x) dx�
1

2

�
f

�
a+ 3b

4

�
+ f

�
3a+ b

4

��
� 1

192
(M1 +M2) (b� a)2 +

1

72
M (b� a)2 :

Proof. We shall prove only the second inequality in (4.6). The proof of the �rst
inequality is similar and is omitted.
LetM1 (x) = supt2[a;x] f

00 (t) ; M2 (x) = supt2[x;b] f
00 (t) for x 2 [a; b] : By Lemma

3 we have

1

x� a

Z x

a

f (t) dt � f
�
a+ x

2

�
+
1

2
M1 (x)

(x� a)2

12
(4.7)

� f
�
a+ x

2

�
+
1

24
M (x� a)2

and

1

b� x

Z b

x

f (t) dt � f

�
x+ b

2

�
+
1

2
M2 (x)

(b� x)2

12
(4.8)

� f

�
x+ b

2

�
+
1

24
M (b� x)2 :

So, addition of (4.7) and (4.8) gives

Da+;b�f (x) �
1

2

�
f

�
a+ x

2

�
+ f

�
x+ b

2

�
+
1

24
M
h
(x� a)2 + (b� x)2

i�
for x 2 (a; b) :
Integration givesZ b

a

Da+;b�f (x) dx �
1

2

Z b

a

�
f

�
a+ x

2

�
+ f

�
x+ b

2

��
dx(4.9)

+
1

48
M

Z b

a

h
(x� a)2 + (b� x)2

i
dx:

By Lemma 3 we also have

(4.10)
Z b

a

f

�
a+ x

2

�
dx � (b� a)

�
f

�
3a+ b

4

�
+
1

96
M1 (b� a)2

�
and

(4.11)
Z b

a

f

�
x+ b

2

�
dx � (b� a)

�
f

�
a+ 3b

4

�
+
1

96
M2 (b� a)2

�
:

Thus, (4.9)-(4.11) give the upper bound in (4.6). �

The next theorem provides more bounds for the integral 1
b�a

R b
a
Da+;b�f (x) dx

in the case that f is 3-convex:
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Theorem 8. Suppose that f 000 is continuous and nonnegative on [a; b] : Then

(4.12)
1

72
f 00 (a) (b� a)2

+
1

48
(b� a)

�
f 0
�
a+ 3b

4

�
� f 0

�
a+ b

2

�
+ f 0

�
3a+ b

4

�
� f 0 (a)

�
� 1

b� a

Z b

a

Da+;b�f (x) dx�
1

2

�
f

�
a+ 3b

4

�
+ f

�
3a+ b

4

��
� 1

48
(b� a)

�
f 0
�
a+ b

2

�
� f 0

�
3a+ b

4

�
+ f 0 (b)� f 0

�
a+ 3b

4

��
+
1

72
f 00 (b) (b� a)2 :

Proof. We shall prove only the inequality for the upper bound. The other inequality
is very similar and is omitted.
In the proof of Theorem 7 it was shown that

Da+;b�f (x)(4.13)

� 1

2

�
f

�
a+ x

2

�
+ f

�
x+ b

2

�
+
1

24
M
h
(x� a)2 + (b� x)2

i�
for x 2 (a; b) :
Now, apply Lemma 2 to bothZ b

a

f

�
a+ x

2

�
dx and

Z b

a

f

�
x+ b

2

�
dx

to get Z b

a

f

�
a+ x

2

�
dx(4.14)

� (b� a) f
�
3a+ b

4

�
+
1

24
(b� a)2

�
f 0
�
a+ b

2

�
� f 0

�
3a+ b

4

��
and Z b

a

f

�
x+ b

2

�
dx(4.15)

� (b� a) f
�
a+ 3b

4

�
+
1

24
(b� a)2

�
f 0 (b)� f 0

�
a+ 3b

4

��
:

Integrating both sides of (4.13) and using (4.14)-(4.15) we obtain the desired result.
�

Remark 6. It is easily seen that Theorems 6, 7 and 8 provide bounds which are
exact (zero error) in the case that f is a polynomial of degree 2 or less. Numerical
experiments show that the bounds of Theorem 7 and 8 are better than the bounds
of Theorem 6 in the cases where all three theorems are applicable. Of course, the
bounds of Theorem 6 are more easily computed.
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