
HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES FOR
DOUBLE INTEGRAL ON GENERAL DOMAINS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we establish some Hermite-Hadamard type inequal-
ities for functions of two independent variables de�ned on closed and bounded
convex subsets of the plane R2: Some examples for rectangles and disks are
also provided.

1. Introduction

The following inequality holds for any convex function f de�ned on R

(1.1) f

�
a+ b

2

�
� 1

b� a

Z b

a

f(x)dx � f(a) + f(b)

2
; a; b 2 R; a < b:

It was �rstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [11]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite�s result.
E. F. Beckenbach, a leading expert on the history and the theory of convex

functions, wrote that this inequality was proven by J. Hadamard in 1893 [1]. In
1974, D. S. Mitrinovíc found Hermite�s note inMathesis [11]. Since (1.1) was known
as Hadamard�s inequality, the inequality is now commonly referred as the Hermite-
Hadamard inequality. For a monograph devoted to this inequality see [10]. Related
results can be also found in [8].
In 1990, [4] the author established the following re�nement of Hermite-Hadamard

inequality for double and triple integrals for the convex function f : [a; b]! R

(1.2) f

�
a+ b

2

�
� 1

(b� a)2
Z b

a

Z b

a

f

�
x+ y

2

�
dxdy

� 1

(b� a)2
Z b

a

Z b

a

Z 1

0

f ((1� t)x+ ty) dtdxdy � 1

b� a

Z b

a

f(x)dx:

More recently, [9] we obtained a di¤erent double integral inequality of Hermite-
Hadamard type for the convex function f : [a; b]! R,

(1.3) f

�
a+ b

2

�
� 1

(d� c)2
Z d

c

Z d

c

f

�
�a+ �b

�+ �

�
d�d� � f (a) + f (b)

2

where 0 < c < d:
Let us consider a point C = (a; b) 2 R2 and the disk D (C;R) centered at the

point C and having the radius R > 0: In [5] we establish between others the
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2 S. S. DRAGOMIR

following Hermite-Hadamard type inequality for a convex function f : D (C;R)!
R,

(1.4) f (C) � 1

�R2

ZZ
D(C;R)

f (x; y) dxdy � 2

3

1

2�R

Z
C(C;R)

f () d` () +
1

3
f (C)

� 1

2�R

Z
C(C;R)

f () d` ()

where C (C;R) is the circle centered at C and having the radius R and
R
C(C;R) is

the path integral with respect to arc length.
Motivated by the above results, in this paper we establish some Hermite-Hadamard

type inequalities for functions of two independent variables de�ned on closed and
bounded convex subsets of the plane R2: Some examples for rectangles and disks
are also provided.

2. Main Results

In the following, consider G a closed and bounded convex subset of R2. De�ne

AG :=

Z Z
G

dxdy

the area of G and (xG; yG) the centre of mass for G; where

xG :=
1

AG

Z Z
G

xdxdy; yG :=
1

AG

Z Z
G

ydxdy:

Consider the function of two variables f = f (x; y) and denote by @f
@x the partial

derivative with respect to the variable x and @f
@y the partial derivative with respect

to the variable y:

Theorem 1. Let f : G! R be a di¤erentiable convex function on G. Then for all
(u; v) 2 G we have

(2.1)
@f

@x
(u; v) (xG � u) +

@f

@y
(u; v) (yG � v)

� 1

AG

Z Z
G

f (x; y) dxdy � f (u; v)

� 1

AG

Z Z
G

@f

@x
(x; y) (x� u) dxdy + 1

AG

Z Z
G

@f

@y
(x; y) (y � v) dxdy:

In particular,

(2.2) 0 � 1

AG

Z Z
G

f (x; y) dxdy � f (xG; yG)

� 1

AG

Z Z
G

@f

@x
(x; y) (x� xG) dxdy +

1

AG

Z Z
G

@f

@y
(x; y) (y � yG) dxdy:

Proof. Since f : G! R is a di¤erentiable convex function on G; then for all (x; y) ;
(u; v) 2 D we have the gradient inequalities

@f

@x
(u; v) (x� u) + @f

@y
(u; v) (y � v) � f (x; y)� f (u; v)(2.3)

� @f

@x
(x; y) (x� u) + @f

@y
(x; y) (y � v) :



HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES 3

Taking the integral mean 1
AG

R R
G
in (2.3) over the variables (x; y) we deduce

1

AG

Z Z
G

�
@f

@x
(u; v) (x� u) + @f

@y
(u; v) (y � v)

�
dxdy(2.4)

� 1

AG

Z Z
G

f (x; y) dxdy � f (u; v)

� 1

AG

Z Z
G

�
@f

@x
(x; y) (x� u) + @f

@y
(x; y) (y � v)

�
dxdy:

Since

1

AG

Z Z
G

�
@f

@x
(u; v) (x� u) + @f

@y
(u; v) (y � v)

�
dxdy

=
1

AG

Z Z
G

@f

@x
(u; v) (x� u) dxdy + 1

AG

Z Z
G

@f

@y
(u; v) (y � v) dxdy

=
@f

@x
(u; v) (xG � u) +

@f

@y
(u; v) (yG � v)

and

1

AG

Z Z
G

�
@f

@x
(x; y) (x� u) + @f

@y
(x; y) (y � v)

�
dxdy

=
1

AG

Z Z
G

@f

@x
(x; y) (x� u) dxdy + 1

AG

Z Z
G

@f

@y
(x; y) (y � v) dxdy;

hence by (2.4) we get (2.1). �

Corollary 1. Let f : G! R be a di¤erentiable convex function on G. Let

xS :=

R R
G
@f
@x (x; y)xdxdyR R

G
@f
@x (x; y) dxdy

; yS :=

R R
G
@f
@y (x; y) ydxdyR R

G
@f
@y (x; y) dxdy

:

If (xS ; yS) 2 G; then

(2.5) 0 � f (xS ; yS)�
1

AG

Z Z
G

f (x; y) dxdy

� @f

@x
(xS ; yS) (xS � xG) +

@f

@y
(xS ; yS) (yS � yG) :

Proof. If we take in (2.1) (u; v) = (xS ; yS) 2 G; then we get
@f

@x
(xS ; yS) (xG � xS) +

@f

@y
(xS ; yS) (yG � yS)

� 1

AG

Z Z
G

f (x; y) dxdy � f (xS ; yS) � 0;

which is equivalent to (2.5). �

Corollary 2. Let f : G! R be a di¤erentiable convex function on G. If the partial
derivatives @f

@x and
@f
@y satisfy the conditions

(2.6) m1 �
@f

@x
(x; y) �M1; m2 �

@f

@y
(x; y) �M2 for any (x; y) 2 G
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for some m1; m2; M1 and M2; then we have

(2.7) 0 � 1

AG

Z Z
G

f (x; y) dxdy � f (xG; yG)

� 1

2
(M1 �m1)

1

AG

Z Z
G

jx� xGj dxdy +
1

2
(M2 �m2)

1

AG

Z Z
G

jy � yGj dxdy:

Proof. Observe that for all �; � real numbers we have

1

AG

Z Z
G

�
@f

@x
(x; y)� �

�
(x� xG) dxdy

=
1

AG

Z Z
G

@f

@x
(x; y) (x� xG) dxdy + �

1

AG

Z Z
G

(x� xG) dxdy

=
1

AG

Z Z
G

@f

@x
(x; y) (x� xG) dxdy

and, similarly

1

AG

Z Z
G

�
@f

@y
(x; y)� �

�
(y � yG) dxdy =

1

AG

Z Z
G

@f

@y
(x; y) (y � yG) dxdy:

If f : G! R is a di¤erentiable function on G; then for all �; � real numbers we
have the following equality of interest in itself

(2.8)
1

AG

Z Z
G

@f

@x
(x; y) (x� xG) dxdy +

1

AG

Z Z
G

@f

@y
(x; y) (y � yG) dxdy

=
1

AG

Z Z
G

�
@f

@x
(x; y)� �

�
(x� xG) dxdy

+
1

AG

Z Z
G

�
@f

@y
(x; y)� �

�
(y � yG) dxdy:

Now, if f : G ! R is a di¤erentiable convex function on G and the condition
(2.6) is satis�ed, then

(2.9) 0 � 1

AG

Z Z
G

@f

@x
(x; y) (x� xG) dxdy +

1

AG

Z Z
G

@f

@y
(x; y) (y � yG) dxdy

=

���� 1AG
Z Z

G

@f

@x
(x; y) (x� xG) dxdy +

1

AG

Z Z
G

@f

@y
(x; y) (y � yG) dxdy

����
=

���� 1AG
Z Z

G

�
@f

@x
(x; y)� m1 +M1

2

�
(x� xG) dxdy

+
1

AG

Z Z
G

�
@f

@y
(x; y)� m2 +M2

2

�
(y � yG) dxdy

����
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� 1

AG

����Z Z
G

�
@f

@x
(x; y)� m1 +M1

2

�
(y � yG) dxdy

����
+

1

AG

����Z Z
G

�
@f

@y
(x; y)� m2 +M2

2

�
(y � yG) dxdy

����
� 1

AG

Z Z
G

����@f@x (x; y)� m1 +M1

2

���� jy � yGj dxdy
+

1

AG

Z Z
G

����@f@y (x; y)� m2 +M2

2

���� jy � yGj dxdy
� 1

2
(M1 �m1)

1

AG

Z Z
G

jx� xGj dxdy

+
1

2
(M2 �m2)

1

AG

Z Z
G

jy � yGj dxdy:

By utilising the inequality (2.2) we deduce the desired result (2.7). �

Further, we assume that the partial derivatives @f@x and
@f
@y exist on G and satisfy

the following Lipschitz type conditions

(2.10)

����@f@x (x; y)� @f@x (u; v)
���� � L1 jx� uj+K1 jy � vj for all (x; y) ; (u; v) 2 G

and

(2.11)

����@f@y (x; y)� @f@y (u; v)
���� � L2 jx� uj+K2 jy � vj for all (x; y) ; (u; v) 2 G

where L1; L2; K1 and K2 are positive given numbers.

Corollary 3. Let f : G! R be a di¤erentiable convex function on G. If the partial
derivatives @f@x and

@f
@y exist on G satisfy the conditions (2.10) and (2.11) where L1;

L2; K1 and K2 are positive given numbers, then

(2.12) 0 � 1

AG

Z Z
G

f (x; y) dxdy � f (xG; yG)

� L1
1

AG

Z Z
G

(x� xG)2 dxdy +K2
1

AG

Z Z
G

(y � yG)2 dxdy

+ (K1 + L2)
1

AG

Z Z
G

jx� xGj jy � yGj dxdy:

Proof. From (2.8) we get

(2.13)
1

AG

Z Z
G

@f

@x
(x; y) (x� xG) dxdy +

1

AG

Z Z
G

@f

@y
(x; y) (y � yG) dxdy

=
1

AG

Z Z
G

�
@f

@x
(x; y)� @f

@x
(xG; yG)

�
(x� xG) dxdy

+
1

AG

Z Z
G

�
@f

@y
(x; y)� @f

@y
(xG; yG)

�
(y � yG) dxdy:



6 S. S. DRAGOMIR

If f : G! R is a di¤erentiable convex function on G and if the partial derivatives
@f
@x and

@f
@y exist on G satisfy the conditions (2.10) and (2.11), then

0 � 1

AG

Z Z
G

@f

@x
(x; y) (x� xG) dxdy +

1

AG

Z Z
G

@f

@y
(x; y) (y � yG) dxdy

� 1

AG

Z Z
G

����@f@x (x; y)� @f@x (xG; yG)
���� jx� xGj dxdy

+
1

AG

Z Z
G

����@f@y (x; y)� @f@y (xG; yG)
���� jy � yGj dxdy

� 1

AG

Z Z
G

[L1 jx� xGj+K1 jy � yGj] jx� xGj dxdy

+
1

AG

Z Z
G

[L2 jx� xGj+K2 jy � yGj] jy � yGj dxdy

= L1
1

AG

Z Z
G

(x� xG)2 dxdy +K2
1

AG

Z Z
G

(y � yG)2 dxdy

+ (K1 + L2)
1

AG

Z Z
G

jx� xGj jy � yGj dxdy:

By utilising the inequality (2.2) we deduce the desired result (2.12). �

Theorem 2. Assume that there exists the constants m < M and n < N such that
G � [m;M ]� [n;N ] and f is convex on the box [m;M ]� [n;N ] : Then we have

(2.14)
1

AG

Z Z
G

f (x; y) dxdy

� 1

(M �m) (N � n)

�
f (m;n)

1

AG

Z Z
G

(M � x) (N � y) dxdy

+ f (m;N)
1

AG

Z Z
G

(M � x) (y � n) dxdy

+ f (M;n)
1

AG

Z Z
G

(x�m) (N � y) dxdy

+f (M;N)
1

AG

Z Z
G

(x�m) (y � n) dxdy
�
:

Proof. Observe that for x 2 [m;M ] we have the convex combination

x =
M � x
M �mm+

x�m
M �mM

and by the convexity of f in the �rst variable we have

(2.15) f (x; y) = f

�
M � x
M �mm+

x�m
M �MM;y

�
� M � x
M �mf (m; y) +

x�m
M �mf (M;y)

for all (x; y) 2 G:
Also, for y 2 [n;N ] we have the convex combination

y =
N � y
N � nn+

y � n
N � nN
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and by the convexity of f in the second variable we have

(2.16) f (m; y) = f
�
m;
N � y
N � nn+

y � n
N � nN

�
� N � y
N � nf (m;n)+

y � n
N � nf (m;N)

and

(2.17) f (M;y) = f

�
M;

N � y
N � nn+

y � n
N � nN

�
� N � y
N � nf (M;n) +

y � n
N � nf (M;N)

for all (x; y) 2 G:
Using (2.15)-(2.17) we get

(2.18) f (x; y) � M � x
M �mf (m; y) +

x�m
M �mf (M;y)

� M � x
M �m

�
N � y
N � nf (m;n) +

y � n
N � nf (m;N)

�
+
x�m
M �m

�
N � y
N � nf (M;n) +

y � n
N � nf (M;N)

�

=
1

(M �m) (N � n) [(M � x) (N � y) f (m;n) + (M � x) (y � n) f (m;N)

+ (x�m) (N � y) f (M;n) + (x�m) (y � n) f (M;N)]

for all (x; y) 2 G:
Now, by the integral mean 1

AG

R R
G
in (2.3) over the variables (x; y) we deduce

the desired result (2.14). �

3. Examples for Rectangles

If G = [a; b]� [c; d] is a rectangle from I � I; then

AG = (b� a) (d� c) ; xG =
a+ b

2
and yG =

c+ d

2
:

If f : [a; b]� [c; d]! R is di¤erentiable convex, then from (2.2) we have

(3.1) 0 � 1

(b� a) (d� c)

Z b

a

Z d

c

f (x; y) dxdy � f
�
a+ b

2
;
c+ d

2

�
� 1

(b� a) (d� c)

Z b

a

Z d

c

@f

@x
(x; y)

�
x� a+ b

2

�
dxdy

+
1

(b� a) (d� c)

Z b

a

Z d

c

@f

@y
(x; y)

�
y � c+ d

2

�
dxdy:

We also have

1

(b� a) (d� c)

Z b

a

Z d

c

����x� a+ b2
���� dxdy = 1

4
(b� a)

and
1

(b� a) (d� c)

Z b

a

Z d

c

����y � c+ d2
���� dxdy = 1

4
(d� c)
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If the partial derivatives @f
@x and

@f
@y satisfy the conditions (2.6) on [a; b] � [c; d]

for some m1; m2; M1 and M2; then from (2.7) we have

(3.2) 0 � 1

(b� a) (d� c)

Z b

a

Z d

c

f (x; y) dxdy � f
�
a+ b

2
;
c+ d

2

�
� 1

8
(M1 �m1) (b� a) +

1

8
(M2 �m2) (d� c) :

We also have

1

(b� a) (d� c)

Z b

a

Z d

c

�
x� a+ b

2

�2
dxdy =

1

12
(b� a)2 ;

1

(b� a) (d� c)

Z b

a

Z d

c

�
y � c+ d

2

�2
dxdy =

1

12
(d� c)2

and

1

(b� a) (d� c)

Z b

a

Z d

c

����x� a+ b2
���� ����y � c+ d2

���� dxdy = 1

16
(b� a) (d� c) :

If the partial derivatives @f
@x and

@f
@y exist on [a; b] � [c; d] satisfy the conditions

(2.10) and (2.11) where L1; L2; K1 and K2 are positive given numbers, then from
(2.12) we get

(3.3) 0 � 1

(b� a) (d� c)

Z b

a

Z d

c

f (x; y) dxdy � f
�
a+ b

2
;
c+ d

2

�
� 1

12
(b� a)2 L1 +

1

12
K2 (d� c)2 +

1

16
(b� a) (d� c) (K1 + L2) :

If we take [m;M ] = [a; b] and [n;N ] = [c; d] and take into account thatZ b

a

Z d

c

(b� x) (d� y) dxd =
Z b

a

Z d

c

(b� x) (y � c) dxdy

=

Z b

a

Z d

c

(x� a) (y � c) dxdy

=

Z b

a

Z d

c

(x� a) (d� y) dxdy = 1

4
(b� a)2 (d� c)2

then by (2.14) we get

(3.4)
1

(b� a) (d� c)

Z b

a

Z d

c

f (x; y) dxdy

� 1

4
[f (a; c) + f (a; d) + f (b; c) + f (b; d)] :

4. Examples for Disks

Consider the disk centered in C = (a; b) and of radius R > 0;

D (C;R) := f(x; y) j x = r cos � + a; y = r sin � + b; r 2 [0; R] ; � 2 [0; 2�]g :
We have for G = D (C;R) that

AG = �R
2; xG = a and yG = b:
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We also have

1

AG

Z Z
G

jx� xGj dxdy =
1

�R2

Z R

0

Z 2�

0

r2 jcos �j drd� = 4

3�
R

and
1

AG

Z Z
G

jy � yGj dxdy =
1

�R2

Z R

0

Z 2�

0

r2 jsin �j drd� = 4

3�
R:

Let f : D (C;R) ! R be a di¤erentiable convex function on D (C;R). If the
partial derivatives @f

@x and
@f
@y satisfy the conditions

m1 �
@f

@x
(x; y) �M1; m2 �

@f

@y
(x; y) �M2 for any (x; y) 2 D (0; R)

then by (2.7) we get

(4.1) 0 � 1

�R2

Z Z
D(0;R)

f (x; y) dxdy � f (a; b) � 2

3�
R (M1 �m1 +M2 �m2) :

We also have for G = D (C;R) that

1

AG

Z Z
G

(x� xG)2 dxdy =
1

�R2

Z R

0

Z 2�

0

r3 cos2 �drd� =
R2

4�

Z 2�

0

cos2 �d� =
R2

4
;

1

AG

Z Z
G

(y � yG)2 dxdy =
1

�R2

Z R

0

Z 2�

0

r3 sin2 �drd� =
R2

4�

Z 2�

0

sin2 �d� =
R2

4

and

1

AG

Z Z
G

jx� xGj jy � yGj dxdy =
1

�R2

Z R

0

Z 2�

0

r3 jcos � sin �j drd�

=
R2

4�

Z 2�

0

jcos � sin �j d� = R2

8�

Z 2�

0

jsin 2�j d�

=
4R2

8�

Z �
2

0

sin 2�d� =
R2

2�
:

By utilising (2.12), we then get

(4.2) 0 � 1

�R2

Z Z
D(0;R)

f (x; y) dxdy � f (a; b) �
�
L1 +K2

2
+
K1 + L2

�

�
R2

2

provided that the partial derivatives @f
@x and

@f
@y exist on D (C;R) and satisfy the

conditions (2.10) and (2.11).
Observe thatD (C;R) � [a�R; a+R]�[b�R; b+R] :Now, if we take [m;M ] =

[a�R; a+R] and [n;N ] = [b�R; b+R] then
1

AG

Z Z
G

(M � x) (N � y) dxdy

=
1

�R2

Z R

0

Z 2�

0

(R� r cos �) (R� r sin �) rdrd�

=
1

�R2

Z R

0

Z 2�

0

�
R2 �Rr cos � �Rr sin � + r2 sin � cos �

�
rdrd� = R2:
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Similarly,
1

AG

Z Z
G

(M � x) (y � n) dxdy = 1

AG

Z Z
G

(x�m) (N � y) dxdy

=
1

AG

Z Z
G

(x�m) (y � n) dxdy = R2:

Now, if we assume that f is convex on the box [a�R; a+R]� [b�R; b+R] then
by (2.14) we get

(4.3)
1

�R2

Z Z
D(0;R)

f (x; y) dxdy

� 1

4
[f (a�R; b�R) + f (a�R; b+R) + f (a+R; b�R) + f (a+R; b+R)] :
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