HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES FOR
DOUBLE INTEGRAL ON GENERAL DOMAINS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we establish some Hermite-Hadamard type inequal-
ities for functions of two independent variables defined on closed and bounded
convex subsets of the plane R2. Some examples for rectangles and disks are
also provided.

1. INTRODUCTION

The following inequality holds for any convex function f defined on R

(1.1) f<a+b>_b_ /f )da Ok f(), a, bER, a <b.

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [11]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of convex
functions, wrote that this inequality was proven by J. Hadamard in 1893 [1]. In
1974, D. S. Mitrinovi¢ found Hermite’s note in Mathesis [11]. Since (1.1) was known
as Hadamard’s inequality, the inequality is now commonly referred as the Hermite-
Hadamard inequality. For a monograph devoted to this inequality see [10]. Related
results can be also found in [8].

In 1990, [4] the author established the following refinement of Hermite-Hadamard
inequality for double and triple integrals for the convex function f : [a,b] — R

(1.2) f(a;b>_ - // <$+y>dmdy
<(b_a)2/u/u/0f((l—t)x+ty)dtdxdy<bla/abf(x)dm

More recently, [9] we obtained a different double integral inequality of Hermite-
Hadamard type for the convex function f : [a,b] — R,

(13) f<a42rb> — // <aa+5b)dﬁda§f(a);f(b)

where 0 < ¢ < d.
Let us consider a point C' = (a,b) € R? and the disk D (C, R) centered at the
point C and having the radius R > 0. In [5] we establish between others the
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following Hermite-Hadamard type inequality for a convex function f: D (C,R) —
R,

1
) 1O 5 g [ sy sgag [ @i+ ©

1
< — f(y)ade
7R Joien (v)dt ()

where C (C, R) is the circle centered at C' and having the radius R and fc(c, R) 18
the path integral with respect to arc length.

Motivated by the above results, in this paper we establish some Hermite-Hadamard
type inequalities for functions of two independent variables defined on closed and
bounded convex subsets of the plane R2. Some examples for rectangles and disks
are also provided.

2. MAIN RESULTS

In the following, consider G a closed and bounded convex subset of R?. Define

Ag ::// dzxdy

the area of G and (Tq,yq) the centre of mass for G where

Tg = AG// zdzdy, yg = A // ydxdy.

Consider the function of two variables f = f (z,y) and denote by % the partial
derivative with respect to the variable x and g—jyf the partial derivative with respect
to the variable y.

Theorem 1. Let f : G — R be a differentiable convex function on G. Then for all
(u,v) € G we have

2y Fwoea-w+F woee-v

_Ag//fwydmdy f (u,v)

1
< — - — —
_AG//Gax(m,y T udmdy—l— // M (x,y) v) dxdy.

In particular,

(2.2) osAiG//Gf(x,wdzdy—f(m,y*G)

1 of
< — _— _
_AG//Gc’)x (z,y) (v — 7g) dedy + // 3y @ (y — ya) dzdy.

Proof. Since f : G — R is a differentiable convex function on G, then for all (z,y),
(u,v) € D we have the gradient inequalities

8 (o) o —w)+ L w0y g -0 < 1

(2.3) 9z ( 3y

z,y) = f(u,0)

(
ggu,w(m-w%u,y)(y-m.
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Taking the integral mean i J J in (2.3) over the variables (z,y) we deduce

(2.4) ALG //G [gi (u,v) (x —u) + % (u,v) (y — v)} dxdy

< A—lc;//gf(x,y)dxdy—f(u,v)

%/L [gi (@,y) (@ —u) + % (z,9) (yv)] dzdy.

ALG// [af(u,v)(x—u)—&—gf(u,v)(y—v)}dxdy

AG// (x—u dwdy—l——//a u,v) (y — v) dedy

-, v><xe_u>+g§< ) (7 )

Since

a

nd
= [ ene-u+ g ey (y—w} dody

1 of
—AG//Gax(m,y T —u da:dy—|— // M (z,y) (y — v) dedy,

hence by (2.4) we get (2.1). O
Corollary 1. Let f : G — R be a differentiable convex function on G. Let

[ J 2L (2, y) 2dady . [ Je % (z,y) ydady
ffG y) dudy I ?Ti (z,y) dzdy

rs =
If (zs,ys) € G, then

1
(25) 0< f(zs,ys) fAf// (z,y) dxdy
S

Q’Lﬁ

S (5.5 (05~ 70) + gg (25,95) (ys —TG) -

Proof. If we take in (2.1) (u,v) = (zg,ys) € G, then we get
0 0
871; (zs,ys) (Ta — xs) + 875 (zs,ys) (WG — ys)
<

1
+ [ [ @ dsay - f @s.us) <0
G G
which is equivalent to (2.5). O

Corollary 2. Let f : G — R be a differentiable convex function on G. If the partial
derivatives % and % satisfy the conditions

0 0
20 m< gl @) <M me < S @) < 0 for any (@) € 6
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for some my, mo, My and My, then we have

0<7//f (2, ) dedy — f (TG, 75)

7)
<L [ lo — g dedy+ 5 (M [ 1y~ 7] dad
D) 1= mlA T — Tg|axay 2 — mzA Yy —Yag|aray.

Proof. Observe that for all a, 8 real numbers we have
1 / / or
AG G 81‘

- / 8f($y)($—xc dxdy+a—// xr —Tg)dzdy

-/ / (z — 7) dudy

(2.

z,y) — a} (z — Tg) dedy

and, similarly

Z/L{%(z,y)ﬂ} (W —TG dzdyf—// (y — 7&) dxdy.

If f: G — R is a differentiable function on G, then for all «, 3 real numbers we
have the following equality of interest in itself

28 o [ [ ene-maduy o [ [ e -
=;G//G[gj§<x,y>—a] (z - 75) dudy
vz [ |5 =8 - 7@ dod

Now, if f : G — R is a differentiable convex function on G and the condition
(2.6) is satisfied, then

(2.9) OSAIG//Ggi(w,y T —Tg dwdy—i—f// o (z,y) (y — yg) daedy
%//ﬁ(ay)(x dxdy+f// f z,y) (y — yc)dxdy‘
B -]

of meo + Mo .
+A7G//G [é)y (z,y) — 2] (v —9a) dﬂ?dy’
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of my + M,y __
< g/ - M ) — 5a) ded
<4 //G[ax@c,y) s | (- 7@ dady
ma + My | —
g/ _ MR - ga) ded
[8y (z,y) > | (y —va) da y‘
_ my + My + M, _
< AG —5 | [V~ ycldudy
meo + M.
8 —# ly — Yal dedy
y
2 (M1 // |z — Tg| dedy
( // ly — yal dady.
By utilising the inequality (2.2) we deduce the desired result (2.7). O

Further, we assume that the partial derivatives g and ex1st on G and satisfy
the following Lipschitz type conditions

(2.10) of (z,y) — or (u,v)| < Ly |z —u| + Ky |y —v| for all (z,y), (u,v) €G
Oz Oz

and

(2.11) Z:{; (z,y) — %g]; (u,v)| < Lo |z —u| + Ks |y — v| for all (z,y), (u,v) €G

where L1, Lo, K7 and K, are positive given numbers.

Corollary 3 Let f : G — R be a differentiable convex function on G. If the partial
derwatwes L and 8f exist on G satisfy the conditions (2.10) and (2.11) where Ly,
Lo, K1 and K2 are posztwe given numbers, then

(2.12) 0< —// f(z,y)dedy — f (TG, 9a)

ng—// (z - 75)? dxdy+K2—//<y—yz>2dxdy
Ac el Ac G

1
+(K1+L2)A7G//|$—@||y—%|d$dy-
a

Proof. From (2.8) we get

(2.13) AG// (z,y) x—;vg)dmdy—i-AG// M (z,y) (y — yg) dedy
i [ [ |5 @ - L w0 o -7 oy

v [ L8 @ -3 wa5)| - 5 dea
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If f G — R is a differentiable convex function on G and if the partial derivatives
91 and af exist on G satisfy the conditions (2.10) and (2.11), then

8;8
OSA—G// (r —Tg dwdy—i— // aymy (y — yg) dxdy
< AG [|f e j; (76,7)| I+ — 7] dudy
f( 76| dad
9y T¢,ya) | ly — Yol dxdy
<+ // (L le ~ 75|+ Ky ly 751 o — 7] dedy
G
+ T// (L2 |z —Zq| + K2 ly — Yl ly — Ya| dedy
el G
1 .2 1 __\2
=L1— (z —7q)" dedy + Ko —— (y —¥G)” dzdy
Ac ) Ja Ac ) Ja
1
+ (K1 + La) T// |z —Zc| |y — Y| drdy.
€] G
By utilising the inequality (2.2) we deduce the desired result (2.12). O

Theorem 2. Assume that there exists the constants m < M and n < N such that
G C [m, M] x [n, N] and f is convex on the box [m,M] x [n, N]. Then we have

(2.14)
AG//fa:ydxdy

(M—m)(N ){ i AG// — ) (N —y) dady
+f(m’N)ALG//(M—x)(y—n)d:cdy

46 ) Ja
1
H LN 5= [ [ @ m) =) dody
Ac a
Proof. Observe that for z € [m, M| we have the convex combination
M — —
. T E

M—-m M—m
and by the convexity of f in the first variable we have

(2.15) f(x,y):f<j\\j__:lm+ J\Z_ ' y)
M—zx
<
Sy —

f(m,y) + 37— (M.y)

for all (z,y) € G.
Also, for y € [n, N] we have the convex combination
N —y -n

= N
Y N _n n-i-Ni
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and by the convexity of f in the second variable we have

N - - N - -
216) 1) = (m. 5 =2n+ 2N ) < S22 g G+ 2= 7 6, V)
and

for all (z,y) € G.
Using (2.15)-(2.17) we get

(218) f(@,9) < 31— (my) + 2 (M)
M—-—x [N - -n
SM—m[N—fL ’n)+JZ\/f—nf(m’N)]
z—m [N —y
+M—m[

(m

1
= (M*’ITL)(N—TL) [(M—m)(N—y)f(mvn)+(M—3?)(y—n)f(m,N)

+ (@ —m) (N —y) f(M,n) + (z —m)(y —n) f (M, N)]

for all (z,y) € G.
Now, by the integral mean t [ J5 in (2.3) over the variables (z,y) we deduce
the desired result (2.14). O

3. EXAMPLES FOR RECTANGLES
If G = [a,b] X [c,d] is a rectangle from I x I, then

a+band7—c+d
2 Yo =9

If f:[a,b] x [c,d] — R is differentiable convex, then from (2.2) we have

(3.1) OS((,_a)l(d_c)/ab/cdf(Ly)dmdyf(a;rb,cgd)
<g=au=a . | or e (a5 tet

Ag=(b—-a)(d—c), Tg =

We also have

(b—a)l(d—c)/ab/cd o= 320 dedy = 4 (b-a)
and
(b_a)l(d_c)/ab/cdyczd‘dxdyi(dc)
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If the partial derivatives % and (% satisfy the conditions (2.6) on [a,b] X [c,d]
for some mq, ma, M7 and My, then from (2.7) we have

(3.2) OS(b—a)l(d—c)/ab/cdf(x’y)dxdy_f(a;—b,cgd)

(M, — )(bfa)qté(Mgfmg)(dfc).

OO\H

We also have

(b— a>1<d ) / / ( -
b d
<b—a>1<d—c>/a / (y‘

a+b _c—i—d
2

b\? 1
i ) dmdy:ﬁ(bfa)Q,

2
1
d) dzdy = 2 (d—c)?

and

dxdy

1
=16 (b—a)(d—c).
If the partial derivatives % and 2 a—y exist on [a,b] x [e,d] satisfy the conditions

(2.10) and (2.11) where L1, Lo, K7 and K are positive given numbers, then from
(2.12) we get

(3.3) O<W//fxydxdy f(”bc;d)
<L

—CL —C

1 1
12(b—a) L1—|—EK2(d—c) +E(b—a)(d—c)(K1—|—L2).
If we take [m, M] = [a,b] and [n, N] = [¢,d] and take into account that

// — ) (d—y)ded = // — ) (y — ¢) dady
://(xfa)(yfc)d:cdy

// (z—a)(d— y)dmdy—f(b—a) (d—c)?
then by (2.14) we get

1 b pd
(3.4) (b—a)(d—c)/a /C f(z,y) dzdy
< 11 @O+ f (0 d) +f (.0 + £ (b,

4. EXAMPLES FOR DISKS
Consider the disk centered in C' = (a,b) and of radius R > 0,
D(C,R) :={(z,y)| x =rcosb@+a, y=rsind+b, r€[0,R], 0 €[0,2n]}.
We have for G = D (C, R) that
Ag =7R? ZTg =aand 7g = b.
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We also have

L//|9c—;1ci|d:voi S /R/Qwr2cosé’|drd9—4R
AG G ¢ ¥= 7TR2 0 0 o 3
1 R p27 4

// ly —Ya|dxdy = 2/ / 2 |sin 0| drdf = —R

Let f : D(C,R) — R be a differentiable convex function on D (C, R). If the
partial derlvatlves ch and 2L By satlsfy the conditions

and

mi < G (@) < b1y ma < G (2,) < 0 for any (@) € DO

then by (2.7) we get

1 2
. < . <= _ ).
(41) 0< & //D(07R) f(z,y)dzdy — f (a,b) < 37TR (My —my + My — ma)

We also have for G = D (C, R) that

1 5 _ 1 R 27 3 9 _R2 27 9 _R2
A—G//G(x—xg) da:dy—ﬂ—Rz/O /0 r° COs Hdrdﬁ—ﬂ/o cos GdG_T’
1 9 _1 R27T3.2 _R2 271"2 _R2
A—G//G(y—y(;) dmdy—rm/(; /0 7° sin GdrdQ—E/o sin HdH—T
and

1//| 75| ly — 7e] dedy = — /R/2ﬂ3| 0 5in 0| drdd

— x—T - xdy = — 7° |cos 0 sin 0| dr

AG o Gl |Y ’lel Y 7TR2 () 0

2 2
= — cos f sin = sin2
R 0sinf| df = R 0| do
0 81 Jo

47

4R? R?
— 2 —
= o / sin 20d0 = o

By utilising (2.12), we then get

Li+Ky, Ki+L\ R?
42) 0< — ) dad b o
( WRQ//D(OR) (e,9) dedy — [ (a,b) < ( ¢ Bt )2

provided that the partial derivatives g—i and %]; exist on D (C, R) and satisfy the
conditions (2.10) and (2.11).

Observe that D (C, R) C [a — R,a + R]x[b — R,b+ R] . Now, if we take [m, M| =
[a — R,a + R] and [n,N]| = [b— R,b+ R] then

i [ ] =) (¥ -y dey

27
= — R - 0) (R —rsinf) rdrdd
7TR2/0 /0 ( rcos®) ( rsin @) rdr

1 2m
:W/ / [R? — Rrcos — Rrsin6 + 1 sin 6 cos 0] rdrdd = R®.
& 0
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Similarly,

AG// —x) —n)da:dy—AG// x—m) (N —y)dzdy
AG// r—m) (y —n)drdy = R?.

Now, if we assume that f is convex on the box [a — R,a + R] x [b — R, b+ R] then
by (2.14) we get

1
(4.3) W//D(O7R)f($’y) dady

i[f(a—R,be)Jrf(afR,bJrR)+f(a+R,b—R)+f(a+R,b+R)}.

IN

REFERENCES

[1] E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54(1948), 439-460.

[2] J. Burbea and C. R. Rao, On the convexity of some divergence measures based on entropy
functions, IEEE Tran. Inf. Theor., Vol. IT-28, No. 3, 1982, 489-495.

[3] P. Cerone and S. S. Dragomir, A refinement of the Griiss inequality and applications, Tamkang
J. Math. Volume 38, Number 1, 37-49, Spring 2007. Preprint RGMIA Res. Rep. Coll. 5
(2002), No. 2, Art. 14. [Online http://rgmia.org/papers/v5n2/RGIApp.pdf].

[4] S. S. Dragomir, Two refinements of Hadamard’s inequalities. Zb. Rad. (Kragujevac) No. 11
(1990), 23-26.

[5] S.S. Dragomir, On Hadamard’s inequality on a disk, J. Inequal. Pure & Appl. Math., Volume
1, Issue 1, Article 2, 2000.

[6] S.S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex
functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure
and Appl. Math., 3 (3) (2002), Art. 35.

[7] S. S. Dragomir, Bounds for the deviation of a function from the chord generated by its
extremities. Bull. Aust. Math. Soc. 78 (2008), no. 2, 225-248.

[8] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results.
Aust. J. Math. Anal. Appl. 14 (2017), no. 1, Art. 1, 283 pp.

[9] S.S. Dragomir, Double integral inequalities of Hermite-Hadamard type for h-convex functions
on linear spaces. Analysis (Berlin) 37 (2017), no. 1, 13-22.

[10] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-
Hadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online
https://rgmia.org/monographs/hermite_hadamard.html].

[11] D. S. Mitrinovi¢ and I. B. Lackovi¢, Hermite and convexity, Aequationes Math. 28 (1985),
229-232.

IMATHEMATICS, COLLEGE OF ENGINEERING & SCIENCE, VICTORIA UNIVERSITY, PO Box 14428,
MELBOURNE CiTYy, MC 8001, AUSTRALIA.

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.org/dragomir

2DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES,
ScHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-
SRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA





