
HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES FOR
JENSEN�S DIVERGENCE

SILVESTRU SEVER DRAGOMIR1;2

Abstract. Let f : I ! R be a convex function on I. The associated two
variables Jensen�s divergence function Jf : I � I ! R+ is de�ned by

Jf (t; s) :=
1

2
[f (t) + f (s)]� f

�
t+ s

2

�
� 0:

In this paper we establish some basic and double integral inequalities for the
divergence function Jf de�ned above. Some double integral inequalities in the
case of rectangles, squares and circular sectors are also given.

1. Introduction

The following inequality holds for any convex function f de�ned on R

(1.1) f

�
a+ b

2

�
� 1

b� a

Z b

a

f(x)dx � f(a) + f(b)

2
; a; b 2 R; a < b:

It was �rstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [10]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite�s result.
E. F. Beckenbach, a leading expert on the history and the theory of convex

functions, wrote that this inequality was proven by J. Hadamard in 1893 [1]. In
1974, D. S. Mitrinovíc found Hermite�s note inMathesis [10]. Since (1.1) was known
as Hadamard�s inequality, the inequality is now commonly referred as the Hermite-
Hadamard inequality. For a monograph devoted to this inequality see [9]. Related
results can be also found in [7].
In 1990, [4] the author established the following re�nement of Hermite-Hadamard

inequality for double and triple integrals for the convex function f : [a; b]! R

(1.2) f

�
a+ b

2

�
� 1

(b� a)2
Z b

a

Z b

a

f

�
x+ y

2

�
dxdy

� 1

(b� a)2
Z b

a

Z b

a

Z 1

0

f ((1� t)x+ ty) dtdxdy � 1

b� a

Z b

a

f(x)dx:

More recently, [8] we obtained a di¤erent double integral inequality of Hermite-
Hadamard type for the convex function f : [a; b]! R,

(1.3) f

�
a+ b

2

�
� 1

(d� c)2
Z d

c

Z d

c

f

�
�a+ �b

�+ �

�
d�d� � f (a) + f (b)

2
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where 0 < c < d:
For a function f de�ned on an interval I of the real line R , by following the

paper by Burbea & Rao [2], we consider the J -divergence between the elements t;
s 2 I given by

Jf (t; s) :=
1

2
[f (t) + f (s)]� f

�
t+ s

2

�
� 0:

If f is convex on I; then Jf (t; s) � 0 for all (t; s) 2 I � I:
As important examples of such divergences, we can consider for positive numbers

(t; s) [2],

J� (t; s) :=

8<: (�� 1)�1
�
1
2 (t

� + s�)�
�
t+s
2

���
; � 6= 1;�

t ln (t) + s ln (s)� (t+ s) ln
�
t+s
2

��
; � = 1:

The following result concerning the joint convexity of Jf also holds:

Theorem 1 (Burbea-Rao, 1982 [2]). Let f be a C2 function on an interval I: Then
Jf is convex (concave) on I � I; if and only if f is convex (concave) and 1

f 00 is
concave (convex) on I:

Consider the power function f� : [0;1) ! R; f� (t) = (�� 1)�1 t� with � 2
(1; 2] : This function is convex on [0;1) and 1

f 00�
is concave on (0;1) and therefore

J� is jointly convex on [0;1)� [0;1): Also, the function f1 : (0;1)! R, f1 (t) =
t ln t is convex on (0;1) and 1

f 001
is concave on (0;1) showing that J1 is jointly

convex on (0;1)� (0;1) :
In this paper we establish some basic and double integral inequalities for the

Jensen�s divergence function Jf de�ned above. Some double integral inequalities
in the case of rectangles, squares and circular sectors are also given.

2. General Results

Consider G a closed and bounded subset of I � I: De�ne

AG :=

Z Z
G

dxdy

the area of G and (xG; yG) the centre of mass for G; where

xG :=
1

AG

Z Z
G

xdxdy; yG :=
1

AG

Z Z
G

ydxdy:

Observe that if f : I ! R is convex and G a closed and bounded subset of I � I,
then the double integral

(2.1)
Z Z

G

Jf (x; y) dxdy =
1

2

�Z Z
G

f (x) dx+

Z Z
G

f (y) dy

�
�
Z Z

G

f

�
x+ y

2

�
dxdy � 0

exists.
We have the following general result:

Theorem 2. Let f be a C1 (I) function on an interval I: If f is convex on I; then

(2.2) 0 �
Z Z

G

Jf (x; y) dxdy �
1

4
�G (f

0) ;
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where

(2.3) �G (f
0) :=

Z Z
G

[f 0 (y)� f 0 (x)] (y � x) dxdy

=

Z Z
G

f 0 (y) ydxdy+

Z Z
G

f 0 (x)xdxdy�
Z Z

G

xf 0 (y) dxdy�
Z Z

G

f 0 (x) ydxdy:

Proof. We use the following inequality for di¤erentiable convex functions obtained
in [6]

0 � f (x) + f (y)

2
� f

�
x+ y

2

�
� 1

4
[f 0 (y)� f 0 (x)] (y � x)

for any x; y 2 �I with the constant 14 as best possible. �

Corollary 1. With the assumptions of Theorem 2 and if 
 = inft2�I f
0 (t) and

� = supt2�I f
0 (t) are �nite, then

(2.4) 0 �
Z Z

G

Jf (x; y) dxdy �
1

4
(�� 
)

Z Z
G

jy � xj dxdy:

Moreover, if G � [a; b]� [a; b] � I � I; then

(2.5) 0 �
Z Z

G

Jf (x; y) dxdy �
1

4
[f 0 (b)� f 0 (a)]

Z Z
G

jy � xj dxdy:

Proof. We have

0 � �G (f 0) =
Z Z

G

[f 0 (y)� f 0 (x)] (y � x) dxdy

�
Z Z

G

j[f 0 (y)� f 0 (x)] (y � x)j dxdy �
Z Z

G

jf 0 (y)� f 0 (x)j jy � xj dxdy

� (�� 
)
Z Z

G

jy � xj dxdy;

which together with (2.2) gives (2.4). �

Corollary 2. With the assumptions of Theorem 2 and if the derivative f 0 is Lip-
schitzian with the constant K > 0; namely

jf 0 (t)� f 0 (s)j � K jt� sj for all t; s 2 �I;

where �I is the interior of I, then we have the inequality

(2.6) 0 �
Z Z

G

Jf (x; y) dxdy �
1

4
K

Z Z
G

(y � x)2 dxdy:

Moreover, if f is a C2 (I) function on an interval I and kf 00kI;1 := supt2I jf 00 (t)j <
1; then

(2.7) 0 �
Z Z

G

Jf (x; y) dxdy �
1

4
kf 00kI;1

Z Z
G

(y � x)2 dxdy:
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Proof. We have

0 � �G (f 0) =
Z Z

G

[f 0 (y)� f 0 (x)] (y � x) dxdy

�
Z Z

G

j[f 0 (y)� f 0 (x)] (y � x)j dxdy �
Z Z

G

jf 0 (y)� f 0 (x)j jy � xj dxdy

� K
Z Z

G

(y � x)2 dxdy;

which together with (2.2) gives (2.4). �

We need the following lemma that is of interest in itself:

Lemma 1. Let f be a C2 (I) function on an interval I: If f is convex on I and
1
f 00 is concave on I; then for all (t; s) ; (u; v) 2 �I ��I we have the double inequality

(2.8)
1

2

�
f 0 (t)� f 0

�
t+ s

2

��
(t� u) + 1

2

�
f 0 (s)� f 0

�
t+ s

2

��
(s� v)

� Jf (t; s)� Jf (u; v)

� 1

2

�
f 0 (u)� f 0

�
u+ v

2

��
(t� u) + 1

2

�
f 0 (v)� f 0

�
u+ v

2

��
(s� v) :

Proof. It is well known that if the function of two independent variables F : D �
R� R! R is convex on the convex domain D and has partial derivatives @F

@x and
@F
@y on D then for all (t; s) ; (u; v) 2 D we have the gradient inequalities

@F (t; s)

@x
(t� u) + @F (t; s)

@y
(s� v)(2.9)

� F (t; s)� F (u; v)

� @F (u; v)

@x
(t� u) + @F (u; v)

@y
(s� v) :

Now, if we take F : I � I ! R given by

F (t; s) =
1

2
[f (t) + f (s)]� f

�
t+ s

2

�
and observe that

@F (t; s)

@x
=
1

2

�
f 0 (t)� f 0

�
t+ s

2

��
and

@F (t; s)

@y
=
1

2

�
f 0 (s)� f 0

�
t+ s

2

��
and since F is convex on I � I; then by (2.9) we get (2.8). �

We have the following double integral inequality:
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Theorem 3. Let f be a C2 (I) function on an interval I: If f is convex on I and
1
f 00 is concave on I; then for all (u; v) 2 �I��I; we have the double integral inequality

(2.10)
1

2

1

AG

Z Z
G

�
f 0 (x)� f 0

�
x+ y

2

��
(x� u) dxdy

+
1

2

1

AG

Z Z
G

�
f 0 (y)� f 0

�
x+ y

2

��
(y � v) dxdy

� 1

AG

Z Z
G

Jf (x; y) dxdy � Jf (u; v)

� 1

2

�
f 0 (u)� f 0

�
u+ v

2

��
(xG � u) +

1

2

�
f 0 (v)� f 0

�
u+ v

2

��
(yG � v) :

In particular,

(2.11) 0 � 1

AG

Z Z
G

Jf (x; y) dxdy � Jf (xG; yG)

� 1

2

1

AG

�Z Z
G

�
f 0 (x)� f 0

�
x+ y

2

��
(x� xG) dxdy

+

Z Z
G

�
f 0 (y)� f 0

�
x+ y

2

��
(y � yG) dxdy

�
:

Proof. From (2.8) we have

(2.12)
1

2

�
f 0 (x)� f 0

�
x+ y

2

��
(x� u) + 1

2

�
f 0 (y)� f 0

�
x+ y

2

��
(y � v)

� Jf (x; y)� Jf (u; v)

� 1

2

�
f 0 (u)� f 0

�
u+ v

2

��
(x� u) + 1

2

�
f 0 (v)� f 0

�
u+ v

2

��
(y � v)

for all (x; y) ; (u; v) 2 �I ��I:
If we take the integral mean 1

AG

R R
G
over (x; y) 2 G in (2.12) we get the desired

result (2.10). �

Corollary 3. With the assumptions of Theorem 3 and if 
 = inft2�I f
0 (t) and

� = supt2�I f
0 (t) are �nite, then

(2.13) 0 � 1

AG

Z Z
G

Jf (x; y) dxdy � Jf (xG; yG)

� 1

2
(�� 
) 1

AG

Z Z
G

(jx� xGj+ jy � yGj) dxdy:

Moreover, if G � [a; b]� [a; b] � I � I; then

(2.14) 0 � 1

AG

Z Z
G

Jf (x; y) dxdy � Jf (xG; yG)

� 1

2
[f 0 (b)� f 0 (a)] 1

AG

Z Z
G

(jx� xGj+ jy � yGj) dxdy:
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Proof. We have

0 �
Z Z

G

�
f 0 (x)� f 0

�
x+ y

2

��
(x� xG) dxdy

+

Z Z
G

�
f 0 (y)� f 0

�
x+ y

2

��
(y � yG) dxdy

�
�
Z Z

G

����f 0 (x)� f 0�x+ y2
����� jx� xGj dxdy

+

Z Z
G

����f 0 (y)� f 0�x+ y2
����� jy � yGj dxdy

� (�� 
)
Z Z

G

jx� xGj dxdy + (�� 
)
Z Z

G

jy � yGj dxdy

= (�� 
)
�Z Z

G

jx� xGj dxdy +
Z Z

G

jy � yGj dxdy
�

and by (2.11) we get the desired result (2.13). �

Corollary 4. With the assumptions of Theorem 3 and if the derivative f 0 is Lip-
schitzian with the constant K; then

(2.15) 0 � 1

AG

Z Z
G

Jf (x; y) dxdy � Jf (xG; yG)

� 1

4
K

1

AG

Z Z
G

jx� yj [jx� xGj+ jy � yGj] dxdy:

Moreover, if f is a C2 (I) function on an interval I and kf 00kI;1 := supt2I jf 00 (t)j <
1; then

(2.16) 0 � 1

AG

Z Z
G

Jf (x; y) dxdy � Jf (xG; yG)

� 1

4
kf 00kI;1

1

AG

Z Z
G

jx� yj (jx� xGj+ jy � yGj) dxdy:

Proof. We have

0 �
Z Z

G

�
f 0 (x)� f 0

�
x+ y

2

��
(x� xG) dxdy

+

Z Z
G

�
f 0 (y)� f 0

�
x+ y

2

��
(y � yG) dxdy

�
�
Z Z

G

����f 0 (x)� f 0�x+ y2
����� jx� xGj dxdy

+

Z Z
G

����f 0 (y)� f 0�x+ y2
����� jy � yGj dxdy

� K
Z Z

G

����x� x+ y2
���� jx� xGj dxdy +K Z Z

G

����y � x+ y2
���� jx� xGj dxdy

=
1

2
K

Z Z
G

jx� yj (jx� xGj+ jy � yGj) dxdy

and by (2.11) we get the desired result (2.16). �
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3. Examples for Functions Defined on Squares

If G = [a; b]2 := [a; b]� [a; b] � I � I then

1

(b� a)2
Z b

a

Z b

a

Jf (x; y) dxdy(3.1)

=
1

b� a

Z b

a

f (x) dx� 1

(b� a)2
Z b

a

Z b

a

f

�
x+ y

2

�
dxdy

and

�[a;b]2 (f
0) =

Z b

a

Z b

a

[f 0 (y)� f 0 (x)] (y � x) dxdy(3.2)

= 2

"
(b� a)

Z b

a

f 0 (x)xdx�
Z b

a

f 0 (x) dx

Z b

a

xdx

#

= 2 (b� a)
Z b

a

f 0 (x)

�
x� a+ b

2

�
dx

= 2 (b� a)2
"
f (a) + f (b)

2
� 1

b� a

Z b

a

f (x) dx

#
:

From (2.2) we then have for a di¤erentiable convex function f on I that

0 � 1

b� a

Z b

a

f (x) dx� 1

(b� a)2
Z b

a

Z b

a

f

�
x+ y

2

�
dxdy(3.3)

� 1

2

"
f (a) + f (b)

2
� 1

b� a

Z b

a

f (x) dx

#

� 1

16
[f 0 (b)� f 0 (a)] (b� a) ; conform with [5].

If f is twice di¤erentiable and kf 00k(a;b);1 := supt2(a;b) jf 00 (t)j <1 and since�����f (a) + f (b)2
� 1

b� a

Z b

a

f (x) dx

����� � 1

12
kf 00k(a;b);1 (b� a)

2
;

then

0 � 1

b� a

Z b

a

f (x) dx� 1

(b� a)2
Z b

a

Z b

a

f

�
x+ y

2

�
dxdy(3.4)

� 1

2

"
f (a) + f (b)

2
� 1

b� a

Z b

a

f (x) dx

#
� 1

24
kf 00k(a;b);1 (b� a)

2
;

provided that f is twice di¤erentiable convex on (a; b) with kf 00k(a;b);1 <1:

4. Example for Functions Defined on Rectangle

If G = [a; b]� [c; d] is a rectangle from I � I; then

A[a;b]�[c;d] = (b� a) (d� c) ; x[a;b]�[c;d] =
a+ b

2
and y[a;b]�[c;d] =

c+ d

2
:
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Also

1

A[a;b]�[c;d]

Z b

a

Z d

c

Jf (x; y) dxdy

=
1

2

 
1

b� a

Z b

a

f (x) dx+
1

d� c

Z b

a

f (y) dy

!

� 1

(b� a) (d� c)

Z b

a

Z d

c

f

�
x+ y

2

�
dxdy

and

Jf
�
x[a;b]�[c;d]; y[a;b]�[c;d]

�
=
1

2

�
f

�
a+ b

2

�
+ f

�
c+ d

2

��
� f

�
a+ b+ c+ d

4

�
:

We also have Z b

a

Z d

c

�����x� a+ b2
����+ ����y � c+ d2

����� dxdy
=
1

4
(d� c) (b� a)2 + 1

4
(b� a) (d� c)2

=
1

4
(b� a) (d� c) (b� a+ d� c) :

Assume that [a; b] ; [c; d] � [m;M ] � I and f is twice di¤erentiable convex on I
with 1

f 00 concave, then from (2.14) we get

(4.1) 0 � 1

2

 
1

b� a

Z b

a

f (x) dx+
1

d� c

Z b

a

f (y) dy

!

� 1

(b� a) (d� c)

Z b

a

Z d

c

f

�
x+ y

2

�
dxdy

� 1
2

�
f

�
a+ b

2

�
+ f

�
c+ d

2

��
+ f

�
a+ b+ c+ d

4

�
� 1

8
[f 0 (M)� f 0 (m)] (b� a+ d� c) :

5. Example for Functions Defined on Disks

Consider the disk centered in zero and of radius R > 0;

D (0; R) := f(x; y) j x = r cos �; y = r sin �; r 2 [0; R] ; � 2 [0; 2�]g :
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Using the polar change of variable we have for a function f : I ! R with D (0; R) �
I � IZ Z

D(0;R)

Jf (x; y) dxdy =
Z R

0

Z 2�

0

Jf (r cos �; r sin �) rdrd�

=

Z R

0

Z 2�

0

�
f (r cos �) + f (r sin �)

2
� f

�
r cos � + r sin �

2

��
rdrd�

=
1

2

"Z R

0

Z 2�

0

f (r cos �) rdrd� +

Z R

0

Z 2�

0

f (r sin �) rdrd�

#

�
Z R

0

Z 2�

0

f

�
r cos � + r sin �

2

�
rdrd�

and

�D(0;R) (f
0) :=

Z Z
D(0;R)

[f 0 (y)� f 0 (x)] (y � x) dxdy

=

Z R

0

Z 2�

0

[f 0 (r sin �)� f 0 (r cos �)] (sin � � cos �) r2drd�:

Assume that f is twice di¤erentiable convex on I with kf 00kI;1 := supt2I jf 00 (t)j <
1; then

�D(0;R) (f
0) �

Z R

0

Z 2�

0

jf 0 (r sin �)� f 0 (r cos �)j jsin � � cos �j r2drd�

� kf 00kI;1
Z R

0

Z 2�

0

(sin � � cos �)2 r2drd�

= kf 00kI;1
Z R

0

Z 2�

0

�
sin2 � � 2 sin � cos � + cos2 �

�
r2drd�:

Observe thatZ R

0

Z 2�

0

�
sin2 � � 2 sin � cos � + cos2 �

�
r2drd�

=

Z R

0

Z 2�

0

(1� sin 2�) r2drd� = R3

3

Z 2�

0

(1� sin 2�) d� = 2�R3

3

and by the inequality (2.2) we get

(5.1) 0 � 1

2

"
1

�R2

Z R

0

Z 2�

0

f (r cos �) rdrd� +
1

�R2

Z R

0

Z 2�

0

f (r sin �) rdrd�

#

� 1

�R2

Z R

0

Z 2�

0

f

�
r cos � + r sin �

2

�
rdrd� � 1

6
R kf 00kI;1 :

Consider the disk centered in the point (a; b) and of radius R;

D ((a; b) ; R) := f(x; y) j x = r cos � + a; y = r sin � + b; r 2 [0; R] ; � 2 [0; 2�]g :

We have

xD((a;b);R) = a; yD((a;b);R)
= b;
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1

AD((a;b);R)

Z Z
D((a;b);R)

Jf (x; y) dxdy =

=
1

2

"
1

�R2

Z R

0

Z 2�

0

f (r cos � + a) rdrd� +
1

�R2

Z R

0

Z 2�

0

f (r sin � + b) rdrd�

#

� 1

�R2

Z R

0

Z 2�

0

f

�
r cos � + r sin �

2
+
a+ b

2

�
rdrd�:

Assume that D ((a; b) ; R) � [m;M ]2 � I� I and f is twice di¤erentiable convex
on I and with 1

f 00 concave on I; then by (2.13) we get

0 � 1

2

"
1

�R2

Z R

0

Z 2�

0

f (r cos � + a) rdrd� +
1

�R2

Z R

0

Z 2�

0

f (r sin � + b) rdrd�

#

� 1

�R2

Z R

0

Z 2�

0

f

�
r cos � + r sin �

2
+
a+ b

2

�
rdrd�

� f (a) + f (b)
2

+ f

�
a+ b

2

�
� 1

2
(f 0 (M)� f 0 (m)) 1

�R2

Z R

0

Z 2�

0

r2 (jcos �j+ jsin �j) drd�

=
1

6
(f 0 (M)� f 0 (m)) R

�

Z 2�

0

(jcos �j+ jsin �j) d�:

Since Z 2�

0

(jcos �j+ jsin �j) d� = 8;

hence we obtain the inequalities

(5.2)

0 � 1

2

"
1

�R2

Z R

0

Z 2�

0

f (r cos � + a) rdrd� +
1

�R2

Z R

0

Z 2�

0

f (r sin � + b) rdrd�

#

� 1

�R2

Z R

0

Z 2�

0

f

�
r cos � + r sin �

2
+
a+ b

2

�
rdrd�

� f (a) + f (b)
2

+ f

�
a+ b

2

�
� 4

3�
[f 0 (M)� f 0 (m)]R:
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