HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES FOR
JENSEN’S DIVERGENCE

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. Let f : I — R be a convex function on I. The associated two
variables Jensen’s divergence function Jy : I X I — Ry is defined by

it =3 @+ rel-7 () 2o

In this paper we establish some basic and double integral inequalities for the
divergence function Jy defined above. Some double integral inequalities in the
case of rectangles, squares and circular sectors are also given.

1. INTRODUCTION

The following inequality holds for any convex function f defined on R

b

(1.1) f(a+b> < L / f(m)dat‘SM7 a, beR, a <b.
2 b—a /, 2

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [10]).

But this result was nowhere mentioned in the mathematical literature and was not

widely known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of convex
functions, wrote that this inequality was proven by J. Hadamard in 1893 [1]. In
1974, D. S. Mitrinovi¢ found Hermite’s note in Mathesis [10]. Since (1.1) was known
as Hadamard’s inequality, the inequality is now commonly referred as the Hermite-
Hadamard inequality. For a monograph devoted to this inequality see [9]. Related
results can be also found in [7].

In 1990, [4] the author established the following refinement of Hermite-Hadamard
inequality for double and triple integrals for the convex function f : [a,b] — R

(1.2) f<a;rb> < (b—la)2 /;/;f(x;y)dxdy

g(b_la)Q/ab/ab/olf((l—t)x+ty)dtdxdy§b_ICL/abf(x)dx.

More recently, [8] we obtained a different double integral inequality of Hermite-
Hadamard type for the convex function f : [a,b] — R,

(1.3) f(a;b>§(d10)2/Cd/cdf<om))dﬁdagw
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where 0 < ¢ < d.

For a function f defined on an interval I of the real line R , by following the
paper by Burbea & Rao [2], we consider the [J-divergence between the elements ¢,
s € I given by

Trts)= 5w+ - 1 (5] 20

If f is convex on I, then J¢ (t,s) > 0 for all (t,s) € I x I.
As important examples of such divergences, we can consider for positive numbers

(t,5) [2],
(0= D)7 [ +57) - (59)°], a £ 1,
[tIn(t) + sln(s) — (t+s)In ()], o= 1.
The following result concerning the joint convexity of J; also holds:

Theorem 1 (Burbea-Rao, 1982 [2]). Let f be a C* function on an interval I. Then
Js is convex (concave) on I x I, if and only if f is convex (concave) and ﬁ 15
concave (convex) on I.

Ju (t,8) =

Consider the power function f, : [0,00) — R, fo (t) = (—1) "t with o €
(1,2]. This function is convex on [0, 00) and 1,, is concave on (0, 00) and therefore

Ja is jointly convex on [0, 00) X [ 00). Also, the function f : (0,00) = R, f1 (t) =
tlnt is convex on (0,00) and f{' is concave on (0,00) showing that J; is jointly

convex on (0,00) x (0,00).

In this paper we establish some basic and double integral inequalities for the
Jensen’s divergence function J; defined above. Some double integral inequalities
in the case of rectangles, squares and circular sectors are also given.

2. GENERAL RESULTS

Consider G a closed and bounded subset of I x I. Define

Ag ::// dxdy

the area of G and (Tg,yg) the centre of mass for G, where

Tg = AG//xdzdy, yG = A //yda:dy

Observe that if f: I — R is convex and G a closed and bounded subset of I x I,
then the double integral

//ij(xvy)dxdy:;[//Gf(x)dw—l—//f(y)dy}
(o

Theorem 2. Let f be a C* (I) function on an interval I. If f is convex on I, then

(2.2) 0< / /G Ty (w,y) dady < 16 (1),

exists.
We have the following general result:
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where

(23) D // (@) (y - @) dady
-/ /G £  ydody+ /G £ (@) adsdy- /G of (o) dody- [ /G 1 (@) ydady.

Proof. We use the following inequality for differentiable convex functions obtained

in [6]
f@)+ [y l’+y Loy
o< LD < W - @l
for any z, y € I with the constant i as best possible. O

Corollary 1. With the assumptions of Theorem 2 and if v = inf,_; f' (t) and
[' = sup,.; f' (t) are finite, then

(2.4) o< [ [ gr@aydsay< @) [ [ 1y alday

Moreover, if G C [a,b] X [a,b] C I x I, then

@5 o< [ [ ey <317 @) -1 @) [ [ p-ldaay
Proof. We have
0< 06 (r) = [ [ 1F'w) = F @) -0 dody
<[ 1@ -r@lw-aldy< [ [ 1) @y aldody
<= [ [ 1y=aldod,

which together with (2.2) gives (2.4). O

Corollary 2. With the assumptions of Theorem 2 and if the derivative f' is Lip-
schitzian with the constant K > 0, namely

IF' (&)= f' ()| < K|t —s| forallt, sel,

where I is the interior of I, then we have the inequality

(2.6) og//ij (ay)dxdygiK//G(y—m)zdmdy.

Moreover, if f is a C* (I) function on an interval I and || f"||; .. := supye; | f" ()] <
oo, then

en o< [ [ Gewdey <1 [ [ -0 dody.
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Proof. We have
0< 6 (f) = / /G ' (0) — £ ()] (y — ) dedy
S/lgw(wff(@MyfmwmyS/[!f@)*f@ﬂwfﬂdwy

<x [ [ o asay,

which together with (2.2) gives (2.4). O

We need the following lemma that is of interest in itself:

Lemma 1. Let f be a C?(I) function on an interval I. If f is convex on I and
# is concave on I, then for all (t,s), (u,v) € I x I we have the double inequality

e g ro-r (5| e-usglre-r (5| e
> Ty (45) ~ T (1,0

25 lrw-r ()| a-wsg lro-r (450)]e-o.

Proof. 1t is well known that if the function of two independent variables F': D C

R x R — R is convex on the convex domain D and has partial derivatives %—5 and

%—5 on D then for all (¢,s), (u,v) € D we have the gradient inequalities

(2.9) %(t—u)—kw(s—v)
EF(t,S)*F(u,v)
EW@UHW@@.

Now, if we take F': I x I — R given by

F(ts) =

N | =

2

e Sra-r(50)

g fro-r(5)

and since F' is convex on I x I, then by (2.9) we get (2.8). O

rw+re-f ()

and observe that

and

We have the following double integral inequality:
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Theorem 3. Let f be a C%(I) functwn on an interval 1. If f is convex on I and
W is concave on I, then for all (u,v) € Ix I we have the double integral inequality

(2.10) 21%//{ (”jgy)](x—u)d@«dy
ryag | [ 7o -r (550)] o

> o [ [ 9 @y dody - 75 w.0)
G G

25 [rw-r (50)]| e g re-r (45)] ge - o).

In particular,

(2.11) OSALG//GJf (z,y) drdy — Ty (TG, Ya)
<50 | [r@-r(35Y)] @

[ L lrw-r (50)) -
Proof. From (2.8) we have

212 3|r@-r ()| e-ws|ro-r ()| e-o
> Ty (@.9) ~ I (u,0)
>3 [rw-r (5] e-wsg lre-r (5)] w-o
for all (z,y), (u,v) € I x 1.

If we take the integral mean i J [ over (z,y) € G in (2.12) we get the desired
result (2.10). O

Corollary 3. With the assumptions of Theorem 3 and if v = inf,_; f'(t) and
I' = sup,.; f' (t) are finite, then

(2.13) 0< —// Jr (x,y) dedy — Ty (Ta, Ya)

1
<5 @0 [ [ (ol + ly - 7a) dod.
2 AG G

Moreover, if G C [a,b] X [a,b] C I x I, then

1
210 0< - / /G T4 (2, y) dedy — J7 (75, 76)

<5 -r @l [ | te-7al+ 1y - vl dudy.
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Proof. We have

o< [ [rw-r(52)| @@
s [ [ rw-r (55| - v dan]
()
o 7 (55 b vl sy
<= [ [ fo-aldedy+ @) [ [ 1y=val dady
(M=) [//G|m—xc;|d:cdy+//c|y—yg|dxdy}

and by (2.11) we get the desired result (2.13). O

|z — Zg| dvdy

Corollary 4. With the assumptions of Theorem 3 and if the derivative [’ is Lip-
schitzian with the constant K, then

(2.15) 0<—// Jr (z,y) dedy — Ty (TG, UG)

Ko [ o= llle -zl + ly - 7@ dedy,
G G

Moreover, if f is a C* (I) function on an interval I and || f"||; .. := supye; | f" ()] <
oo, then

1

1 1
< 1o //Iw—yI(Iw—xcl+|y—yc\)dwdy-
G G

Proof. We have

og//c[fwx)—f'(x;y)}<z—m>dmdy
o[ [lrw-r(55Y)] - e asa]
(5

x +
( y)’ly ¥a| dxdy

|z — TGl dady

:r+

|z —Tg|dxdy

=§K//G|x—y|<|x—m+|y—y7;|>dxdy

and by (2.11) we get the desired result (2.16). O
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3. EXAMPLES FOR FUNCTIONS DEFINED ON SQUARES

If G = [a,b ]2:[ x [a,b] € I x I then

(3.1) b a) //foydxdy
e (252
and

82 = [ [ 16 -5 @l ey
[M [ @i [y [ m]

v [ o052
20— o [LLHL0 _ba/a”mdx].

From (2.2) we then have for a differentiable convex function f on I that

(3.3) 0 < /f b e //( )ddy
s;[“Q b_a/f o]

1
< % [f' (b) — f'(a)] (b —a), conform with [5].
If f is twice differentiable and [|f”|, ;) o = SUPseapy [/” ()| < 00 and since
2
<5 ||f//||(a,b),oo (b - a) ’

fl@+fm 1 [°
' 2 _bfa/af( dm_12

(34)  0< - /abf(x)m G // <x+y>dacdy

fa)+ ) 2
l > b_a/f dw]_mnfn(ab (b—a),

provided that f is twice differentiable convex on (a,b) with || f"[[(, ;) - < o0

4. EXAMPLE FOR FUNCTIONS DEFINED ON RECTANGLE

If G = [a,b] X [¢,d] is a rectangle from I x I, then

a+b c+d

Alap)x[e,q) = (b—a) (d =), Tlapxjed = and Yo p]x[e,d = 5
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Also
. //J v.y) dad
Alap)x[e,d] Finy Y
( /f daH—i/f dy)
b—a
“amaama |, [ () e
b—a)(d—c)
and

Tt (Zasixeds Vbl x[ed])

AP ) (2
L oo

—o)(b— a)2+i(b—a)(d—c)2

We also have

4(
:i(b—a)(dfc)(bfaerfc).

Assume that [a,b], [c,d] C [m,M] C I and f is twice differentiable convex on I
with 4 concave, then from (2.14) we get

(4.1) S;(b_ / [z dl"i’i )

1
C(b—a)(d—c) (
+

e e

)ddy

at+b+c+d
4

f
[f' (M) = f' (m)] (b—a+d—c).

0| =

5. EXAMPLE FOR FUNCTIONS DEFINED ON DISKS

Consider the disk centered in zero and of radius R > 0,

D(0,R) :={(z,y)| x =7rcosh, y=rsinf, r € [0,R], 6 € [0,2n]}.
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Using the polar change of variable we have for a function f : I — R with D (0, R) C
IxI

R 27
/ / x,y) dedy = / Js (rcosf,rsinf) rdrdf
D(0, R)

27 .
/ / { f (rcosf) +f(r51n9) f<7"c089—2&—rsm9>} rdrdd

2 27
= - / f (rcosf) rdrdd + / f (rsin@)rdrdf
21Jo Jo 0o Jo

/R/%f(rcosﬁJrrsinG) rdrdd
o Jo 2

oo () = / /D ) =7 @) ) dedy

R g
= / /2 [f' (rsin@) — ' (rcos )] (sin @ — cos §) r2drdo.
o Jo

and

Assume that f is twice differentiable convex on I with [|f"[|; . = sup,e; [f” ()] <
0o, then

2
Ppo,r) (f) < / / |f' (rsin@) — f' (rcos )| |sin 6 — cos 6] r2drdf
o Jo
R 27
<N 0o / / (sin @ — cos 0)* r2drdf
o Jo

R p27
=170 / / (sin® @ — 2sin 6 cos 6 + cos® 0) rdrd.
o Jo
Observe that

R 27
/ / (Sin2 6 — 2sin 6 cos 6 + cos? 9) r2drdf
o Jo

R 27 3 2m 3
- 1~ sin20)r2drdg — & 1 - sin20)dg = 2™
3 3
0

and by the inequality (2.2) we get

1 R r27w 27
por) / f (rcos@)rdrdd —|— — / / f (rsin@) rdrdf
™ o Jo

1 R 2 rcosf + rsinf 1
S T < Z " .
7TR2 /(; /0 f ( 9 ) rdrdf = GR”f ||I,oo

Consider the disk centered in the point (a,b) and of radius R,
D ((a,b),R) :={(z,y)| x =rcos@+a, y=rsinf+b, r€[0,R], 6 €l0,2n]}.

1
. <=
(51) 0<3

‘We have

TD((ab).R) = & Yp(am.m = 0
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1
—— / / T () dedy =
D((a,b),R) D((a,b),R)

1 R 27 1 R 27
—_ 0 drdf + — in6 4+ b) rdrdf
7rR2/0 /0 f(rcosf+a)rdr +7rR2/0 /0 f(rsind + b) rdr

1 R 2 rcosf +rsind@ a-+b
_— drdgf.
WRQ/O /0 f( 2 T3 >T "

Assume that D ((a,b), R) C [m, M]* C I x I and f is twice differentiable convex
on I and with # concave on I, then by (2.13) we get

1
2

1 1 R 27\' 1 R 271‘
<= S — i
0_2 7TR2/0 A f(rcost9+a)7’drd9+7rR2/0 A f(rsm@—kb)rdrdﬂ]
1 R o rcosf +rsinf a-+b
_ 7TR2/0 /0 f( 5 + 5 )rdrd@
_fl@)+f(b) a+b
2 +f 2
1 1 R 271'
<=(f(M)-f (m))—/ / 2 (|cos 0| + |sin 6]) drd6
2 7TR2 0 0
1 , , R 27 )
= (f"(M)—f'(m)) — (Jcos @] + [sin 6]) d6.
6 T Jo
Since

2w
/ (|cos O] + |sin ) dO = 8,
0
hence we obtain the inequalities

(5.2)

0<1
-2

1 R 2w 1 R 2w
— 0 drdf + — in6 + b) rdrdf
7TR2/0 /0 f(rcosf +a)rdr +7rR2/0 /0 f(rsiné +b) rdr

1 R 2 rcosf +rsinf a-+b
_7TR2/0/0 f< . +5 )mme

HO IO g (557 < gl on - 7w

REFERENCES

[1] E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54(1948), 439-460.

[2] J. Burbea and C. R. Rao, On the convexity of some divergence measures based on entropy
functions, IEEE Tran. Inf. Theor., Vol. IT-28, No. 3, 1982, 489-495.

[3] P. Cerone and S. S. Dragomir, A refinement of the Griiss inequality and applications, Tamkang
J. Math. Volume 38, Number 1, 37-49, Spring 2007. Preprint RGMIA Res. Rep. Coll. 5
(2002), No. 2, Art. 14. [Online http://rgmia.org/papers/vbn2/RGIApp.pdf].

[4] S. S. Dragomir, Two refinements of Hadamard’s inequalities. Zb. Rad. (Kragujevac) No. 11
(1990), 23-26.

[5] S.S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex
functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure
and Appl. Math., 3 (3) (2002), Art. 35.

[6] S. S. Dragomir, Bounds for the deviation of a function from the chord generated by its
extremities. Bull. Aust. Math. Soc. 78 (2008), no. 2, 225-248.



INTEGRAL INEQUALITIES FOR JENSEN’S DIFFERENCE 11

[7] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results.
Aust. J. Math. Anal. Appl. 14 (2017), no. 1, Art. 1, 283 pp.

[8] S. S. Dragomir, Double integral inequalities of Hermite-Hadamard type for h-convex functions
on linear spaces. Analysis (Berlin) 37 (2017), no. 1, 13-22.

[9] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-
Hadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online
https://rgmia.org/monographs/hermite_hadamard.html].

[10] D. S. Mitrinovi¢ and I. B. Lackovi¢, Hermite and convexity, Aequationes Math. 28 (1985),
229-232.

IMATHEMATICS, COLLEGE OF ENGINEERING & SCIENCE, VICTORIA UNIVERSITY, PO Box 14428,
MELBOURNE CiTY, MC 8001, AUSTRALIA.

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.org/dragomir

2DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES,
ScHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-
SRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA





