HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES FOR JENSEN'S DIVERGENCE

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract

Let $f: I \rightarrow \mathbb{R}$ be a convex function on I. The associated two variables Jensen's divergence function $\mathcal{J}_{f}: I \times I \rightarrow \mathbb{R}_{+}$is defined by $$
\mathcal{J}_{f}(t, s):=\frac{1}{2}[f(t)+f(s)]-f\left(\frac{t+s}{2}\right) \geq 0
$$

In this paper we establish some basic and double integral inequalities for the divergence function \mathcal{J}_{f} defined above. Some double integral inequalities in the case of rectangles, squares and circular sectors are also given.

1. Introduction

The following inequality holds for any convex function f defined on \mathbb{R}

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2}, \quad a, b \in \mathbb{R}, a<b \tag{1.1}
\end{equation*}
$$

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [10]). But this result was nowhere mentioned in the mathematical literature and was not widely known as Hermite's result.
E. F. Beckenbach, a leading expert on the history and the theory of convex functions, wrote that this inequality was proven by J. Hadamard in 1893 [1]. In 1974, D. S. Mitrinović found Hermite's note in Mathesis [10]. Since (1.1) was known as Hadamard's inequality, the inequality is now commonly referred as the HermiteHadamard inequality. For a monograph devoted to this inequality see [9]. Related results can be also found in [7].

In 1990, [4] the author established the following refinement of Hermite-Hadamard inequality for double and triple integrals for the convex function $f:[a, b] \rightarrow \mathbb{R}$

$$
\begin{align*}
& f\left(\frac{a+b}{2}\right) \leq \frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} f\left(\frac{x+y}{2}\right) d x d y \tag{1.2}\\
& \quad \leq \frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{1} f((1-t) x+t y) d t d x d y \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x
\end{align*}
$$

More recently, [8] we obtained a different double integral inequality of HermiteHadamard type for the convex function $f:[a, b] \rightarrow \mathbb{R}$,

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{(d-c)^{2}} \int_{c}^{d} \int_{c}^{d} f\left(\frac{\alpha a+\beta b}{\alpha+\beta}\right) d \beta d \alpha \leq \frac{f(a)+f(b)}{2} \tag{1.3}
\end{equation*}
$$

[^0]where $0<c<d$.
For a function f defined on an interval I of the real line \mathbb{R}, by following the paper by Burbea \& Rao [2], we consider the \mathcal{J}-divergence between the elements t, $s \in I$ given by
$$
\mathcal{J}_{f}(t, s):=\frac{1}{2}[f(t)+f(s)]-f\left(\frac{t+s}{2}\right) \geq 0
$$

If f is convex on I, then $\mathcal{J}_{f}(t, s) \geq 0$ for all $(t, s) \in I \times I$.
As important examples of such divergences, we can consider for positive numbers $(t, s)[2]$,

$$
\mathcal{J}_{\alpha}(t, s):=\left\{\begin{array}{l}
(\alpha-1)^{-1}\left[\frac{1}{2}\left(t^{\alpha}+s^{\alpha}\right)-\left(\frac{t+s}{2}\right)^{\alpha}\right], \alpha \neq 1 \\
{\left[t \ln (t)+s \ln (s)-(t+s) \ln \left(\frac{t+s}{2}\right)\right], \alpha=1}
\end{array}\right.
$$

The following result concerning the joint convexity of \mathcal{J}_{f} also holds:
Theorem 1 (Burbea-Rao, 1982 [2]). Let f be a C^{2} function on an interval I. Then \mathcal{J}_{f} is convex (concave) on $I \times I$, if and only if f is convex (concave) and $\frac{1}{f^{\prime \prime}}$ is concave (convex) on I.

Consider the power function $f_{\alpha}:[0, \infty) \rightarrow \mathbb{R}, f_{\alpha}(t)=(\alpha-1)^{-1} t^{\alpha}$ with $\alpha \in$ $(1,2]$. This function is convex on $[0, \infty)$ and $\frac{1}{f_{\alpha}^{\prime \prime}}$ is concave on $(0, \infty)$ and therefore \mathcal{J}_{α} is jointly convex on $[0, \infty) \times[0, \infty)$. Also, the function $f_{1}:(0, \infty) \rightarrow \mathbb{R}, f_{1}(t)=$ $t \ln t$ is convex on $(0, \infty)$ and $\frac{1}{f_{1}^{\prime \prime}}$ is concave on $(0, \infty)$ showing that \mathcal{J}_{1} is jointly convex on $(0, \infty) \times(0, \infty)$.

In this paper we establish some basic and double integral inequalities for the Jensen's divergence function \mathcal{J}_{f} defined above. Some double integral inequalities in the case of rectangles, squares and circular sectors are also given.

2. General Results

Consider G a closed and bounded subset of $I \times I$. Define

$$
A_{G}:=\iint_{G} d x d y
$$

the area of G and $\left(\overline{x_{G}}, \overline{y_{G}}\right)$ the centre of mass for G, where

$$
\overline{x_{G}}:=\frac{1}{A_{G}} \iint_{G} x d x d y, \overline{y_{G}}:=\frac{1}{A_{G}} \iint_{G} y d x d y
$$

Observe that if $f: I \rightarrow \mathbb{R}$ is convex and G a closed and bounded subset of $I \times I$, then the double integral

$$
\begin{align*}
\iint_{G} \mathcal{J}_{f}(x, y) d x d y=\frac{1}{2}\left[\iint_{G} f(x) d x+\int\right. & \left.\int_{G} f(y) d y\right] \tag{2.1}\\
& -\iint_{G} f\left(\frac{x+y}{2}\right) d x d y \geq 0
\end{align*}
$$

exists.
We have the following general result:
Theorem 2. Let f be a $C^{1}(I)$ function on an interval I. If f is convex on I, then

$$
\begin{equation*}
0 \leq \iint_{G} \mathcal{J}_{f}(x, y) d x d y \leq \frac{1}{4} \Phi_{G}\left(f^{\prime}\right) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{align*}
& \text { (2.3) } \Phi_{G}\left(f^{\prime}\right):=\iint_{G}\left[f^{\prime}(y)-f^{\prime}(x)\right](y-x) d x d y \tag{2.3}\\
& =\iint_{G} f^{\prime}(y) y d x d y+\iint_{G} f^{\prime}(x) x d x d y-\iint_{G} x f^{\prime}(y) d x d y-\iint_{G} f^{\prime}(x) y d x d y
\end{align*}
$$

Proof. We use the following inequality for differentiable convex functions obtained in [6]

$$
0 \leq \frac{f(x)+f(y)}{2}-f\left(\frac{x+y}{2}\right) \leq \frac{1}{4}\left[f^{\prime}(y)-f^{\prime}(x)\right](y-x)
$$

for any $x, y \in \stackrel{\circ}{I}$ with the constant $\frac{1}{4}$ as best possible.
Corollary 1. With the assumptions of Theorem 2 and if $\gamma=\inf _{t \in I} f^{\prime}(t)$ and $\Gamma=\sup _{t \in I} f^{\prime}(t)$ are finite, then

$$
\begin{equation*}
0 \leq \iint_{G} \mathcal{J}_{f}(x, y) d x d y \leq \frac{1}{4}(\Gamma-\gamma) \iint_{G}|y-x| d x d y \tag{2.4}
\end{equation*}
$$

Moreover, if $G \subset[a, b] \times[a, b] \subset I \times I$, then

$$
\begin{equation*}
0 \leq \iint_{G} \mathcal{J}_{f}(x, y) d x d y \leq \frac{1}{4}\left[f^{\prime}(b)-f^{\prime}(a)\right] \iint_{G}|y-x| d x d y \tag{2.5}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
0 & \leq \Phi_{G}\left(f^{\prime}\right)=\iint_{G}\left[f^{\prime}(y)-f^{\prime}(x)\right](y-x) d x d y \\
& \leq \iint_{G}\left|\left[f^{\prime}(y)-f^{\prime}(x)\right](y-x)\right| d x d y \leq \iint_{G}\left|f^{\prime}(y)-f^{\prime}(x)\right||y-x| d x d y \\
& \leq(\Gamma-\gamma) \iint_{G}|y-x| d x d y
\end{aligned}
$$

which together with (2.2) gives (2.4).
Corollary 2. With the assumptions of Theorem 2 and if the derivative f^{\prime} is Lipschitzian with the constant $K>0$, namely

$$
\left|f^{\prime}(t)-f^{\prime}(s)\right| \leq K|t-s| \text { for all } t, s \in \stackrel{\circ}{I}
$$

where $\stackrel{\circ}{I}$ is the interior of I, then we have the inequality

$$
\begin{equation*}
0 \leq \iint_{G} \mathcal{J}_{f}(x, y) d x d y \leq \frac{1}{4} K \iint_{G}(y-x)^{2} d x d y \tag{2.6}
\end{equation*}
$$

Moreover, if f is a $C^{2}(I)$ function on an interval I and $\left\|f^{\prime \prime}\right\|_{I, \infty}:=\sup _{t \in I}\left|f^{\prime \prime}(t)\right|<$ ∞, then

$$
\begin{equation*}
0 \leq \iint_{G} \mathcal{J}_{f}(x, y) d x d y \leq \frac{1}{4}\left\|f^{\prime \prime}\right\|_{I, \infty} \iint_{G}(y-x)^{2} d x d y \tag{2.7}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
0 & \leq \Phi_{G}\left(f^{\prime}\right)=\iint_{G}\left[f^{\prime}(y)-f^{\prime}(x)\right](y-x) d x d y \\
& \leq \iint_{G}\left|\left[f^{\prime}(y)-f^{\prime}(x)\right](y-x)\right| d x d y \leq \iint_{G}\left|f^{\prime}(y)-f^{\prime}(x)\right||y-x| d x d y \\
& \leq K \iint_{G}(y-x)^{2} d x d y
\end{aligned}
$$

which together with (2.2) gives (2.4).
We need the following lemma that is of interest in itself:
Lemma 1. Let f be a $C^{2}(I)$ function on an interval I. If f is convex on I and $\frac{1}{f^{\prime \prime}}$ is concave on I, then for all $(t, s),(u, v) \in \stackrel{\circ}{I} \times \stackrel{\circ}{I}$ we have the double inequality

$$
\begin{align*}
& \frac{1}{2}\left[f^{\prime}(t)-f^{\prime}\left(\frac{t+s}{2}\right)\right](t-u)+\frac{1}{2}\left[f^{\prime}(s)-f^{\prime}\left(\frac{t+s}{2}\right)\right](s-v) \tag{2.8}\\
& \geq \mathcal{J}_{f}(t, s)-\mathcal{J}_{f}(u, v) \\
& \quad \geq \frac{1}{2}\left[f^{\prime}(u)-f^{\prime}\left(\frac{u+v}{2}\right)\right](t-u)+\frac{1}{2}\left[f^{\prime}(v)-f^{\prime}\left(\frac{u+v}{2}\right)\right](s-v)
\end{align*}
$$

Proof. It is well known that if the function of two independent variables $F: D \subset$ $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is convex on the convex domain D and has partial derivatives $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial y}$ on D then for all $(t, s),(u, v) \in D$ we have the gradient inequalities

$$
\begin{align*}
& \frac{\partial F(t, s)}{\partial x}(t-u)+\frac{\partial F(t, s)}{\partial y}(s-v) \tag{2.9}\\
& \geq F(t, s)-F(u, v) \\
& \geq \frac{\partial F(u, v)}{\partial x}(t-u)+\frac{\partial F(u, v)}{\partial y}(s-v) .
\end{align*}
$$

Now, if we take $F: I \times I \rightarrow \mathbb{R}$ given by

$$
F(t, s)=\frac{1}{2}[f(t)+f(s)]-f\left(\frac{t+s}{2}\right)
$$

and observe that

$$
\frac{\partial F(t, s)}{\partial x}=\frac{1}{2}\left[f^{\prime}(t)-f^{\prime}\left(\frac{t+s}{2}\right)\right]
$$

and

$$
\frac{\partial F(t, s)}{\partial y}=\frac{1}{2}\left[f^{\prime}(s)-f^{\prime}\left(\frac{t+s}{2}\right)\right]
$$

and since F is convex on $I \times I$, then by (2.9) we get (2.8).
We have the following double integral inequality:

Theorem 3. Let f be a $C^{2}(I)$ function on an interval I. If f is convex on I and $\frac{1}{f^{\prime \prime}}$ is concave on I, then for all $(u, v) \in \stackrel{\circ}{I} \times \stackrel{\circ}{I}$, we have the double integral inequality

$$
\begin{align*}
& \frac{1}{2} \frac{1}{A_{G}} \iint_{G}\left[f^{\prime}(x)-f^{\prime}\left(\frac{x+y}{2}\right)\right](x-u) d x d y \tag{2.10}\\
& +\frac{1}{2} \frac{1}{A_{G}} \iint_{G}\left[f^{\prime}(y)-f^{\prime}\left(\frac{x+y}{2}\right)\right](y-v) d x d y \\
& \geq \frac{1}{A_{G}} \iint_{G} \mathcal{J}_{f}(x, y) d x d y-\mathcal{J}_{f}(u, v) \\
& \geq \frac{1}{2}\left[f^{\prime}(u)-f^{\prime}\left(\frac{u+v}{2}\right)\right]\left(\overline{x_{G}}-u\right)+\frac{1}{2}\left[f^{\prime}(v)-f^{\prime}\left(\frac{u+v}{2}\right)\right]\left(\overline{y_{G}}-v\right)
\end{align*}
$$

In particular,

$$
\begin{align*}
& 0 \leq \frac{1}{A_{G}} \iint_{G} \mathcal{J}_{f}(x, y) d x d y-\mathcal{J}_{f}\left(\overline{x_{G}}, \overline{y_{G}}\right) \tag{2.11}\\
& \leq \frac{1}{2} \frac{1}{A_{G}}\left[\iint_{G}\left[f^{\prime}(x)-f^{\prime}\left(\frac{x+y}{2}\right)\right]\left(x-\overline{x_{G}}\right) d x d y\right. \\
&\left.+\iint_{G}\left[f^{\prime}(y)-f^{\prime}\left(\frac{x+y}{2}\right)\right]\left(y-\overline{y_{G}}\right) d x d y\right]
\end{align*}
$$

Proof. From (2.8) we have

$$
\begin{align*}
& \frac{1}{2}\left[f^{\prime}(x)-f^{\prime}\left(\frac{x+y}{2}\right)\right](x-u)+\frac{1}{2}\left[f^{\prime}(y)-f^{\prime}\left(\frac{x+y}{2}\right)\right](y-v) \tag{2.12}\\
& \geq \mathcal{J}_{f}(x, y)-\mathcal{J}_{f}(u, v) \\
& \quad \geq \frac{1}{2}\left[f^{\prime}(u)-f^{\prime}\left(\frac{u+v}{2}\right)\right](x-u)+\frac{1}{2}\left[f^{\prime}(v)-f^{\prime}\left(\frac{u+v}{2}\right)\right](y-v)
\end{align*}
$$

for all $(x, y),(u, v) \in \stackrel{\circ}{I} \times \stackrel{\circ}{I}$.
If we take the integral mean $\frac{1}{A_{G}} \iint_{G}$ over $(x, y) \in G$ in (2.12) we get the desired result (2.10).

Corollary 3. With the assumptions of Theorem 3 and if $\gamma=\inf _{t \in I} f^{\prime}(t)$ and $\Gamma=\sup _{t \in I} f^{\prime}(t)$ are finite, then

$$
\begin{align*}
0 \leq \frac{1}{A_{G}} \iint_{G} \mathcal{J}_{f}(x, y) & d x d y-\mathcal{J}_{f}\left(\overline{x_{G}}, \overline{y_{G}}\right) \tag{2.13}\\
& \leq \frac{1}{2}(\Gamma-\gamma) \frac{1}{A_{G}} \iint_{G}\left(\left|x-\overline{x_{G}}\right|+\left|y-\overline{y_{G}}\right|\right) d x d y
\end{align*}
$$

Moreover, if $G \subset[a, b] \times[a, b] \subset I \times I$, then

$$
\begin{align*}
0 \leq \frac{1}{A_{G}} \iint_{G} & \mathcal{J}_{f}(x, y) d x d y-\mathcal{J}_{f}\left(\overline{x_{G}}, \overline{y_{G}}\right) \tag{2.14}\\
& \leq \frac{1}{2}\left[f^{\prime}(b)-f^{\prime}(a)\right] \frac{1}{A_{G}} \iint_{G}\left(\left|x-\overline{x_{G}}\right|+\left|y-\overline{y_{G}}\right|\right) d x d y
\end{align*}
$$

Proof. We have

$$
\begin{aligned}
& 0 \leq \iint_{G}\left[f^{\prime}(x)\right.\left.-f^{\prime}\left(\frac{x+y}{2}\right)\right]\left(x-\overline{x_{G}}\right) d x d y \\
&\left.+\iint_{G}\left[f^{\prime}(y)-f^{\prime}\left(\frac{x+y}{2}\right)\right]\left(y-\overline{y_{G}}\right) d x d y\right] \\
& \leq \iint_{G}\left|f^{\prime}(x)-f^{\prime}\left(\frac{x+y}{2}\right)\right|\left|x-\overline{x_{G}}\right| d x d y \\
&+\iint_{G}\left|f^{\prime}(y)-f^{\prime}\left(\frac{x+y}{2}\right)\right|\left|y-\overline{y_{G}}\right| d x d y \\
& \leq(\Gamma-\gamma) \iint_{G}\left|x-\overline{x_{G}}\right| d x d y+(\Gamma-\gamma) \iint_{G}\left|y-\overline{y_{G}}\right| d x d y \\
& \quad=(\Gamma-\gamma)\left[\iint_{G}\left|x-\overline{x_{G}}\right| d x d y+\iint_{G}\left|y-\overline{y_{G}}\right| d x d y\right]
\end{aligned}
$$

and by (2.11) we get the desired result (2.13).
Corollary 4. With the assumptions of Theorem 3 and if the derivative f^{\prime} is Lipschitzian with the constant K, then

$$
\begin{align*}
0 \leq \frac{1}{A_{G}} \iint_{G} \mathcal{J}_{f}(x, y) & d x d y-\mathcal{J}_{f}\left(\overline{x_{G}}, \overline{y_{G}}\right) \tag{2.15}\\
& \leq \frac{1}{4} K \frac{1}{A_{G}} \iint_{G}|x-y|\left[\left|x-\overline{x_{G}}\right|+\left|y-\overline{y_{G}}\right|\right] d x d y
\end{align*}
$$

Moreover, if f is a $C^{2}(I)$ function on an interval I and $\left\|f^{\prime \prime}\right\|_{I, \infty}:=\sup _{t \in I}\left|f^{\prime \prime}(t)\right|<$ ∞, then

$$
\begin{align*}
0 \leq \frac{1}{A_{G}} \iint_{G} & \mathcal{J}_{f}(x, y) d x d y-\mathcal{J}_{f}\left(\overline{x_{G}}, \overline{y_{G}}\right) \tag{2.16}\\
& \leq \frac{1}{4}\left\|f^{\prime \prime}\right\|_{I, \infty} \frac{1}{A_{G}} \iint_{G}|x-y|\left(\left|x-\overline{x_{G}}\right|+\left|y-\overline{y_{G}}\right|\right) d x d y
\end{align*}
$$

Proof. We have

$$
\begin{aligned}
& 0 \leq \iint_{G}\left[f^{\prime}(x)\right.\left.-f^{\prime}\left(\frac{x+y}{2}\right)\right]\left(x-\overline{x_{G}}\right) d x d y \\
&\left.+\iint_{G}\left[f^{\prime}(y)-f^{\prime}\left(\frac{x+y}{2}\right)\right]\left(y-\overline{y_{G}}\right) d x d y\right] \\
& \leq \iint_{G}\left|f^{\prime}(x)-f^{\prime}\left(\frac{x+y}{2}\right)\right|\left|x-\overline{x_{G}}\right| d x d y \\
&+\iint_{G}\left|f^{\prime}(y)-f^{\prime}\left(\frac{x+y}{2}\right)\right|\left|y-\overline{y_{G}}\right| d x d y \\
& \leq K \iint_{G}\left|x-\frac{x+y}{2}\right|\left|x-\overline{x_{G}}\right| d x d y+K \iint_{G}\left|y-\frac{x+y}{2}\right|\left|x-\overline{x_{G}}\right| d x d y \\
&=\frac{1}{2} K \iint_{G}|x-y|\left(\left|x-\overline{x_{G}}\right|+\left|y-\overline{y_{G}}\right|\right) d x d y
\end{aligned}
$$

and by (2.11) we get the desired result (2.16).
3. Examples for Functions Defined on Squares

If $G=[a, b]^{2}:=[a, b] \times[a, b] \subset I \times I$ then

$$
\begin{align*}
& \frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} \mathcal{J}_{f}(x, y) d x d y \tag{3.1}\\
& =\frac{1}{b-a} \int_{a}^{b} f(x) d x-\frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} f\left(\frac{x+y}{2}\right) d x d y
\end{align*}
$$

and

$$
\begin{align*}
\Phi_{[a, b]^{2}}\left(f^{\prime}\right) & =\int_{a}^{b} \int_{a}^{b}\left[f^{\prime}(y)-f^{\prime}(x)\right](y-x) d x d y \tag{3.2}\\
& =2\left[(b-a) \int_{a}^{b} f^{\prime}(x) x d x-\int_{a}^{b} f^{\prime}(x) d x \int_{a}^{b} x d x\right] \\
& =2(b-a) \int_{a}^{b} f^{\prime}(x)\left(x-\frac{a+b}{2}\right) d x \\
& =2(b-a)^{2}\left[\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right]
\end{align*}
$$

From (2.2) we then have for a differentiable convex function f on I that

$$
\begin{align*}
0 & \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x-\frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} f\left(\frac{x+y}{2}\right) d x d y \tag{3.3}\\
& \leq \frac{1}{2}\left[\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right] \\
& \leq \frac{1}{16}\left[f^{\prime}(b)-f^{\prime}(a)\right](b-a), \text { conform with [5]. }
\end{align*}
$$

If f is twice differentiable and $\left\|f^{\prime \prime}\right\|_{(a, b), \infty}:=\sup _{t \in(a, b)}\left|f^{\prime \prime}(t)\right|<\infty$ and since

$$
\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{1}{12}\left\|f^{\prime \prime}\right\|_{(a, b), \infty}(b-a)^{2}
$$

then

$$
\begin{align*}
0 & \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x-\frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} f\left(\frac{x+y}{2}\right) d x d y \tag{3.4}\\
& \leq \frac{1}{2}\left[\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right] \leq \frac{1}{24}\left\|f^{\prime \prime}\right\|_{(a, b), \infty}(b-a)^{2}
\end{align*}
$$

provided that f is twice differentiable convex on (a, b) with $\left\|f^{\prime \prime}\right\|_{(a, b), \infty}<\infty$.

4. Example for Functions Defined on Rectangle

If $G=[a, b] \times[c, d]$ is a rectangle from $I \times I$, then

$$
A_{[a, b] \times[c, d]}=(b-a)(d-c), \overline{x_{[a, b] \times[c, d]}}=\frac{a+b}{2} \text { and } \overline{y_{[a, b] \times[c, d]}}=\frac{c+d}{2} .
$$

Also

$$
\begin{aligned}
& \frac{1}{A_{[a, b] \times[c, d]}} \int_{a}^{b} \int_{c}^{d} \mathcal{J}_{f}(x, y) d x d y \\
& =\frac{1}{2}\left(\frac{1}{b-a} \int_{a}^{b} f(x) d x+\frac{1}{d-c} \int_{a}^{b} f(y) d y\right) \\
& -\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f\left(\frac{x+y}{2}\right) d x d y
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathcal{J}_{f}\left(\overline{x_{[a, b] \times[c, d]}}, \overline{y_{[a, b] \times[c, d]}}\right) \\
& =\frac{1}{2}\left[f\left(\frac{a+b}{2}\right)+f\left(\frac{c+d}{2}\right)\right]-f\left(\frac{a+b+c+d}{4}\right) .
\end{aligned}
$$

We also have

$$
\begin{aligned}
& \int_{a}^{b} \int_{c}^{d}\left(\left|x-\frac{a+b}{2}\right|+\left|y-\frac{c+d}{2}\right|\right) d x d y \\
& =\frac{1}{4}(d-c)(b-a)^{2}+\frac{1}{4}(b-a)(d-c)^{2} \\
& =\frac{1}{4}(b-a)(d-c)(b-a+d-c) .
\end{aligned}
$$

Assume that $[a, b],[c, d] \subset[m, M] \subset I$ and f is twice differentiable convex on I with $\frac{1}{f^{\prime \prime}}$ concave, then from (2.14) we get

$$
\begin{align*}
& 0 \leq \frac{1}{2}\left(\frac{1}{b-a} \int_{a}^{b} f(x) d x+\frac{1}{d-c} \int_{a}^{b} f(y) d y\right) \tag{4.1}\\
&-\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f\left(\frac{x+y}{2}\right) d x d y \\
&-\frac{1}{2}\left[f\left(\frac{a+b}{2}\right)+f\left(\frac{c+d}{2}\right)\right]+f\left(\frac{a+b+c+d}{4}\right) \\
& \leq \frac{1}{8}\left[f^{\prime}(M)-f^{\prime}(m)\right](b-a+d-c)
\end{align*}
$$

5. Example for Functions Defined on Disks

Consider the disk centered in zero and of radius $R>0$,

$$
D(0, R):=\{(x, y) \mid x=r \cos \theta, y=r \sin \theta, r \in[0, R], \theta \in[0,2 \pi]\}
$$

Using the polar change of variable we have for a function $f: I \rightarrow R$ with $D(0, R) \subset$ $I \times I$

$$
\left.\left.\left.\left.\begin{array}{rl}
\iint_{D(0, R)} \mathcal{J}_{f}(x, y) d x d y=\int_{0}^{R} \int_{0}^{2 \pi} \mathcal{J}_{f}(r \cos \theta, r \sin \theta) r d r d \theta \\
= & \int_{0}^{R} \int_{0}^{2 \pi}\left[\frac{f(r \cos \theta)+f(r \sin \theta)}{2}\right.
\end{array}\right) f\left(\frac{r \cos \theta+r \sin \theta}{2}\right)\right] r d r d \theta\right] \text { (} \quad \begin{array}{rl}
2 \\
= & \frac{1}{2}\left[\int_{0}^{R} \int_{0}^{2 \pi} f(r \cos \theta) r d r d \theta\right.
\end{array}+\int_{0}^{R} \int_{0}^{2 \pi} f(r \sin \theta) r d r d \theta\right] .
$$

and

$$
\begin{aligned}
\Phi_{D(0, R)}\left(f^{\prime}\right) & :=\iint_{D(0, R)}\left[f^{\prime}(y)-f^{\prime}(x)\right](y-x) d x d y \\
& =\int_{0}^{R} \int_{0}^{2 \pi}\left[f^{\prime}(r \sin \theta)-f^{\prime}(r \cos \theta)\right](\sin \theta-\cos \theta) r^{2} d r d \theta
\end{aligned}
$$

Assume that f is twice differentiable convex on I with $\left\|f^{\prime \prime}\right\|_{I, \infty}:=\sup _{t \in I}\left|f^{\prime \prime}(t)\right|<$ ∞, then

$$
\begin{aligned}
\Phi_{D(0, R)}\left(f^{\prime}\right) & \leq \int_{0}^{R} \int_{0}^{2 \pi}\left|f^{\prime}(r \sin \theta)-f^{\prime}(r \cos \theta)\right||\sin \theta-\cos \theta| r^{2} d r d \theta \\
& \leq\left\|f^{\prime \prime}\right\|_{I, \infty} \int_{0}^{R} \int_{0}^{2 \pi}(\sin \theta-\cos \theta)^{2} r^{2} d r d \theta \\
& =\left\|f^{\prime \prime}\right\|_{I, \infty} \int_{0}^{R} \int_{0}^{2 \pi}\left(\sin ^{2} \theta-2 \sin \theta \cos \theta+\cos ^{2} \theta\right) r^{2} d r d \theta
\end{aligned}
$$

Observe that

$$
\begin{aligned}
& \int_{0}^{R} \int_{0}^{2 \pi}\left(\sin ^{2} \theta-2 \sin \theta \cos \theta+\cos ^{2} \theta\right) r^{2} d r d \theta \\
& =\int_{0}^{R} \int_{0}^{2 \pi}(1-\sin 2 \theta) r^{2} d r d \theta=\frac{R^{3}}{3} \int_{0}^{2 \pi}(1-\sin 2 \theta) d \theta=\frac{2 \pi R^{3}}{3}
\end{aligned}
$$

and by the inequality (2.2) we get

$$
\begin{align*}
& 0 \leq \frac{1}{2}\left[\frac{1}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2 \pi} f(r \cos \theta) r d r d \theta+\frac{1}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2 \pi} f(r \sin \theta) r d r d \theta\right] \tag{5.1}\\
&-\frac{1}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2 \pi} f\left(\frac{r \cos \theta+r \sin \theta}{2}\right) r d r d \theta \leq \frac{1}{6} R\left\|f^{\prime \prime}\right\|_{I, \infty}
\end{align*}
$$

Consider the disk centered in the point (a, b) and of radius R,
$D((a, b), R):=\{(x, y) \mid x=r \cos \theta+a, y=r \sin \theta+b, r \in[0, R], \theta \in[0,2 \pi]\}$.
We have

$$
\overline{x_{D((a, b), R)}}=a, \overline{y_{D((a, b), R)}}=b,
$$

$$
\begin{aligned}
& \frac{1}{A_{D((a, b), R)}} \iint_{D((a, b), R)} \mathcal{J}_{f}(x, y) d x d y= \\
& =\frac{1}{2}\left[\frac{1}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2 \pi} f(r \cos \theta+a) r d r d \theta+\frac{1}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2 \pi} f(r \sin \theta+b) r d r d \theta\right] \\
& \quad-\frac{1}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2 \pi} f\left(\frac{r \cos \theta+r \sin \theta}{2}+\frac{a+b}{2}\right) r d r d \theta
\end{aligned}
$$

Assume that $D((a, b), R) \subset[m, M]^{2} \subset I \times I$ and f is twice differentiable convex on I and with $\frac{1}{f^{\prime \prime}}$ concave on I, then by (2.13) we get

$$
\begin{gathered}
0 \leq \frac{1}{2}\left[\frac{1}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2 \pi} f(r \cos \theta+a) r d r d \theta+\frac{1}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2 \pi} f(r \sin \theta+b) r d r d \theta\right] \\
-\frac{1}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2 \pi} f\left(\frac{r \cos \theta+r \sin \theta}{2}+\frac{a+b}{2}\right) r d r d \theta \\
-\frac{f(a)+f(b)}{2}+f\left(\frac{a+b}{2}\right) \\
\leq \frac{1}{2}\left(f^{\prime}(M)-f^{\prime}(m)\right) \frac{1}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2 \pi} r^{2}(|\cos \theta|+|\sin \theta|) d r d \theta \\
=\frac{1}{6}\left(f^{\prime}(M)-f^{\prime}(m)\right) \frac{R}{\pi} \int_{0}^{2 \pi}(|\cos \theta|+|\sin \theta|) d \theta
\end{gathered}
$$

Since

$$
\int_{0}^{2 \pi}(|\cos \theta|+|\sin \theta|) d \theta=8
$$

hence we obtain the inequalities

$$
\begin{array}{r}
0 \leq \frac{1}{2}\left[\frac{1}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2 \pi} f(r \cos \theta+a) r d r d \theta+\frac{1}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2 \pi} f(r \sin \theta+b) r d r d \theta\right] \tag{5.2}\\
-\frac{1}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2 \pi} f\left(\frac{r \cos \theta+r \sin \theta}{2}+\frac{a+b}{2}\right) r d r d \theta \\
\\
-\frac{f(a)+f(b)}{2}+f\left(\frac{a+b}{2}\right) \leq \frac{4}{3 \pi}\left[f^{\prime}(M)-f^{\prime}(m)\right] R
\end{array}
$$

References

[1] E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54(1948), 439-460.
[2] J. Burbea and C. R. Rao, On the convexity of some divergence measures based on entropy functions, IEEE Tran. Inf. Theor., Vol. IT-28, No. 3, 1982, 489-495.
[3] P. Cerone and S. S. Dragomir, A refinement of the Grüss inequality and applications, Tamkang J. Math. Volume 38, Number 1, 37-49, Spring 2007. Preprint RGMIA Res. Rep. Coll. 5 (2002), No. 2, Art. 14. [Online http://rgmia.org/papers/v5n2/RGIApp.pdf].
[4] S. S. Dragomir, Two refinements of Hadamard's inequalities. Zb. Rad. (Kragujevac) No. 11 (1990), 23-26.
[5] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure and Appl. Math., 3 (3) (2002), Art. 35.
[6] S. S. Dragomir, Bounds for the deviation of a function from the chord generated by its extremities. Bull. Aust. Math. Soc. 78 (2008), no. 2, 225-248.
[7] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results. Aust. J. Math. Anal. Appl. 14 (2017), no. 1, Art. 1, 283 pp.
[8] S. S. Dragomir, Double integral inequalities of Hermite-Hadamard type for h-convex functions on linear spaces. Analysis (Berlin) 37 (2017), no. 1, 13-22.
[9] S. S. Dragomir and C. E. M. Pearce, Selected Topics on HermiteHadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online https://rgmia.org/monographs/hermite_hadamard.html].
[10] D. S. Mitrinović and I. B. Lacković, Hermite and convexity, Aequationes Math. 28 (1985), 229-232.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428 , Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 26D15.
 Key words and phrases. Convex functions, Jensen's divergence, Hermite-Hadamard inequality, Double integral inequalities.

