HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES FOR DOUBLE INTEGRAL ON GENERAL DOMAINS

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract

In this paper we establish some Hermite-Hadamard type inequalities for functions of two independent variables defined on closed and bounded convex subsets of the plane \mathbb{R}^{2}. Some examples for rectangles and disks are also provided.

1. Introduction

The following inequality holds for any convex function f defined on \mathbb{R}

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2}, \quad a, b \in \mathbb{R}, a<b \tag{1.1}
\end{equation*}
$$

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [11]). But this result was nowhere mentioned in the mathematical literature and was not widely known as Hermite's result.
E. F. Beckenbach, a leading expert on the history and the theory of convex functions, wrote that this inequality was proven by J. Hadamard in 1893 [1]. In 1974, D. S. Mitrinović found Hermite's note in Mathesis [11]. Since (1.1) was known as Hadamard's inequality, the inequality is now commonly referred as the HermiteHadamard inequality. For a monograph devoted to this inequality see [10]. Related results can be also found in [8].

In 1990, [4] the author established the following refinement of Hermite-Hadamard inequality for double and triple integrals for the convex function $f:[a, b] \rightarrow \mathbb{R}$

$$
\begin{align*}
& f\left(\frac{a+b}{2}\right) \leq \frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} f\left(\frac{x+y}{2}\right) d x d y \tag{1.2}\\
& \quad \leq \frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{1} f((1-t) x+t y) d t d x d y \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x
\end{align*}
$$

More recently, [9] we obtained a different double integral inequality of HermiteHadamard type for the convex function $f:[a, b] \rightarrow \mathbb{R}$,

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{(d-c)^{2}} \int_{c}^{d} \int_{c}^{d} f\left(\frac{\alpha a+\beta b}{\alpha+\beta}\right) d \beta d \alpha \leq \frac{f(a)+f(b)}{2} \tag{1.3}
\end{equation*}
$$

where $0<c<d$.
Let us consider a point $C=(a, b) \in \mathbb{R}^{2}$ and the disk $D(C, R)$ centered at the point C and having the radius $R>0$. In [5] we establish between others the

[^0]following Hermite-Hadamard type inequality for a convex function $f: D(C, R) \rightarrow$ \mathbb{R},
\[

$$
\begin{array}{r}
f(C) \leq \frac{1}{\pi R^{2}} \iint_{D(C, R)} f(x, y) d x d y \leq \frac{2}{3} \frac{1}{2 \pi R} \int_{\mathcal{C}(C, R)} f(\gamma) d \ell(\gamma)+\frac{1}{3} f(C) \tag{1.4}\\
\leq \frac{1}{2 \pi R} \int_{\mathcal{C}(C, R)} f(\gamma) d \ell(\gamma)
\end{array}
$$
\]

where $\mathcal{C}(C, R)$ is the circle centered at C and having the radius R and $\int_{\mathcal{C}(C, R)}$ is the path integral with respect to arc length.

Motivated by the above results, in this paper we establish some Hermite-Hadamard type inequalities for functions of two independent variables defined on closed and bounded convex subsets of the plane \mathbb{R}^{2}. Some examples for rectangles and disks are also provided.

2. Main Results

In the following, consider G a closed and bounded convex subset of \mathbb{R}^{2}. Define

$$
A_{G}:=\iint_{G} d x d y
$$

the area of G and $\left(\overline{x_{G}}, \overline{y_{G}}\right)$ the centre of mass for G, where

$$
\overline{x_{G}}:=\frac{1}{A_{G}} \iint_{G} x d x d y, \overline{y_{G}}:=\frac{1}{A_{G}} \iint_{G} y d x d y
$$

Consider the function of two variables $f=f(x, y)$ and denote by $\frac{\partial f}{\partial x}$ the partial derivative with respect to the variable x and $\frac{\partial f}{\partial y}$ the partial derivative with respect to the variable y.

Theorem 1. Let $f: G \rightarrow \mathbb{R}$ be a differentiable convex function on G. Then for all $(u, v) \in G$ we have

$$
\begin{align*}
& \frac{\partial f}{\partial x}(u, v)\left(\overline{x_{G}}-u\right)+\frac{\partial f}{\partial y}(u, v)\left(\overline{y_{G}}-v\right) \tag{2.1}\\
& \quad \leq \frac{1}{A_{G}} \iint_{G} f(x, y) d x d y-f(u, v) \\
& \leq \frac{1}{A_{G}} \iint_{G} \frac{\partial f}{\partial x}(x, y)(x-u) d x d y+\frac{1}{A_{G}} \iint_{G} \frac{\partial f}{\partial y}(x, y)(y-v) d x d y
\end{align*}
$$

In particular,

$$
\begin{align*}
0 & \leq \frac{1}{A_{G}} \iint_{G} f(x, y) d x d y-f\left(\overline{x_{G}}, \overline{y_{G}}\right) \tag{2.2}\\
& \leq \frac{1}{A_{G}} \iint_{G} \frac{\partial f}{\partial x}(x, y)\left(x-\overline{x_{G}}\right) d x d y+\frac{1}{A_{G}} \iint_{G} \frac{\partial f}{\partial y}(x, y)\left(y-\overline{y_{G}}\right) d x d y
\end{align*}
$$

Proof. Since $f: G \rightarrow \mathbb{R}$ is a differentiable convex function on G, then for all (x, y), $(u, v) \in D$ we have the gradient inequalities
(2.3) $\frac{\partial f}{\partial x}(u, v)(x-u)+\frac{\partial f}{\partial y}(u, v)(y-v) \leq f(x, y)-f(u, v)$

$$
\leq \frac{\partial f}{\partial x}(x, y)(x-u)+\frac{\partial f}{\partial y}(x, y)(y-v)
$$

Taking the integral mean $\frac{1}{A_{G}} \iint_{G}$ in (2.3) over the variables (x, y) we deduce

$$
\begin{align*}
& \frac{1}{A_{G}} \iint_{G}\left[\frac{\partial f}{\partial x}(u, v)(x-u)+\frac{\partial f}{\partial y}(u, v)(y-v)\right] d x d y \tag{2.4}\\
& \leq \frac{1}{A_{G}} \iint_{G} f(x, y) d x d y-f(u, v) \\
& \leq \frac{1}{A_{G}} \iint_{G}\left[\frac{\partial f}{\partial x}(x, y)(x-u)+\frac{\partial f}{\partial y}(x, y)(y-v)\right] d x d y
\end{align*}
$$

Since

$$
\begin{aligned}
& \frac{1}{A_{G}} \iint_{G}\left[\frac{\partial f}{\partial x}(u, v)(x-u)+\frac{\partial f}{\partial y}(u, v)(y-v)\right] d x d y \\
& =\frac{1}{A_{G}} \iint_{G} \frac{\partial f}{\partial x}(u, v)(x-u) d x d y+\frac{1}{A_{G}} \iint_{G} \frac{\partial f}{\partial y}(u, v)(y-v) d x d y \\
& =\frac{\partial f}{\partial x}(u, v)\left(\overline{x_{G}}-u\right)+\frac{\partial f}{\partial y}(u, v)\left(\overline{y_{G}}-v\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{1}{A_{G}} \iint_{G}\left[\frac{\partial f}{\partial x}(x, y)(x-u)+\frac{\partial f}{\partial y}(x, y)(y-v)\right] d x d y \\
& =\frac{1}{A_{G}} \iint_{G} \frac{\partial f}{\partial x}(x, y)(x-u) d x d y+\frac{1}{A_{G}} \iint_{G} \frac{\partial f}{\partial y}(x, y)(y-v) d x d y
\end{aligned}
$$

hence by (2.4) we get (2.1).
Corollary 1. Let $f: G \rightarrow \mathbb{R}$ be a differentiable convex function on G. Let

$$
x_{S}:=\frac{\iint_{G} \frac{\partial f}{\partial x}(x, y) x d x d y}{\iint_{G} \frac{\partial f}{\partial x}(x, y) d x d y}, y_{S}:=\frac{\iint_{G} \frac{\partial f}{\partial y}(x, y) y d x d y}{\iint_{G} \frac{\partial f}{\partial y}(x, y) d x d y}
$$

If $\left(x_{S}, y_{S}\right) \in G$, then

$$
\begin{align*}
0 \leq f\left(x_{S}, y_{S}\right)-\frac{1}{A_{G}} \int & \int_{G} f(x, y) d x d y \tag{2.5}\\
& \leq \frac{\partial f}{\partial x}\left(x_{S}, y_{S}\right)\left(x_{S}-\overline{x_{G}}\right)+\frac{\partial f}{\partial y}\left(x_{S}, y_{S}\right)\left(y_{S}-\overline{y_{G}}\right)
\end{align*}
$$

Proof. If we take in $(2.1)(u, v)=\left(x_{S}, y_{S}\right) \in G$, then we get

$$
\begin{aligned}
& \frac{\partial f}{\partial x}\left(x_{S}, y_{S}\right)\left(\overline{x_{G}}-x_{S}\right)+\frac{\partial f}{\partial y}\left(x_{S}, y_{S}\right)\left(\overline{y_{G}}-y_{S}\right) \\
& \leq \frac{1}{A_{G}} \iint_{G} f(x, y) d x d y-f\left(x_{S}, y_{S}\right) \leq 0
\end{aligned}
$$

which is equivalent to (2.5).
Corollary 2. Let $f: G \rightarrow \mathbb{R}$ be a differentiable convex function on G. If the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ satisfy the conditions

$$
\begin{equation*}
m_{1} \leq \frac{\partial f}{\partial x}(x, y) \leq M_{1}, m_{2} \leq \frac{\partial f}{\partial y}(x, y) \leq M_{2} \text { for any }(x, y) \in G \tag{2.6}
\end{equation*}
$$

for some m_{1}, m_{2}, M_{1} and M_{2}, then we have

$$
\begin{align*}
& \text { (2.7) } 0 \leq \frac{1}{A_{G}} \iint_{G} f(x, y) d x d y-f\left(\overline{x_{G}}, \overline{y_{G}}\right) \tag{2.7}\\
& \leq \frac{1}{2}\left(M_{1}-m_{1}\right) \frac{1}{A_{G}} \iint_{G}\left|x-\overline{x_{G}}\right| d x d y+\frac{1}{2}\left(M_{2}-m_{2}\right) \frac{1}{A_{G}} \iint_{G}\left|y-\overline{y_{G}}\right| d x d y
\end{align*}
$$

Proof. Observe that for all α, β real numbers we have

$$
\begin{aligned}
& \frac{1}{A_{G}} \iint_{G}\left[\frac{\partial f}{\partial x}(x, y)-\alpha\right]\left(x-\overline{x_{G}}\right) d x d y \\
& =\frac{1}{A_{G}} \iint_{G} \frac{\partial f}{\partial x}(x, y)\left(x-\overline{x_{G}}\right) d x d y+\alpha \frac{1}{A_{G}} \iint_{G}\left(x-\overline{x_{G}}\right) d x d y \\
& =\frac{1}{A_{G}} \iint_{G} \frac{\partial f}{\partial x}(x, y)\left(x-\overline{x_{G}}\right) d x d y
\end{aligned}
$$

and, similarly

$$
\frac{1}{A_{G}} \iint_{G}\left[\frac{\partial f}{\partial y}(x, y)-\beta\right]\left(y-\overline{y_{G}}\right) d x d y=\frac{1}{A_{G}} \iint_{G} \frac{\partial f}{\partial y}(x, y)\left(y-\overline{y_{G}}\right) d x d y
$$

If $f: G \rightarrow \mathbb{R}$ is a differentiable function on G, then for all α, β real numbers we have the following equality of interest in itself

$$
\begin{align*}
& \frac{1}{A_{G}} \iint_{G} \frac{\partial f}{\partial x}(x, y)\left(x-\overline{x_{G}}\right) d x d y+\frac{1}{A_{G}} \iint_{G} \frac{\partial f}{\partial y}(x, y)\left(y-\overline{y_{G}}\right) d x d y \tag{2.8}\\
&=\frac{1}{A_{G}} \iint_{G}\left[\frac{\partial f}{\partial x}(x, y)-\alpha\right]\left(x-\overline{x_{G}}\right) d x d y \\
&+\frac{1}{A_{G}} \iint_{G}\left[\frac{\partial f}{\partial y}(x, y)-\beta\right]\left(y-\overline{y_{G}}\right) d x d y
\end{align*}
$$

Now, if $f: G \rightarrow \mathbb{R}$ is a differentiable convex function on G and the condition (2.6) is satisfied, then

$$
\begin{align*}
& 0 \leq \frac{1}{A_{G}} \iint_{G} \frac{\partial f}{\partial x}(x, y)\left(x-\overline{x_{G}}\right) d x d y+\frac{1}{A_{G}} \iint_{G} \frac{\partial f}{\partial y}(x, y)\left(y-\overline{y_{G}}\right) d x d y \tag{2.9}\\
&=\left|\frac{1}{A_{G}} \iint_{G} \frac{\partial f}{\partial x}(x, y)\left(x-\overline{x_{G}}\right) d x d y+\frac{1}{A_{G}} \iint_{G} \frac{\partial f}{\partial y}(x, y)\left(y-\overline{y_{G}}\right) d x d y\right| \\
&=\left\lvert\, \frac{1}{A_{G}} \iint_{G}\right. {\left[\frac{\partial f}{\partial x}(x, y)-\frac{m_{1}+M_{1}}{2}\right]\left(x-\overline{x_{G}}\right) d x d y } \\
& \left.\quad+\frac{1}{A_{G}} \iint_{G}\left[\frac{\partial f}{\partial y}(x, y)-\frac{m_{2}+M_{2}}{2}\right]\left(y-\overline{y_{G}}\right) d x d y \right\rvert\,
\end{align*}
$$

$$
\begin{aligned}
\left.\leq \frac{1}{A_{G}} \right\rvert\, \iint_{G} & { \left.\left[\frac{\partial f}{\partial x}(x, y)-\frac{m_{1}+M_{1}}{2}\right]\left(y-\overline{y_{G}}\right) d x d y \right\rvert\, } \\
& +\frac{1}{A_{G}}\left|\iint_{G}\left[\frac{\partial f}{\partial y}(x, y)-\frac{m_{2}+M_{2}}{2}\right]\left(y-\overline{y_{G}}\right) d x d y\right| \\
& \leq \frac{1}{A_{G}} \iint_{G}\left|\frac{\partial f}{\partial x}(x, y)-\frac{m_{1}+M_{1}}{2}\right|\left|y-\overline{y_{G}}\right| d x d y \\
& +\frac{1}{A_{G}} \iint_{G}\left|\frac{\partial f}{\partial y}(x, y)-\frac{m_{2}+M_{2}}{2}\right|\left|y-\overline{y_{G}}\right| d x d y \\
& \leq \frac{1}{2}\left(M_{1}-m_{1}\right) \frac{1}{A_{G}} \iint_{G}\left|x-\overline{x_{G}}\right| d x d y \\
& +\frac{1}{2}\left(M_{2}-m_{2}\right) \frac{1}{A_{G}} \iint_{G}\left|y-\overline{y_{G}}\right| d x d y
\end{aligned}
$$

By utilising the inequality (2.2) we deduce the desired result (2.7).
Further, we assume that the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist on G and satisfy the following Lipschitz type conditions

$$
\begin{equation*}
\left|\frac{\partial f}{\partial x}(x, y)-\frac{\partial f}{\partial x}(u, v)\right| \leq L_{1}|x-u|+K_{1}|y-v| \text { for all }(x, y), \quad(u, v) \in G \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{\partial f}{\partial y}(x, y)-\frac{\partial f}{\partial y}(u, v)\right| \leq L_{2}|x-u|+K_{2}|y-v| \text { for all }(x, y), \quad(u, v) \in G \tag{2.11}
\end{equation*}
$$

where L_{1}, L_{2}, K_{1} and K_{2} are positive given numbers.
Corollary 3. Let $f: G \rightarrow \mathbb{R}$ be a differentiable convex function on G. If the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist on G satisfy the conditions (2.10) and (2.11) where L_{1}, L_{2}, K_{1} and K_{2} are positive given numbers, then

$$
\begin{align*}
0 \leq & \frac{1}{A_{G}} \iint_{G} f(x, y) d x d y-f\left(\overline{x_{G}}, \overline{y_{G}}\right) \tag{2.12}\\
& \leq L_{1} \frac{1}{A_{G}} \iint_{G}\left(x-\overline{x_{G}}\right)^{2} d x d y+K_{2} \frac{1}{A_{G}} \iint_{G}\left(y-\overline{y_{G}}\right)^{2} d x d y \\
& +\left(K_{1}+L_{2}\right) \frac{1}{A_{G}} \iint_{G}\left|x-\overline{x_{G}}\right|\left|y-\overline{y_{G}}\right| d x d y
\end{align*}
$$

Proof. From (2.8) we get

$$
\begin{align*}
& \frac{1}{A_{G}} \iint_{G} \frac{\partial f}{\partial x}(x, y)\left(x-\overline{x_{G}}\right) d x d y+\frac{1}{A_{G}} \iint_{G} \frac{\partial f}{\partial y}(x, y)\left(y-\overline{y_{G}}\right) d x d y \tag{2.13}\\
&=\frac{1}{A_{G}} \iint_{G} {\left[\frac{\partial f}{\partial x}(x, y)-\frac{\partial f}{\partial x}\left(\overline{x_{G}}, \overline{y_{G}}\right)\right]\left(x-\overline{x_{G}}\right) d x d y } \\
&+\frac{1}{A_{G}} \iint_{G}\left[\frac{\partial f}{\partial y}(x, y)-\frac{\partial f}{\partial y}\left(\overline{x_{G}}, \overline{y_{G}}\right)\right]\left(y-\overline{y_{G}}\right) d x d y
\end{align*}
$$

If $f: G \rightarrow \mathbb{R}$ is a differentiable convex function on G and if the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist on G satisfy the conditions (2.10) and (2.11), then

$$
\begin{aligned}
& 0 \leq \frac{1}{A_{G}} \iint_{G} \frac{\partial f}{\partial x}(x, y)\left(x-\overline{x_{G}}\right) d x d y+\frac{1}{A_{G}} \iint_{G} \frac{\partial f}{\partial y}(x, y)\left(y-\overline{y_{G}}\right) d x d y \\
& \leq \frac{1}{A_{G}} \iint_{G}\left|\frac{\partial f}{\partial x}(x, y)-\frac{\partial f}{\partial x}\left(\overline{x_{G}}, \overline{y_{G}}\right)\right|\left|x-\overline{x_{G}}\right| d x d y \\
&+\frac{1}{A_{G}} \iint_{G}\left|\frac{\partial f}{\partial y}(x, y)-\frac{\partial f}{\partial y}\left(\overline{x_{G}}, \overline{y_{G}}\right)\right|\left|y-\overline{y_{G}}\right| d x d y \\
& \leq \frac{1}{A_{G}} \iint_{G}\left[L_{1}\left|x-\overline{x_{G}}\right|+K_{1}\left|y-\overline{y_{G}}\right|\right]\left|x-\overline{x_{G}}\right| d x d y \\
&+\frac{1}{A_{G}} \iint_{G}\left[L_{2}\left|x-\overline{x_{G}}\right|+K_{2}\left|y-\overline{y_{G}}\right|\right]\left|y-\overline{y_{G}}\right| d x d y \\
&= L_{1} \frac{1}{A_{G}} \iint_{G}\left(x-\overline{x_{G}}\right)^{2} d x d y+K_{2} \frac{1}{A_{G}} \iint_{G}\left(y-\overline{y_{G}}\right)^{2} d x d y \\
& \quad+\left(K_{1}+L_{2}\right) \frac{1}{A_{G}} \iint_{G}\left|x-\overline{x_{G}}\right|\left|y-\overline{y_{G}}\right| d x d y
\end{aligned}
$$

By utilising the inequality (2.2) we deduce the desired result (2.12).
Theorem 2. Assume that there exists the constants $m<M$ and $n<N$ such that $G \subset[m, M] \times[n, N]$ and f is convex on the box $[m, M] \times[n, N]$. Then we have

$$
\begin{align*}
& \frac{1}{A_{G}} \iint_{G} f(x, y) d x d y \tag{2.14}\\
& \leq \frac{1}{(M-m)(N-n)}\left[f(m, n) \frac{1}{A_{G}} \iint_{G}(M-x)(N-y) d x d y\right. \\
& \quad+f(m, N) \frac{1}{A_{G}} \iint_{G}(M-x)(y-n) d x d y \\
& \quad+f(M, n) \frac{1}{A_{G}} \iint_{G}(x-m)(N-y) d x d y \\
& \left.\quad+f(M, N) \frac{1}{A_{G}} \iint_{G}(x-m)(y-n) d x d y\right]
\end{align*}
$$

Proof. Observe that for $x \in[m, M]$ we have the convex combination

$$
x=\frac{M-x}{M-m} m+\frac{x-m}{M-m} M
$$

and by the convexity of f in the first variable we have

$$
\begin{align*}
f(x, y)=f\left(\frac{M-x}{M-m} m+\frac{x-m}{M-M}\right. & M, y) \tag{2.15}\\
& \leq \frac{M-x}{M-m} f(m, y)+\frac{x-m}{M-m} f(M, y)
\end{align*}
$$

for all $(x, y) \in G$.
Also, for $y \in[n, N]$ we have the convex combination

$$
y=\frac{N-y}{N-n} n+\frac{y-n}{N-n} N
$$

and by the convexity of f in the second variable we have

$$
\begin{equation*}
f(m, y)=f\left(m, \frac{N-y}{N-n} n+\frac{y-n}{N-n} N\right) \leq \frac{N-y}{N-n} f(m, n)+\frac{y-n}{N-n} f(m, N) \tag{2.16}
\end{equation*}
$$

and

$$
\begin{align*}
f(M, y)=f\left(M, \frac{N-y}{N-n} n+\frac{y-n}{N-n}\right. & N) \tag{2.17}\\
& \leq \frac{N-y}{N-n} f(M, n)+\frac{y-n}{N-n} f(M, N)
\end{align*}
$$

for all $(x, y) \in G$.
Using (2.15)-(2.17) we get

$$
\begin{align*}
f(x, y) \leq & \frac{M-x}{M-m} f(m, y)+\frac{x-m}{M-m} f(M, y) \tag{2.18}\\
\leq & \frac{M-x}{M-m}\left[\frac{N-y}{N-n} f(m, n)+\frac{y-n}{N-n} f(m, N)\right] \\
& \quad+\frac{x-m}{M-m}\left[\frac{N-y}{N-n} f(M, n)+\frac{y-n}{N-n} f(M, N)\right]
\end{align*}
$$

$$
\begin{aligned}
&=\frac{1}{(M-m)(N-n)}[(M-x)(N-y) f(m, n)+(M-x)(y-n) f(m, N) \\
&+(x-m)(N-y) f(M, n)+(x-m)(y-n) f(M, N)]
\end{aligned}
$$

for all $(x, y) \in G$.
Now, by the integral mean $\frac{1}{A_{G}} \iint_{G}$ in (2.3) over the variables (x, y) we deduce the desired result (2.14).

3. Examples for Rectangles

If $G=[a, b] \times[c, d]$ is a rectangle from $I \times I$, then

$$
A_{G}=(b-a)(d-c), \overline{x_{G}}=\frac{a+b}{2} \text { and } \overline{y_{G}}=\frac{c+d}{2} .
$$

If $f:[a, b] \times[c, d] \rightarrow \mathbb{R}$ is differentiable convex, then from (2.2) we have

$$
\begin{align*}
& 0 \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d x d y-f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \tag{3.1}\\
& \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} \frac{\partial f}{\partial x}(x, y)\left(x-\frac{a+b}{2}\right) d x d y \\
& \quad+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} \frac{\partial f}{\partial y}(x, y)\left(y-\frac{c+d}{2}\right) d x d y
\end{align*}
$$

We also have

$$
\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d}\left|x-\frac{a+b}{2}\right| d x d y=\frac{1}{4}(b-a)
$$

and

$$
\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d}\left|y-\frac{c+d}{2}\right| d x d y=\frac{1}{4}(d-c)
$$

If the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ satisfy the conditions (2.6) on $[a, b] \times[c, d]$ for some m_{1}, m_{2}, M_{1} and M_{2}, then from (2.7) we have

$$
\begin{array}{rl}
0 \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} & f(x, y) d x d y-f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \tag{3.2}\\
& \leq \frac{1}{8}\left(M_{1}-m_{1}\right)(b-a)+\frac{1}{8}\left(M_{2}-m_{2}\right)(d-c)
\end{array}
$$

We also have

$$
\begin{aligned}
& \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d}\left(x-\frac{a+b}{2}\right)^{2} d x d y=\frac{1}{12}(b-a)^{2} \\
& \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d}\left(y-\frac{c+d}{2}\right)^{2} d x d y=\frac{1}{12}(d-c)^{2}
\end{aligned}
$$

and

$$
\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d}\left|x-\frac{a+b}{2}\right|\left|y-\frac{c+d}{2}\right| d x d y=\frac{1}{16}(b-a)(d-c)
$$

If the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist on $[a, b] \times[c, d]$ satisfy the conditions (2.10) and (2.11) where L_{1}, L_{2}, K_{1} and K_{2} are positive given numbers, then from (2.12) we get

$$
\begin{align*}
& 0 \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d x d y-f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \tag{3.3}\\
& \leq \frac{1}{12}(b-a)^{2} L_{1}+\frac{1}{12} K_{2}(d-c)^{2}+\frac{1}{16}(b-a)(d-c)\left(K_{1}+L_{2}\right)
\end{align*}
$$

If we take $[m, M]=[a, b]$ and $[n, N]=[c, d]$ and take into account that

$$
\begin{aligned}
\int_{a}^{b} \int_{c}^{d}(b-x)(d-y) d x d & =\int_{a}^{b} \int_{c}^{d}(b-x)(y-c) d x d y \\
= & \int_{a}^{b} \int_{c}^{d}(x-a)(y-c) d x d y \\
& =\int_{a}^{b} \int_{c}^{d}(x-a)(d-y) d x d y=\frac{1}{4}(b-a)^{2}(d-c)^{2}
\end{aligned}
$$

then by (2.14) we get

$$
\begin{align*}
\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) & d x d y \tag{3.4}\\
& \leq \frac{1}{4}[f(a, c)+f(a, d)+f(b, c)+f(b, d)]
\end{align*}
$$

4. Examples for Disks

Consider the disk centered in $C=(a, b)$ and of radius $R>0$,

$$
D(C, R):=\{(x, y) \mid x=r \cos \theta+a, y=r \sin \theta+b, r \in[0, R], \theta \in[0,2 \pi]\}
$$

We have for $G=D(C, R)$ that

$$
A_{G}=\pi R^{2}, \overline{x_{G}}=a \text { and } \overline{y_{G}}=b .
$$

We also have

$$
\frac{1}{A_{G}} \iint_{G}\left|x-\overline{x_{G}}\right| d x d y=\frac{1}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2 \pi} r^{2}|\cos \theta| d r d \theta=\frac{4}{3 \pi} R
$$

and

$$
\frac{1}{A_{G}} \iint_{G}\left|y-\overline{y_{G}}\right| d x d y=\frac{1}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2 \pi} r^{2}|\sin \theta| d r d \theta=\frac{4}{3 \pi} R
$$

Let $f: D(C, R) \rightarrow \mathbb{R}$ be a differentiable convex function on $D(C, R)$. If the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ satisfy the conditions

$$
m_{1} \leq \frac{\partial f}{\partial x}(x, y) \leq M_{1}, m_{2} \leq \frac{\partial f}{\partial y}(x, y) \leq M_{2} \text { for any }(x, y) \in D(0, R)
$$

then by (2.7) we get

$$
\begin{equation*}
0 \leq \frac{1}{\pi R^{2}} \iint_{D(0, R)} f(x, y) d x d y-f(a, b) \leq \frac{2}{3 \pi} R\left(M_{1}-m_{1}+M_{2}-m_{2}\right) \tag{4.1}
\end{equation*}
$$

We also have for $G=D(C, R)$ that

$$
\begin{aligned}
& \frac{1}{A_{G}} \iint_{G}\left(x-\overline{x_{G}}\right)^{2} d x d y=\frac{1}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2 \pi} r^{3} \cos ^{2} \theta d r d \theta=\frac{R^{2}}{4 \pi} \int_{0}^{2 \pi} \cos ^{2} \theta d \theta=\frac{R^{2}}{4} \\
& \frac{1}{A_{G}} \iint_{G}\left(y-\overline{y_{G}}\right)^{2} d x d y=\frac{1}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2 \pi} r^{3} \sin ^{2} \theta d r d \theta=\frac{R^{2}}{4 \pi} \int_{0}^{2 \pi} \sin ^{2} \theta d \theta=\frac{R^{2}}{4}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{1}{A_{G}} \iint_{G}\left|x-\overline{x_{G}}\right|\left|y-\overline{y_{G}}\right| d x d y & =\frac{1}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2 \pi} r^{3}|\cos \theta \sin \theta| d r d \theta \\
& =\frac{R^{2}}{4 \pi} \int_{0}^{2 \pi}|\cos \theta \sin \theta| d \theta=\frac{R^{2}}{8 \pi} \int_{0}^{2 \pi}|\sin 2 \theta| d \theta \\
& =\frac{4 R^{2}}{8 \pi} \int_{0}^{\frac{\pi}{2}} \sin 2 \theta d \theta=\frac{R^{2}}{2 \pi}
\end{aligned}
$$

By utilising (2.12), we then get

$$
\begin{equation*}
0 \leq \frac{1}{\pi R^{2}} \iint_{D(0, R)} f(x, y) d x d y-f(a, b) \leq\left(\frac{L_{1}+K_{2}}{2}+\frac{K_{1}+L_{2}}{\pi}\right) \frac{R^{2}}{2} \tag{4.2}
\end{equation*}
$$

provided that the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist on $D(C, R)$ and satisfy the conditions (2.10) and (2.11).

Observe that $D(C, R) \subset[a-R, a+R] \times[b-R, b+R]$. Now, if we take $[m, M]=$ $[a-R, a+R]$ and $[n, N]=[b-R, b+R]$ then

$$
\begin{aligned}
& \frac{1}{A_{G}} \iint_{G}(M-x)(N-y) d x d y \\
& =\frac{1}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2 \pi}(R-r \cos \theta)(R-r \sin \theta) r d r d \theta \\
& =\frac{1}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2 \pi}\left[R^{2}-R r \cos \theta-R r \sin \theta+r^{2} \sin \theta \cos \theta\right] r d r d \theta=R^{2}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\frac{1}{A_{G}} \iint_{G}(M-x)(y-n) d x d y & =\frac{1}{A_{G}} \iint_{G}(x-m)(N-y) d x d y \\
& =\frac{1}{A_{G}} \iint_{G}(x-m)(y-n) d x d y=R^{2}
\end{aligned}
$$

Now, if we assume that f is convex on the box $[a-R, a+R] \times[b-R, b+R]$ then by (2.14) we get

$$
\begin{equation*}
\frac{1}{\pi R^{2}} \iint_{D(0, R)} f(x, y) d x d y \tag{4.3}
\end{equation*}
$$

$$
\leq \frac{1}{4}[f(a-R, b-R)+f(a-R, b+R)+f(a+R, b-R)+f(a+R, b+R)]
$$

References

[1] E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54(1948), 439-460.
[2] J. Burbea and C. R. Rao, On the convexity of some divergence measures based on entropy functions, IEEE Tran. Inf. Theor., Vol. IT-28, No. 3, 1982, 489-495.
[3] P. Cerone and S. S. Dragomir, A refinement of the Grüss inequality and applications, Tamkang J. Math. Volume 38, Number 1, 37-49, Spring 2007. Preprint RGMIA Res. Rep. Coll. 5 (2002), No. 2, Art. 14. [Online http://rgmia.org/papers/v5n2/RGIApp.pdf].
[4] S. S. Dragomir, Two refinements of Hadamard's inequalities. Zb. Rad. (Kragujevac) No. 11 (1990), 23-26.
[5] S. S. Dragomir, On Hadamard's inequality on a disk, J. Inequal. Pure \& Appl. Math., Volume 1, Issue 1, Article 2, 2000.
[6] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure and Appl. Math., 3 (3) (2002), Art. 35.
[7] S. S. Dragomir, Bounds for the deviation of a function from the chord generated by its extremities. Bull. Aust. Math. Soc. 78 (2008), no. 2, 225-248.
[8] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results. Aust. J. Math. Anal. Appl. 14 (2017), no. 1, Art. 1, 283 pp.
[9] S. S. Dragomir, Double integral inequalities of Hermite-Hadamard type for h-convex functions on linear spaces. Analysis (Berlin) 37 (2017), no. 1, 13-22.
[10] S. S. Dragomir and C. E. M. Pearce, Selected Topics on HermiteHadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online https://rgmia.org/monographs/hermite_hadamard.html].
[11] D. S. Mitrinović and I. B. Lacković, Hermite and convexity, Aequationes Math. 28 (1985), 229-232.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428 , Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand,, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 26D15.
 Key words and phrases. Convex functions, Hermite-Hadamard inequality, Double integral inequalities.

