
HERMITE-HADAMARD TYPE INEQUALITIES FOR DOUBLE
AND PATH INTEGRALS ON GENERAL DOMAINS VIA

GREEN�S IDENTITY

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we establish some Hermite-Hadamard type inequal-
ities for convex functions of two independent variables de�ned on closed and
bounded convex subsets of the plane R2: The upper bounds are in terms of
path integrals and the main tool to obtain these results is the well known
Green�s identity. Some examples for disks and rectangles are also provided.

1. Introduction

Let us consider a point C = (a; b) 2 R2 and the disk D (C;R) centered at the
point C and having the radius R > 0: In [4] we establish between others the
following Hermite-Hadamard type inequality for a convex function f : D (C;R)!
R,

(1.1) f (C) � 1

AD(C;R)

ZZ
D(C;R)

f (x; y) dxdy

� 2

3

1

` (C (C;R))

Z
C(C;R)

f () d` () +
1

3
f (C)

� 1

` (C (C;R))

Z
C(C;R)

f () d` () ;

where C (C;R) is the circle centered at C and having the radius R and
R
C(C;R) is

the path integral with respect to arc length, AD(C;R) = �R2 is the area of the disk
and ` (C (C;R)) = 2�R is the length of the circle C (C;R) :
In the following, consider D a closed and bounded convex subset of R2. De�ne

AD :=

Z Z
D

dxdy

the area of D and (xD; yD) the centre of mass for D; where

xD :=
1

AD

Z Z
D

xdxdy; yD :=
1

AD

Z Z
D

ydxdy:

Consider the function of two variables f = f (x; y) and denote by @f
@x the partial

derivative with respect to the variable x and @f
@y the partial derivative with respect

to the variable y:
In the recent paper [7] we obtained among others the following result:
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2 S. S. DRAGOMIR

Theorem 1. Let f : D ! R be a di¤erentiable convex function on D. Then for
all (u; v) 2 D we have

(1.2)
@f

@x
(u; v) (xD � u) +

@f

@y
(u; v) (yD � v)

� 1

AD

Z Z
D

f (x; y) dxdy � f (u; v)

� 1

AD

Z Z
D

@f

@x
(x; y) (x� u) dxdy + 1

AD

Z Z
D

@f

@y
(x; y) (y � v) dxdy:

In particular,

(1.3) 0 � 1

AD

Z Z
D

f (x; y) dxdy � f (xD; yD)

� 1

AD

Z Z
D

@f

@x
(x; y) (x� xD) dxdy +

1

AD

Z Z
D

@f

@y
(x; y) (y � yD) dxdy:

We also have the reverse of Hermite-Hadamard inequality:

Corollary 1. Let f : D ! R be a di¤erentiable convex function on D. Put

xS :=

R R
D
x@f@x (x; y) dxdyR R

D
@f
@x (x; y) dxdy

; yS :=

R R
D
y @f@y (x; y) dxdyR R

D
@f
@y (x; y) dxdy

:

If (xS ; yS) 2 D; then

(1.4) 0 � f (xS ; yS)�
1

AD

Z Z
D

f (x; y) dxdy

� @f

@x
(xS ; yS) (xS � xD) +

@f

@y
(xS ; yS) (yS � yD) :

For other multivariate Hermite-Hadamard type inequalities, see [1]-[3] and [8]-
[14].
Motivated by the above results, in this paper we establish some Hermite-Hadamard

type inequalities for convex functions of two independent variables de�ned on closed
and bounded convex subsets of the plane R2: The upper bounds are in terms of
path integrals. Some examples for disks and rectangles are also provided.

2. The Main Results

Let @D be a simple, closed counterclockwise curve in the xy-plane, bounding
a region D. Let L and M be scalar functions de�ned at least on an open set
containing D. Assume L andM have continuous �rst partial derivatives. Then the
following equality is well known as the Green theorem, see for instance

https : ==en:wikipedia:org=wiki=Green%27s_theorem;

(G)
Z Z

D

�
@M (x; y)

@x
� @L (x; y)

@y

�
dxdy =

I
@D

(L (x; y) dx+M (x; y) dy) :

By applying this equality for real and imaginary parts, we can also state it for
complex valued functions L and M:
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Moreover, if the curve @D is described by the function r (t) = (x (t) ; y (t)) ;
t 2 [a; b] ; with x, y di¤erentiable on (a; b) then we can calculate the path integral
asI
@D

(L (x; y) dx+M (x; y) dy) =

Z b

a

[L (x (t) ; y (t))x0 (t) +M (x (t) ; y (t)) y0 (t)] dt:

We have:

Theorem 2. Let f : D ! R be a di¤erentiable convex function on D; a convex
subset of R2: Then for all (u; v) 2 D we have

(2.1)
@f

@x
(u; v) (xD � u) +

@f

@y
(u; v) (yD � v) + f (u; v)

� 1

AD

Z Z
D

f (x; y) dxdy

� 1

3
f (u; v) +

1

3AD

I
@D

[(v � y) f (x; y) dx+ (x� u) f (x; y) dy] :

In particular,

(2.2) f (xD; yD) �
1

AD

Z Z
D

f (x; y) dxdy

� 1

3
f (xD; yD) +

1

3AD

I
@D

[(yD � y) f (x; y) dx+ (x� xD) f (x; y) dy] :

Proof. Observe that

@

@x
((x� u) f (x; y)) = f (x; y) + (x� u) @f (x; y)

@x

and
@

@y
((y � v) f (x; y)) = f (x; y) + (y � v) @f (x; y)

@y

for all (x; y) 2 D and is we add these equalities we get

@

@x
((x� u) f (x; y)) + @

@y
((y � v) f (x; y))(2.3)

= 2f (x; y) + (x� u) @f (x; y)
@x

+ (y � v) @f (x; y)
@y

:

Further, if we integrate on D the identity (2.3), then we obtain

(2.4)
Z Z

D

�
@

@x
((x� u) f (x; y)) + @

@y
((y � v) f (x; y))

�
dxdy

= 2

Z Z
D

f (x; y) dxdy

+

Z Z
D

�
(x� u) @f (x; y)

@x
+ (y � v) @f (x; y)

@y

�
dxdy:
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Now, if we apply Green�s identity (G) for the functions M (x; y) = (x� u) f (x; y)
and L (x; y) = (v � y) f (x; y) ; then we getZ Z

D

�
@

@x
((x� u) f (x; y)) + @

@y
((y � v) f (x; y))

�
dxdy

=

I
@D

[(� � v) f (x; y) dx+ (x� u) f (x; y) dy]

and by (2.4) we obtainI
@D

[(v � y) f (x; y) dx+ (x� u) f (x; y) dy] = 2
Z Z

D

f (x; y) dxdy

+

Z Z
D

�
(x� u) @f (x; y)

@x
+ (y � v) @f (x; y)

@y

�
dxdy

namely

(2.5)
1

AD

Z Z
D

�
(x� u) @f (x; y)

@x
+ (y � v) @f (x; y)

@y

�
dxdy

=
1

AD

I
@D

[(v � y) f (x; y) dx+ (x� u) f (x; y) dy]� 2 1
AD

Z Z
D

f (x; y) dxdy:

Using the second inequality in (2.1) and (2.5) we get

1

AD

Z Z
D

f (x; y) dxdy � f (u; v)

� 1

AD

I
@D

[(v � y) f (x; y) dx+ (x� u) f (x; y) dy]� 2 1
AD

Z Z
D

f (x; y) dxdy

namely

3
1

AD

Z Z
D

f (x; y) dxdy � f (u; v)

� 1

AD

I
@D

[(v � y) f (x; y) dx+ (x� u) f (x; y) dy] ;

which is equivalent to the second inequality in (2.1). �

Corollary 2. With the assumptions of Theorem 2 we have

(2.6) f (xD; yD) �
1

AD

Z Z
D

f (x; y) dxdy

� 1

2AD

I
@D

[(yD � y) f (x; y) dx+ (x� xD) f (x; y) dy] :

Proof. Since

f (xD; yD) �
1

AD

Z Z
D

f (x; y) dxdy
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hence
1

AD

Z Z
D

f (x; y) dxdy

� 1

3
f (xD; yD) +

1

3AD

I
@D

[(x� xD) f (x; y) dx+ (yD � y) f (x; y) dy]

� 1

3AD

Z Z
D

f (x; y) dxdy +
1

3AD

I
@D

[(yD � y) f (x; y) dx+ (x� xD) f (x; y) dy] ;

which implies that

2

3AD

Z Z
D

f (x; y) dxdy � 1

3AD

I
@D

[(yD � y) f (x; y) dx+ (x� xD) f (x; y) dy]

namely

1

AD

Z Z
D

f (x; y) dxdy

� 1

2AD

I
@D

[(yD � y) f (x; y) dx+ (x� xD) f (x; y) dy] :

�
If the curve @D is described by the function r (t) = (x (t) ; y (t)) ; t 2 [a; b] ; with

x, y di¤erentiable on (a; b) thenI
@D

[(v � y) f (x; y) dx+ (x� u) f (x; y) dy]

=

Z b

a

[(v � y (t))x0 (t) + (x (t)� u) y0 (t)] f (x (t) ; y (t)) dt

and by (2.1) we get

(2.7)
1

AD

Z Z
D

f (x; y) dxdy � 1

3
f (u; v)

+
1

3AD

Z b

a

[(v � y (t))x0 (t) + (x (t)� u) y0 (t)] f (x (t) ; y (t)) dt;

by (2.2) we get

(2.8)
1

AD

Z Z
D

f (x; y) dxdy � 1

3
f (xD; yD)

+
1

3AD

Z b

a

[(yD � y (t))x0 (t) + (x (t)� xD) y0 (t)] f (x (t) ; y (t)) dt;

while from (2.6) we get

(2.9)
1

AD

Z Z
D

f (x; y) dxdy

� 1

2AD

Z b

a

[(yD � y (t))x0 (t) + (x (t)� xD) y0 (t)] f (x (t) ; y (t)) dt:
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We de�ne the quantities

xf;@D :=

I
@D

xf (x; y) dy

I
@D

f (x; y) dy

=

R b
a
x (t) f (x (t) ; y (t)) y0 (t) dtR b
a
f (x (t) ; y (t)) y0 (t) dt

and

yf;@D :=

I
@D

yf (x; y) dx

I
@D

f (x; y) dx

=

R b
a
y (t) f (x (t) ; y (t))x0 (t) dtR b
a
f (x (t) ; y (t))x0 (t) dt

provided the denominators are not zero.

Corollary 3. With the assumptions of Theorem 2 and if (xf;@D; yf;@D) 2 D; then
we have

(2.10)
@f

@x
(xf;@D; yf;@D) (xD � xf;@D) +

@f

@y
(xf;@D; yf;@D) (yD � yf;@D)

+ f (xf;@D; yf;@D)

� 1

AD

Z Z
D

f (x; y) dxdy � 1

3
f (xf;@D; yf;@D) :

The proof follows by (2.1) observing thatI
@D

[(yf;@D � y) f (x; y) dx+ (x� xf;@D) f (x; y) dy] = 0:

Theorem 3. Let f : D ! R be a di¤erentiable convex function on D; a convex
subset of R2: If @D is described by the function r (t) = (x (t) ; y (t)) ; t 2 [a; b] ; with
x, y di¤erentiable on (a; b) : De�ne

x@D :=
1

` (@D)

Z
@D

xd (`) =
1

` (@D)

Z b

a

x (t)

q
(x0 (t))

2
+ (y0 (t))

2
dt

and

y@D :=
1

` (@D)

Z
@D

yd (`) =
1

` (@D)

Z b

a

y (t)

q
(x0 (t))

2
+ (y0 (t))

2
dt:

Then

(2.11)
1

` (@D)

Z
@D

@f

@x
(x; y) (xD � x) d (`) +

1

` (@D)

Z
@D

@f

@y
(x; y) (yD � y) d (`)

� 1

AD

Z Z
D

f (x; y) dxdy � 1

` (@D)

Z
@D

f (x; y) d (`)

� 1

AD

Z Z
D

@f

@x
(x; y) (x� x@D) dxdy +

1

AD

Z Z
D

@f

@y
(x; y) (y � y@D) dxdy:
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Proof. From the inequality (1.2) we get

(2.12)
@f

@x
(x (t) ; y (t)) (xD � x (t)) +

@f

@y
(x (t) ; y (t)) (yD � y (t))

� 1

AD

Z Z
D

f (x; y) dxdy � f (x (t) ; y (t))

� 1

AD

Z Z
D

@f

@x
(x; y) (x� x (t)) dxdy + 1

AD

Z Z
D

@f

@y
(x; y) (y � y (t)) dxdy

for all t 2 [a; b] :
If we multiply (2.12) by

q
(x0 (t))

2
+ (y0 (t))

2
; t 2 (a; b) and integrate on [a; b]

we get

(2.13)
Z b

a

@f

@x
(x (t) ; y (t)) (xD � x (t))

q
(x0 (t))

2
+ (y0 (t))

2
dt

+

Z b

a

@f

@y
(x (t) ; y (t)) (yD � y (t))

q
(x0 (t))

2
+ (y0 (t))

2
dt

� 1

AD

Z Z
D

f (x; y) dxdy

Z b

a

q
(x0 (t))

2
+ (y0 (t))

2
dt

�
Z b

a

f (x (t) ; y (t))

q
(x0 (t))

2
+ (y0 (t))

2
dt

� 1

AD

Z b

a

�Z Z
D

@f

@x
(x; y) (x� x (t))

q
(x0 (t))

2
+ (y0 (t))

2
dxdy

�
dt

+
1

AD

Z b

a

�Z Z
D

@f

@y
(x; y) (y � y (t))

q
(x0 (t))

2
+ (y0 (t))

2
dxdy

�
dt:

Since Z b

a

q
(x0 (t))

2
+ (y0 (t))

2
dt = ` (@D) ;

and by Fubini�s theorem

Z b

a

�Z Z
D

@f

@x
(x; y) (x� x (t))

q
(x0 (t))

2
+ (y0 (t))

2
dxdy

�
dt

=

Z Z
D

@f

@x
(x; y)

 Z b

a

(x� x (t))
q
(x0 (t))

2
+ (y0 (t))

2
dt

!
dxdy

=

Z Z
D

@f

@x
(x; y)

 
x` (@D)�

Z b

a

x (t)

q
(x0 (t))

2
+ (y0 (t))

2
dt

!
dxdy

=

Z Z
D

@f

@x
(x; y)

 
x` (@D)�

Z b

a

x (t)

q
(x0 (t))

2
+ (y0 (t))

2
dt

!
dxdy
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then

1

` (@D)

Z b

a

�Z Z
D

@f

@x
(x; y) (x� x (t))

q
(x0 (t))

2
+ (y0 (t))

2
dxdy

�
dt

=

Z Z
D

@f

@x
(x; y)

 
x� 1

` (@D)

Z b

a

x (t)

q
(x0 (t))

2
+ (y0 (t))

2
dt

!
dxdy

=

Z Z
D

@f

@x
(x; y) (x� x@D) dxdy:

Similarly,

1

` (@D)

Z b

a

�Z Z
D

@f

@y
(x; y) (y � y (t))

q
(x0 (t))

2
+ (y0 (t))

2
dxdy

�
dt

=

Z Z
D

@f

@y
(x; y) (y � y@D) dxdy:

By dividing with ` (@D) in the inequality (2.13) we get the desired result (2.11). �

Corollary 4. With the assumptions of Theorem 3 we have the inequality

(2.14)
1

AD

Z Z
D

f (x; y) dxdy � 1

3` (@D)

Z
@D

f (x; y) d (`)

+
1

3AD

I
@D

[(y@D � y) f (x; y) dx+ (x� x@D) f (x; y) dy] :

Proof. As in the proof of Theorem 2, we obtain, by employing Green�s identity (G),
that

1

AD

Z Z
D

�
@f

@x
(x; y) (x� x@D) dxdy +

@f

@y
(x; y) (y � y@D)

�
dxdy

=
1

AD

I
@D

[(y@D � y) f (x; y) dx+ (x� x@D) f (x; y) dy]�2
1

AD

Z Z
D

f (x; y) dxdy:

By the second inequality in (2.11) we derive

1

AD

Z Z
D

f (x; y) dxdy � 1

` (@D)

Z
@D

f (x; y) d (`)

� 1

AD

I
@D

[(y@D � y) f (x; y) dx+ (x� x@D) f (x; y) dy]

� 2 1
AD

Z Z
D

f (x; y) dxdy;

namely

3

AD

Z Z
D

f (x; y) dxdy � 1

` (@D)

Z
@D

f (x; y) d (`)

+
1

AD

I
@D

[(y@D � y) f (x; y) dx+ (x� x@D) f (x; y) dy] ;

which is equivalent to (2.14). �
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If the curve @D is described by the function r (t) = (x (t) ; y (t)) ; t 2 [a; b] ; with
x, y di¤erentiable on (a; b) then by (2.11) and(2.14) we get the following inequality
useful for applications

(2.15)
1

` (@D)

Z b

a

@f

@x
(x (t) ; y (t)) (xD � x (t))

q
(x0 (t))

2
+ (y0 (t))

2
dt

+
1

` (@D)

Z b

a

@f

@y
(x (t) ; y (t)) (yD � y (t))

q
(x0 (t))

2
+ (y0 (t))

2
dt

+
1

` (@D)

Z b

a

f (x (t) ; y (t))

q
(x0 (t))

2
+ (y0 (t))

2
dt

� 1

AD

Z Z
D

f (x; y) dxdy � 1

3` (@D)

Z b

a

f (x (t) ; y (t))

q
(x0 (t))

2
+ (y0 (t))

2
dt

+
1

3AD

Z b

a

[(y@D � y (y))x0 (t) + (x (t)� x@D) y0 (t)] f (x (t) ; y (t)) dt:

3. Examples for Disks

We consider the closed disk D (C;R) centered in C (a; b) and of radius R > 0:
This is parametrized by8<: x = r cos � + a

y = r sin � + b
; r 2 [0; R] ; � 2 [0; 2�]

and the circle C (C;R) is parametrized by8<: x = R cos � + a

y = R sin � + b
; � 2 [0; 2�] :

Here xD(C;R) = a; yD(C;R) = b and AD(C;R) = �R2:
Then

1

AD

Z b

a

[(yD � y (t))x0 (t) + (x (t)� xD) y0 (t)] f (x (t) ; y (t)) dt

=
1

�R2

Z 2�

0

�
sin2 � + cos2 �

�
R2f (R cos � + a;R sin � + b) d�

=
1

�

Z 2�

0

f (R cos � + a;R sin � + b) d�

and by (2.2) we get

(3.1) f (a; b) � 1

�R2

Z Z
D(C;R)

f (x; y) dxdy

� 1

3
f (a; b) +

1

3�

Z 2�

0

f (R cos � + a;R sin � + b) d�;

provided that f is convex on an open set containing the disk D (C;R) and has
continuous partial derivatives on D (C;R) :
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Since

1

3�

Z 2�

0

f (R cos � + a;R sin � + b) dt =
2

3

1

` (C (C;R))

Z
C(C;R)

f () d` () ;

hence we get the inequality (1.1) with a di¤erent proof than the original one in [4].
We also have

xC(C;R) :=
1

2�R

Z 2�

0

(R cos � + a)Rd� = a

and

xC(C;R) :=
1

2�R

Z b

a

(r sin � + b)Rd� = b

and by (2.15) we get

� 1

2�
R

Z b

a

@f

@x
(R cos � + a;R sin � + b) cos �d�

� 1

2�
R

Z b

a

@f

@y
(R cos � + a;R sin � + b) sin �d�

+
1

2�

Z b

a

f (R cos � + a;R sin � + b) d�

� 1

�R2

Z Z
D(C;R)

f (x; y) dxdy � 1

6�

Z 2�

0

f (R cos � + a;R sin � + b) d�

+
1

3�

Z b

a

f (R cos � + a;R sin � + b) d� =
1

2�

Z b

a

f (R cos � + a;R sin � + b) d�

namely

(3.2) 0 � 1

2�

Z b

a

f (R cos � + a;R sin � + b) d� � 1

�R2

Z Z
D(C;R)

f (x; y) dxdy

� 1

2�
R

Z b

a

@f

@x
(R cos � + a;R sin � + b) cos �d�

+
1

2�
R

Z b

a

@f

@y
(R cos � + a;R sin � + b) sin �d�;

provided that f is convex on an open set containing the disk D (C;R) and has
continuous partial derivatives on D (C;R) :
This result provides a reverse inequality for the last part of (1.1).

4. Examples for Rectangles

Let a < b and c < d: Put A = (a; c) ; B = (b; c) ; C = (b; d) ; D = (a; d) 2 R2
the vertices of the rectangle ABCD = [a; b]� [c; d] : Consider the counterclockwise
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segments

AB :

8<: x = (1� t) a+ tb

y = c
; t 2 [0; 1]

BC :

8<: x = b

y = (1� t) c+ td
; t 2 [0; 1]

CD :

8<: x = (1� t) b+ ta

y = d
; t 2 [0; 1]

and

DA :

8<: x = a

y = (1� t) d+ tc
; t 2 [0; 1] :

Therefore @ (ABCD) = AB [BC [ CD [DA.
If �; � 2 R, thenI

AB

[(� � y) f (x; y) dx+ (x� �) f (x; y) dy]

= (b� a) (� � c)
Z 1

0

f ((1� t) a+ tb; c) dt = (� � c)
Z b

a

f (x; c) dx;

I
BC

[(� � y) f (x; y) dx+ (x� �) f (x; y) dy]

= (d� c) (b� �)
Z 1

0

f (b; (1� t) c+ td) dt = (b� �)
Z d

c

f (b; y) dy

I
CD

[(� � y) f (x; y) dx+ (x� �) f (x; y) dy]

= (a� b) (� � d)
Z 1

0

f ((1� t) b+ ta; d) dt = (� � d)
Z a

b

f (x; d) dx

= (d� �)
Z b

a

f (x; d) dx

and I
DA

[(� � y) f (x; y) dx+ (x� �) f (x; y) dy]

=

Z 1

0

(a� �) f (a; (1� t) d+ tc) (c� d) dt = (a� �)
Z c

d

f (a; y) dy

= (�� a)
Z d

c

f (a; y) dy:
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Therefore I
ABCD

[(� � y) f (x; y) dx+ (x� �) f (x; y) dy]

= (� � c)
Z b

a

f (x; c) dx+ (d� �)
Z b

a

f (x; d) dx

+ (b� �)
Z d

c

f (b; y) dy + (�� a)
Z d

c

f (a; y) dy

for all �; � 2 R.
We also have xD = a+b

2 and yD = c+d
2 ; which imply thatI

@(ABCD)

[(yD � y) f (x; y) dx+ (x� xD) f (x; y) dy]

= (d� c)
Z b

a

�
f (x; c) + f (x; d)

2

�
dx+ (b� a)

Z d

c

�
f (b; y) + f (a; y)

2

�
dy:

If we write the inequalities (2.1) and (2.2) for the rectangle ABCD = [a; b]�[c; d]
and the convex function f de�ned on [a; b]� [c; d] we get the inequalities

(4.1)
@f

@x
(u; v)

�
a+ b

2
� u
�
+
@f

@y
(u; v)

�
c+ d

2
� v
�
+ f (u; v)

� 1

(b� a) (d� c)

Z b

a

Z d

c

f (x; y) dxdy � 1

3
f (u; v)

+
1

3 (b� a) (d� c)

"
(v � c)

Z b

a

f (x; c) dx+ (d� v)
Z b

a

f (x; d) dx

#

+
1

3 (b� a) (d� c)

"
(b� u)

Z d

c

f (b; y) dy + (u� a)
Z d

c

f (a; y) dy

#
for all (u; v) 2 [a; b]� [c; d] :
In particular,

(4.2) f

�
a+ b

2
;
c+ d

2

�
� 1

(b� a) (d� c)

Z b

a

Z d

c

f (x; y) dxdy

� 1

3
f

�
a+ b

2
;
c+ d

2

�
+
1

3

"
1

b� a

Z b

a

�
f (x; c) + f (x; d)

2

�
dx+

1

d� c

Z d

c

�
f (b; y) + f (a; y)

2

�
dy

#
:

From the inequality (2.6) we also get

(4.3) f

�
a+ b

2
;
c+ d

2

�
� 1

(b� a) (d� c)

Z b

a

Z d

c

f (x; y) dxdy

� 1

2

"
1

b� a

Z b

a

�
f (x; c) + f (x; d)

2

�
dx+

1

d� c

Z d

c

�
f (b; y) + f (a; y)

2

�
dy

#
:
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