
OSTROWSKI TYPE INEQUALITIES FOR DOUBLE INTEGRAL
ON GENERAL DOMAINS VIA GREEN�S IDENTITY

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper, by the use of the celebrated Green�s identity for
double integral, we establish some Ostrowski type inequalities for functions of
two independent variables de�ned on closed and bounded convex subsets of
the plane R2: Some examples for rectangles and disks are also provided.

1. Introduction

In paper [1], the authors obtained among others the following results concerning
the di¤erence between the double integral on the disk and the values in the center
or the path integral on the circle:

Theorem 1. If f : D (C;R) ! R has continuous partial derivatives on D (C;R) ;
the disk centered in the point C = (a; b) with the radius R > 0; and@f@x
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where � (C;R) is the circle centered in C = (a; b) with the radius R > 0 and
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In the same paper [1] the authors also established the following Ostrowski type
inequality:

Theorem 2. If f has bounded partial derivatives on D(0; 1), then
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for any (u; v) 2 D (0; 1).

For other Ostrowski type integral inequalities for double integrals see [2]-[13].
Let @D be a simple, closed counterclockwise curve in the xy-plane, bound-

ing a region D. Let L and M be scalar functions de�ned at least on an open
set containing D. Assume L and M have continuous �rst partial derivatives.
Then the following equality is well known as the Green theorem (see for instance
https://en.wikipedia.org/wiki/Green%27s_theorem)

(G)
Z Z

D

�
@M (x; y)

@x
� @L (x; y)

@y

�
dxdy =

I
@D
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By applying this equality for real and imaginary parts, we can also state it for
complex valued functions P and Q:
Moreover, if the curve @D is described by the function r (t) = (x (t) ; y (t)) ;

t 2 [a; b] ; with x, y di¤erentiable on (a; b) then we can calculate the path integral
asI
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In the following, consider D a closed and bounded convex subset of R2. De�ne
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Consider the function of two variables f = f (x; y) and denote by @f
@x the partial

derivative with respect to the variable x and @f
@y the partial derivative with respect

to the variable y:
Motivated by the above results, by the use of Green�s identity (G), in this paper

we establish some bounds for the absolute value of the di¤erence
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and the centre of mass perturbed di¤erence
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in the general case of closed and bounded subset of R2 and f is de�ned on an open
set containing D and having continuous partial derivatives on D: Some examples
for rectangles and disks are also provided.

2. Some Identities of Interest

We start with the following identity of interest:

Lemma 1. Let @D be a simple, closed counterclockwise curve bounding a region D
and f de�ned on an open set containing D and having continuous partial derivatives
on D: Then for any �; � 2 C,
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In particular, we have
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Proof. Observe that

@
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Further, if we integrate on D the identity (2.3), then we obtain
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which is equivalent to the desired equality (2.1). �

Corollary 1. With the assumptions of Lemma 1 and if the curve @D is described
by the function r (t) = (x (t) ; y (t)) ; t 2 [a; b] ; with x, y di¤erentiable on (a; b) ;
then
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In particular,
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Corollary 2. With the assumptions of Corollary 1 we have for all � 2 C that

(2.7)
1

AD

Z Z
D

f (x; y) dxdy � �

=
1

2AD

Z Z
D

�
(�� x) @f (x; y)

@x
+ (� � y) @f (x; y)

@y

�
dxdy

+
1

2AD

Z b

a

[(� � y (t))x0 (t) + (x (t)� �) y0 (t)] [f (x (t) ; y (t))� �] dt:

In particular, for all (u; v) 2 D we have

(2.8)
1

AD

Z Z
D

f (x; y) dxdy � f (u; v)

=
1

2AD

Z Z
D

�
(�� x) @f (x; y)

@x
+ (� � y) @f (x; y)

@y

�
dxdy

+
1

2AD

Z b

a

[(� � y (t))x0 (t) + (x (t)� �) y0 (t)] [f (x (t) ; y (t))� f (u; v)] dt

and for � = u; � = v; that

(2.9)
1

AD

Z Z
D

f (x; y) dxdy � f (u; v)

=
1

2AD

Z Z
D

�
(u� x) @f (x; y)

@x
+ (v � y) @f (x; y)

@y

�
dxdy

+
1

2AD

Z b

a

[(v � y (t))x0 (t) + (x (t)� u) y0 (t)] [f (x (t) ; y (t))� f (u; v)] dt

Remark 1. If we take in (2.7) � = xD and � = yD then we get
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for all � 2 C, while from (2.8) we obtain
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Moreover, if we assume that (xD; yD) 2 D (which happens if, for instance, D is

a convex subset in R2) then we get from (2.11) the centre of mass identity
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D
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provided the integrals from the denominators are not zero.

Corollary 3. With the assumptions of Corollary 1 we have for all � 2 C that
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We de�ne the quantities

xf;@D :=

I
@D
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=
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=

R b
a
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provided the denominators are not zero.

Corollary 4. With the assumptions of Corollary 1 we have that
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The proof follows by (2.1) observing thatI
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3. Some General Inequalities

We have:

Theorem 3. Let @D be a simple, closed counterclockwise curve bounding a region D
and f de�ned on an open set containing D and having continuous partial derivatives
on D: If the curve @D is described by the function r (t) = (x (t) ; y (t)) ; t 2 [a; b] ;
with x, y di¤erentiable on (a; b) ; then for any �; �; � 2 C,

(3.1)

���� 1AD
Z Z

D

f (x; y) dxdy � �

� 1

2AD

Z Z
D

�
(�� x) @f (x; y)

@x
+ (� � y) @f (x; y)

@y

�
dxdy

���� � B (�; �; �)
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[j� � y (t)j jx0 (t)j+ jx (t)� �j jy0 (t)j] jf (x (t) ; y (t))� �j dt:
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Moreover, we have the bounds

(3.2) B (�; �; �)

� 1
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8>>>>>>>>>>>>><>>>>>>>>>>>>>:

R b
a
max fj� � y (t)j ; jx (t)� �jg [jx0 (t)j+ jy0 (t)j]

� jf (x (t) ; y (t))� �j dt

R b
a
(j� � y (t)jp + jx (t)� �jp)1=p

�
jx0 (t)jq + jy0 (t)jq

�1=q
� jf (x (t) ; y (t))� �j dt for p; q > 1 with 1

p +
1
q = 1;R b

a
[j� � y (t)j+ jx (t)� �j]max fjx0 (t)j ; jy0 (t)jg

� jf (x (t) ; y (t))� �j dt:

Proof. Using the identity (2.7), we get

(3.3)

���� 1AD
Z Z

D
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�����
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[(� � y (t))x0 (t) + (x (t)� �) y0 (t)] [f (x (t) ; y (t))� �] dt
�����
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Z b

a

j[(� � y (t))x0 (t) + (x (t)� �) y0 (t)] [f (x (t) ; y (t))� �]j dt

=
1

2AD

Z b

a

j(� � y (t))x0 (t) + (x (t)� �) y0 (t)j jf (x (t) ; y (t))� �j dt

� 1

2AD

Z b

a

[j� � y (t)j jx0 (t)j+ jx (t)� �j jy0 (t)j] jf (x (t) ; y (t))� �j dt

= B (�; �; �) ;

which proves the �rst inequality in (3.1).
By utilising Hölder�s discrete inequality we have

[j� � y (t)j jx0 (t)j+ jx (t)� �j jy0 (t)j]

�

8>>>>>><>>>>>>:

max fj� � y (t)j ; jx (t)� �jg [jx0 (t)j+ jy0 (t)j]

(j� � y (t)jp + jx (t)� �jp)1=p
�
jx0 (t)jq + jy0 (t)jq

�1=q
for p; q > 1 with 1

p +
1
q = 1;

[j� � y (t)j+ jx (t)� �j]max fjx0 (t)j ; jy0 (t)jg

for t 2 [a; b] :
By multiplying this inequality with jf (x (t) ; y (t))� �j and integrating over t in

[a; b] we get the estimate (3.2). �
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Remark 2. If we take in Theorem 3 � = xD and � = yD; then we have the
inequalities

(3.4)

���� 1AD
Z Z

D

f (x; y) dxdy � �
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D

�
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@f (x; y)
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�
dxdy

����
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=
1

2AD
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a

[jyD � y (t)j jx0 (t)j+ jx (t)� xDj jy0 (t)j] jf (x (t) ; y (t))� �j dt:

Moreover, we have the bounds

(3.5) B (�; xD; yD)

� 1

2AD

8>>>>>>>>><>>>>>>>>>:

R b
a
max fjyD � y (t)j ; jx (t)� xDjg [jx0 (t)j+ jy0 (t)j] jf (x (t) ; y (t))� �j dtR b

a
(jyD � y (t)jp + jx (t)� xDjp)

1=p �jx0 (t)jq + jy0 (t)jq�1=q
� jf (x (t) ; y (t))� �j dt for p; q > 1 with 1

p +
1
q = 1;R b

a
[jyD � y (t)j+ jx (t)� xDj]max fjx0 (t)j ; jy0 (t)jg jf (x (t) ; y (t))� �j dt:

Also, if we take in Theorem 3 � = xS;@f and � = yS;@f ; then we have the inequalities

(3.6)

���� 1AD
Z Z

D

f (x; y) dxdy � �
���� � B (�; xS;@f ; yS;@f )

where

B (�; xS;@f ; yS;@f )

=
1

2AD

Z b

a

[jyS;@f � y (t)j jx0 (t)j+ jx (t)� xS;@f j jy0 (t)j] jf (x (t) ; y (t))� �j dt:

Moreover, we have the bounds

(3.7) B (�; xS;@f ; yS;@f )

� 1

2AD

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

R b
a
max fjyS;@f � y (t)j ; jx (t)� xS;@f jg [jx0 (t)j+ jy0 (t)j]

� jf (x (t) ; y (t))� �j dt

R b
a
(jyS;@f � y (t)jp + jx (t)� xS;@f jp)

1=p �jx0 (t)jq + jy0 (t)jq�1=q
� jf (x (t) ; y (t))� �j dt for p; q > 1 with 1

p +
1
q = 1;R b

a
[jyS;@f � y (t)j+ jx (t)� xS;@f j]max fjx0 (t)j ; jy0 (t)jg

� jf (x (t) ; y (t))� �j dt:
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By utilising Hölder�s type integral inequalities one can separate the factors in
the bounds above. One of the most natural such inequality is incorporated in the
following corollary in which the bounds are in terms of the well known arc length
integrals.

Corollary 5. With the assumptions of Theorem 3 we have

(3.8)

���� 1AD
Z Z

D

f (x; y) dxdy � �

� 1

2AD

Z Z
D

�
(�� x) @f (x; y)

@x
+ (� � y) @f (x; y)

@y

�
dxdy

����
�
�Z

@D

�
jx� �j2 + jy � �j2

�
d (`)

�1=2�Z
@D

jf (x; y)� �j2 d (`)
�1=2

where the latest two integrals are arc length integrals.
In particular,

(3.9)
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Z Z

D

f (x; y) dxdy � �
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2AD
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D
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@f (x; y)
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@f (x; y)
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dxdy
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�
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�
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jf (x; y)� �j2 d (`)
�1=2

and

(3.10)

���� 1AD
Z Z

D

f (x; y) dxdy � �
����

�
�Z

@D

�
jx� xS;@f j2 + jy � yS;@f j2

�
d (`)

�1=2�Z
@D

jf (x; y)� �j2 d (`)
�1=2

:

Proof. For p = q = 2 we have from (3.2) that

B (�; �; �) � 1

2AD

Z b

a

�
j� � y (t)j2 + jx (t)� �j2

�1=2 h
jx0 (t)j2 + jy0 (t)j2

i1=2
� jf (x (t) ; y (t))� �j dt:



OSTROWSKI TYPE INTEGRAL INEQUALITIES 11

By making use of the weighted Cauchy-Bunyakovsky-Schwarz integral inequality
we haveZ b

a

�
j� � y (t)j2 + jx (t)� �j2

�1=2 h
jx0 (t)j2 + jy0 (t)j2

i1=2
jf (x (t) ; y (t))� �j dt

�
 Z b

a

��
j� � y (t)j2 + jx (t)� �j2

�1=2�2 h
jx0 (t)j2 + jy0 (t)j2

i1=2
dt

!1=2

�
 Z b

a

jf (x (t) ; y (t))� �j2
h
jx0 (t)j2 + jy0 (t)j2

i1=2
dt

!1=2

=

 Z b

a

�
j� � y (t)j2 + jx (t)� �j2

� h
jx0 (t)j2 + jy0 (t)j2

i1=2
dt

!1=2

�
 Z b

a

jf (x (t) ; y (t))� �j2
h
jx0 (t)j2 + jy0 (t)j2

i1=2
dt

!1=2

=

�Z
@D

�
jx� �j2 + jy � �j2

�
d (`)

�1=2�Z
@D

jf (x; y)� �j2 d (`)
�1=2

;

which proves the desired result (3.8). �

Remark 3. If we take � = f (u; v) with (u; v) 2 D; then we get

(3.11)

���� 1AD
Z Z

D

f (x; y) dxdy � f (u; v)

� 1

2AD

Z Z
D

�
(u� x) @f (x; y)

@x
+ (v � y) @f (x; y)

@y

�
dxdy

����
�
�Z

@D

�
jx� uj2 + jy � vj2

�
d (`)

�1=2�Z
@D

jf (x; y)� f (u; v)j2 d (`)
�1=2

where the latest two integrals are arc length integrals.

Corollary 6. In particular,

(3.12)

���� 1AD
Z Z

D

f (x; y) dxdy � f (u; v)

� 1

2AD

Z Z
D

�
(xD � x)

@f (x; y)

@x
+ (yD � y)

@f (x; y)

@y

�
dxdy

����
�
�Z

@D

�
jx� xDj2 + jy � yDj2

�
d (`)

�1=2�Z
@D

jf (x; y)� f (u; v)j2 d (`)
�1=2

and

(3.13)

���� 1AD
Z Z

D

f (x; y) dxdy � f (u; v)
����

�
�Z

@D

�
jx� xS;@f j2 + jy � yS;@f j2

�
d (`)

�1=2�Z
@D

jf (x; y)� f (u; v)j2 d (`)
�1=2

:
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4. Inequalities for Bounded Functions

Let @D be a simple, closed counterclockwise curve bounding a region D: Now,
for �; � 2 C, de�ne the sets of complex-valued functions

�U@D (�;�)

:=
n
f : @D ! CjRe

h
(�� f (x; y))

�
f (x; y)� �

�i
� 0 for each (x; y) 2 @D

o
and

��@D (�;�) :=

�
f : @D ! Cj

����f (x; y)� �+�2
���� � 1

2
j�� �j for each (x; y) 2 @D

�
:

The following representation result may be stated.

Proposition 1. For any �; � 2 C, � 6= �; we have that �U@D (�;�) and ��@D (�;�)
are nonempty, convex and closed sets and

(4.1) �U@D (�;�) = ��@D (�;�) :

Proof. We observe that for any w 2 C we have the equivalence����w � �+�2
���� � 1

2
j�� �j

if and only if

Re
�
(�� w)

�
w � �

��
� 0:

This follows by the equality

1

4
j�� �j2 �

����w � �+�2
����2 = Re �(�� w) �w � ���

that holds for any w 2 C.
The equality (3.1) is thus a simple consequence of this fact. �

On making use of the complex numbers �eld properties we can also state that:

Corollary 7. For any �; � 2 C, � 6= �;we have that

�U@D (�;�) = ff : @D ! C j (Re�� Re f (x; y)) (Re f (x; y)� Re�)
(4.2)

+(Im�� Im f (x; y)) (Im f (x; y)� Im�) � 0 for each (x; y) 2 @Dg :

Now, if we assume that Re (�) � Re (�) and Im (�) � Im (�) ; then we can de�ne
the following set of functions as well:

(4.3) �S@D (�;�) := ff : @D ! C j Re (�) � Re f (x; y) � Re (�)
and Im (�) � Im f (x; y) � Im (�) for each (x; y) 2 @Dg :

One can easily observe that �S@D (�;�) is closed, convex and

(4.4) ; 6= �S@D (�;�) � �U@D (�;�) :

We have
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Theorem 4. Let @D be a simple, closed counterclockwise curve bounding a region D
and f de�ned on an open set containing D and having continuous partial derivatives
on D: If the curve @D is described by the function r (t) = (x (t) ; y (t)) ; t 2 [a; b] ;
with x, y di¤erentiable on (a; b) ; f 2 ��@D (�;�) for some distinct �; � 2 C then
for any �; � 2 C, we have

(4.5)

���� 1AD
Z Z

D

f (x; y) dxdy � �+�
2

� 1

2AD

Z Z
D

�
(�� x) @f (x; y)

@x
+ (� � y) @f (x; y)

@y

�
dxdy

����
� B

�
�+�

2
; �; �

�
;

where

B

�
�+�

2
; �; �

�
:=
1

4
j�� �j 1

AD

Z b

a

[j� � y (t)j jx0 (t)j+ jx (t)� �j jy0 (t)j] dt:

Moreover, we have the bounds

(4.6) B

�
�+�

2
; �; �

�

� 1

4
j�� �j 1

AD

8>>>>>>><>>>>>>>:

R b
a
max fj� � y (t)j ; jx (t)� �jg [jx0 (t)j+ jy0 (t)j] dt

R b
a
(j� � y (t)jp + jx (t)� �jp)1=p

�
jx0 (t)jq + jy0 (t)jq

�1=q
dt

for p; q > 1 with 1
p +

1
q = 1;R b

a
[j� � y (t)j+ jx (t)� �j]max fjx0 (t)j ; jy0 (t)jg dt:

The proof follows by Theorem 3 for � = �+�
2 and taking into account that, if

f 2 ��@D (�;�), then ����f (x (t) ; y (t))� �+�2
���� � 1

2
j�� �j

for all (x (t) ; y (t)) 2 @D and t 2 [a; b] :
If we take in Theorem 4 � = xD and � = yD; then we have the inequalities

(4.7)

���� 1AD
Z Z

D

f (x; y) dxdy � �+�
2

� 1

2AD

Z Z
D

�
(xD � x)

@f (x; y)

@x
+ (yD � y)

@f (x; y)

@y

�
dxdy

����
� B

�
�+�

2
; xD; yD

�
;
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where

B

�
�+�

2
; xD; yD

�
=
1

4
j�� �j 1

AD

Z b

a

[jyD � y (t)j jx0 (t)j+ jx (t)� xDj jy0 (t)j] dt:

Moreover, we have the bounds

(4.8) B

�
�+�

2
; xD; yD

�

� 1

4
j�� �j 1

AD

8>>>>>>><>>>>>>>:

R b
a
max fjyD � y (t)j ; jx (t)� xDjg [jx0 (t)j+ jy0 (t)j] dtR b

a
(jyD � y (t)jp + jx (t)� xDjp)

1=p �jx0 (t)jq + jy0 (t)jq�1=q dt
for p; q > 1 with 1

p +
1
q = 1;R b

a
[jyD � y (t)j+ jx (t)� xDj]max fjx0 (t)j ; jy0 (t)jg dt:

Also, if we take in Theorem 4 � = xS;@f and � = yS;@f ; then we have the inequalities

(4.9)

���� 1AD
Z Z

D

f (x; y) dxdy � �+�
2

���� � B (�; xS;@f ; yS;@f )
where

B

�
�+�

2
; xS;@f ; yS;@f

�
=
1

4
j�� �j 1

AD

Z b

a

[jyS;@f � y (t)j jx0 (t)j+ jx (t)� xS;@f j jy0 (t)j] dt:

Moreover, we have the bounds

(4.10) B

�
�+�

2
; xS;@f ; yS;@f

�

� 1

4
j�� �j 1

AD

8>>>>>>>>><>>>>>>>>>:

R b
a
max fjyS;@f � y (t)j ; jx (t)� xS;@f jg [jx0 (t)j+ jy0 (t)j] dtR b

a
(jyS;@f � y (t)jp + jx (t)� xS;@f jp)

1=p

�
�
jx0 (t)jq + jy0 (t)jq

�1=q
dt

for p; q > 1 with 1
p +

1
q = 1;R b

a
[jyS;@f � y (t)j+ jx (t)� xS;@f j]max fjx0 (t)j ; jy0 (t)jg dt:
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For p = q = 2 we get

(4.11)

���� 1AD
Z Z

D

f (x; y) dxdy � �+�
2

� 1

2AD

Z Z
D

�
(�� x) @f (x; y)

@x
+ (� � y) @f (x; y)

@y

�
dxdy

����
� 1

4
j�� �j 1

AD

Z
@D

�
j� � yj2 + jx� �j2

�1=2
d (`)

� 1

4
j�� �j ` (@D)

AD
max

(x;y)2@D

�
j� � yj2 + jx� �j2

�1=2
for all �; � 2 C.
In particular, we have

(4.12)

���� 1AD
Z Z

D

f (x; y) dxdy � �+�
2

� 1

2AD

Z Z
D

�
(xD � x)

@f (x; y)

@x
+ (yD � y)

@f (x; y)

@y

�
dxdy

����
� 1

4
j�� �j 1

AD

Z
@D

�
jx� xDj2 + jyD � yj2

�1=2
d (`)

� 1

4
j�� �j ` (@D)

AD
max

(x;y)2@D

�
jx� xDj2 + jyD � yj2

�1=2
and

(4.13)

���� 1AD
Z Z

D

f (x; y) dxdy � �+�
2

����
� 1

4
j�� �j 1

AD

Z
@D

�
jyS;@f � yj2 + jx� xS;@f j2

�1=2
d (`)

� 1

4
j�� �j ` (@D)

AD
max

(x;y)2@D

�
jyS;@f � yj2 + jx� xS;@f j2

�1=2
:

5. Inequalities for Lipschitzian Functions

Let @D be a simple, closed counterclockwise curve in the xy-plane, bounding a
region D: Let (u; v) be �xed in D and assume that there exists Lu; Kv > 0 such
that

(5.1) jf (x; y)� f (u; v)j � Lu jx� uj+Kv jy � vj
for all (x; y) 2 @D.
If f : D ! C is Lipschitzian in the usual sense, namely there exists L; K > 0

such that

(5.2) jf (x; y)� f (u; v)j � L jx� uj+K jy � vj
for all (x; y) ; (u; v) 2 D; then for each �xed (u; v) in D we have the condition (5.1)
for Lu = L and Kv = K:
Also, if f has bounded partial derivatives on D then we can take in (5.2)

L =

@f@x

D;1

:= sup
(x;y)2D

����@f@x (x; y)
���� <1
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and

K =

@f@y

D;1

:= sup
(x;y)2D

����@f@y (x; y)
���� <1:

We have

Theorem 5. Let @D be a simple, closed counterclockwise curve bounding a re-
gion D and f de�ned on an open set containing D and having continuous partial
derivatives on D: If the curve @D is described by the function r (t) = (x (t) ; y (t)) ;
t 2 [a; b] ; with x, y di¤erentiable on (a; b) ; (u; v) 2 D and the function f satis�es
the condition (5.1), then we have the following perturbed Ostrowsky type inequality

(5.3)

���� 1AD
Z Z

D

f (x; y) dxdy � f (u; v)

� 1

2AD

Z Z
D

�
(u� x) @f (x; y)

@x
+ (v � y) @f (x; y)

@y

�
dxdy

����
� B (Lu;Kv; u; v) ;

where

(5.4) B (Lu;Kv; u; v)

:=
1

2AD
Lu

Z b

a

[jx (t)� uj (jv � y (t)j jx0 (t)j+ jx (t)� uj jy0 (t)j)] dt

+
1

2AD
Kv

Z b

a

[jy (t)� vj (jv � y (t)j jx0 (t)j+ jx (t)� uj jy0 (t)j)] dt:

Proof. From the identity (2.9) we get���� 1AD
Z Z

D

f (x; y) dxdy � f (u; v)

� 1

2AD

Z Z
D

�
(u� x) @f (x; y)

@x
+ (v � y) @f (x; y)

@y

�
dxdy

����
=

1

2AD

�����
Z b

a

[(v � y (t))x0 (t) + (x (t)� u) y0 (t)] [f (x (t) ; y (t))� f (u; v)] dt
�����

� 1

2AD

Z b

a

j[(v � y (t))x0 (t) + (x (t)� u) y0 (t)] [f (x (t) ; y (t))� f (u; v)]j dt

=
1

2AD

Z b

a

j[(v � y (t))x0 (t) + (x (t)� u) y0 (t)]j jf (x (t) ; y (t))� f (u; v)j dt

� 1

2AD

Z b

a

j[(v � y (t))x0 (t) + (x (t)� u) y0 (t)]j [Lu jx (t)� uj+Kv jy (t)� vj] dt

� 1

2AD

Z b

a

[jv � y (t)j jx0 (t)j+ jx (t)� uj jy0 (t)j] [Lu jx (t)� uj+Kv jy (t)� vj] dt

=
1

2AD
Lu

Z b

a

h
jx (t)� uj jv � y (t)j jx0 (t)j+ jx (t)� uj2 jy0 (t)j

i
dt

+
1

2AD
Kv

Z b

a

h
jv � y (t)j2 jx0 (t)j+ jx (t)� uj jy (t)� vj jy0 (t)j

i
dt;
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which proves the desired inequality (5.3). �

Remark 4. Observe that

jv � y (t)j jx0 (t)j+ jx (t)� uj jy0 (t)j

�
�
jv � y (t)j2 + jx (t)� uj2

�1=2 �
jx0 (t)j2 + jy0 (t)j2

�1=2
;

for all t 2 [a; b] ; which implies thatZ b

a

[jx (t)� uj (jv � y (t)j jx0 (t)j+ jx (t)� uj jy0 (t)j)] dt

�
Z b

a

jx (t)� uj
�
jv � y (t)j2 + jx (t)� uj2

�1=2 �
jx0 (t)j2 + jy0 (t)j2

�1=2
dt

�
 Z b

a

jx (t)� uj2
�
jx0 (t)j2 + jy0 (t)j2

�1=2
dt

!1=2

�
 Z b

a

�
jv � y (t)j2 + jx (t)� uj2

��
jx0 (t)j2 + jy0 (t)j2

�1=2
dt

!1=2

=

�Z
@D

jx� uj2 d (`)
�1=2�Z

@D

�
jv � yj2 + jx� uj2

�
d (`)

�1=2
and Z b

a

[jy (t)� vj (jv � y (t)j jx0 (t)j+ jx (t)� uj jy0 (t)j)] dt

�
�Z

@D

jy � uj2 d (`)
�1=2�Z

@D

�
jv � yj2 + jx� uj2

�
d (`)

�1=2
;

therefore

B (Lu;Kv; u; v)

� 1

2AD
Lu

�Z
@D

jx� uj2 d (`)
�1=2�Z

@D

�
jv � yj2 + jx� uj2

�
d (`)

�1=2
+

1

2AD
Kv

�Z
@D

jy � uj2 d (`)
�1=2�Z

@D

�
jv � yj2 + jx� uj2

�
d (`)

�1=2
;

which implies the following inequality of interest

(5.5) B (Lu;Kv; u; v) �
1

2AD

�Z
@D

�
jv � yj2 + jx� uj2

�
d (`)

�1=2
�
"
Lu

�Z
@D

jx� uj2 d (`)
�1=2

+Kv

�Z
@D

jy � uj2 d (`)
�1=2#

:

If f has bounded partial derivatives on D then we can take in the above inequal-
ities (5.3)-(5.5)

Lu =

@f@x

D;1

and Kv =

@f@y

D;1

:
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If the function f satis�es the condition (5.1) for the point (xD; yD) that is as-
sumed to belong to D; then

(5.6)

���� 1AD
Z Z

D

f (x; y) dxdy � f (xD; yD)

� 1

2AD

Z Z
D

�
(xD � x)

@f (x; y)

@x
+ (yD � y)

@f (x; y)

@y

�
dxdy

����
� B

�
LxD ;KKyD

; xD; yD

�
;

where

(5.7) B
�
LxD ;KKyD

; xD; yD

�
:=

1

2AD
LxD

Z b

a

[jx (t)� xDj (jyD � y (t)j jx0 (t)j+ jx (t)� xDj jy0 (t)j)] dt

+
1

2AD
KyD

Z b

a

[jy (t)� yDj (jyD � y (t)j jx0 (t)j+ jx (t)� xDj jy0 (t)j)] dt:

We also have

(5.8) B (Lu;Kv; xD; yD) �
1

2AD

�Z
@D

�
jyD � yj2 + jx� xDj2

�
d (`)

�1=2
�
"
LxD

�Z
@D

jx� xDj2 d (`)
�1=2

+KyD

�Z
@D

jyD � yj2 d (`)
�1=2#

:

6. Examples for Rectangles

Let a < b and c < d: Put A = (a; c) ; B = (b; c) ; C = (b; d) ; D = (a; d) 2 R2
the vertices of the rectangle ABCD = [a; b]� [c; d] : Consider the counterclockwise
segments

AB :

8<: x = (1� t) a+ tb

y = c
; t 2 [0; 1]

BC :

8<: x = b

y = (1� t) c+ td
; t 2 [0; 1]

CD :

8<: x = (1� t) b+ ta

y = d
; t 2 [0; 1]

and

DA :

8<: x = a

y = (1� t) d+ tc
; t 2 [0; 1] :

Therefore @ (ABCD) = AB [BC [ CD [DA.
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If �; � 2 R, thenI
AB

[(� � y) f (x; y) dx+ (x� �) f (x; y) dy]

= (b� a) (� � c)
Z 1

0

f ((1� t) a+ tb; c) dt = (� � c)
Z b

a

f (x; c) dx;

I
BC

[(� � y) f (x; y) dx+ (x� �) f (x; y) dy]

= (d� c) (b� �)
Z 1

0

f (b; (1� t) c+ td) dt = (b� �)
Z d

c

f (b; y) dy

I
CD

[(� � y) f (x; y) dx+ (x� �) f (x; y) dy]

= (a� b) (� � d)
Z 1

0

f ((1� t) b+ ta; d) dt = (� � d)
Z a

b

f (x; d) dx

= (d� �)
Z b

a

f (x; d) dx

and I
DA

[(� � y) f (x; y) dx+ (x� �) f (x; y) dy]

=

Z 1

0

(a� �) f (a; (1� t) d+ tc) (c� d) dt = (a� �)
Z c

d

f (a; y) dy

= (�� a)
Z d

c

f (a; y) dy:

Therefore I
ABCD

[(� � y) f (x; y) dx+ (x� �) f (x; y) dy]

= (� � c)
Z b

a

f (x; c) dx+ (d� �)
Z b

a

f (x; d) dx

+ (b� �)
Z d

c

f (b; y) dy + (�� a)
Z d

c

f (a; y) dy

for all �; � 2 R.
We also have xD = a+b

2 and yD = c+d
2 ; which imply thatI

@(ABCD)

[(yD � y) f (x; y) dx+ (x� xD) f (x; y) dy]

= (d� c)
Z b

a

�
f (x; c) + f (x; d)

2

�
dx+ (b� a)

Z d

c

�
f (b; y) + f (a; y)

2

�
dy:
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From the equality (2.1) we have

(6.1)
Z b

a

Z d

c

f (x; y) dxdy

=
1

2

Z b

a

Z d

c

�
(�� x) @f (x; y)

@x
+ (� � y) @f (x; y)

@y

�
dxdy

+
1

2

"
(� � c)

Z b

a

f (x; c) dx+ (d� �)
Z b

a

f (x; d) dx

#

+
1

2

"
(b� �)

Z d

c

f (b; y) dy + (�� a)
Z d

c

f (a; y) dy

#

for all �; � 2 R, while from (2.2) we get

(6.2)
Z b

a

Z d

c

f (x; y) dxdy

=
1

2

Z b

a

Z d

c

��
a+ b

2
� x
�
@f (x; y)

@x
+

�
c+ d

2
� y
�
@f (x; y)

@y

�
dxdy

+
1

2

"
(d� c)

Z b

a

�
f (x; c) + f (x; d)

2

�
dx+ (b� a)

Z d

c

�
f (b; y) + f (a; y)

2

�
dy

#
:

These imply the following perturbed identities

(6.3)
1

(b� a) (d� c)

Z b

a

Z d

c

f (x; y) dxdy � �

� 1

2 (b� a) (d� c)

Z b

a

Z d

c

�
(�� x) @f (x; y)

@x
+ (� � y) @f (x; y)

@y

�
dxdy

=
1

2 (b� a) (d� c)

"
(� � c)

Z b

a

(f (x; c)� �) dx+ (d� �)
Z b

a

(f (x; d)� �) dx
#

+
1

2 (b� a) (d� c)

"
(b� �)

Z d

c

(f (b; y)� �) dy + (�� a)
Z d

c

(f (a; y)� �) dy
#

and

(6.4)
1

(b� a) (d� c)

Z b

a

Z d

c

f (x; y) dxdy � �

� 1

2 (b� a) (d� c)

Z b

a

Z d

c

��
a+ b

2
� x
�
@f (x; y)

@x
+

�
c+ d

2
� y
�
@f (x; y)

@y

�
dxdy

=
1

2

"
1

b� a

Z b

a

�
f (x; c) + f (x; d)

2
� �
�
dx+

1

d� c

Z d

c

�
f (b; y) + f (a; y)

2
� �
�
dy

#
:
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From (6.4) we can get, for instance, the simpler inequality

(6.5)

����� 1

(b� a) (d� c)

Z b

a

Z d

c

f (x; y) dxdy � �

� 1

2 (b� a) (d� c)

Z b

a

Z d

c

��
a+ b

2
� x
�
@f (x; y)

@x
+

�
c+ d

2
� y
�
@f (x; y)

@y

�
dxdy

�����
� 1

2

"
sup
x2[a;b]

����f (x; c) + f (x; d)2
� �
���� dx+ sup

y2[a;b]

����f (b; y) + f (a; y)2
� �
����
#

for all � 2 C:
If we take � = f (u; v) in (6.5), then we get

(6.6)

����� 1

(b� a) (d� c)

Z b

a

Z d

c

f (x; y) dxdy � f (u; v)

� 1

2 (b� a) (d� c)

Z b

a

Z d

c

��
a+ b

2
� x
�
@f (x; y)

@x
+

�
c+ d

2
� y
�
@f (x; y)

@y

�
dxdy

�����
� 1

2

"
sup
x2[a;b]

����f (x; c) + f (x; d)2
� f (u; v)

���� dx+ sup
y2[a;b]

����f (b; y) + f (a; y)2
� f (u; v)

����
#

and, in particular,

(6.7)

����� 1

(b� a) (d� c)

Z b

a

Z d

c

f (x; y) dxdy � f
�
a+ b

2
;
c+ d

2

�

� 1

2 (b� a) (d� c)

Z b

a

Z d

c

��
a+ b

2
� x
�
@f (x; y)

@x
+

�
c+ d

2
� y
�
@f (x; y)

@y

�
dxdy

�����
� 1

2

"
sup
x2[a;b]

����f (x; c) + f (x; d)2
� f

�
a+ b

2
;
c+ d

2

����� dx
+ sup

y2[a;b]

����f (b; y) + f (a; y)2
� f

�
a+ b

2
;
c+ d

2

�����
#
:

Other inequalities may be also stated, however the details are not presented here.

7. Examples for Disks

We consider the closed disk D (C;R) centered in C (a; b) and of radius R > 0:
This is parametrized by8<: x = r cos � + a

y = r sin � + b
; r 2 [0; R] ; � 2 [0; 2�]

and the circle C (C;R) is parametrized by8<: x = R cos � + a

y = R sin � + b
; � 2 [0; 2�] :

Here xD(C;R) = a; yD(C;R) = b and AD(C;R) = �R2:
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Then

1

AD

I
@D

[(yD � y) f (x; y) dx+ (x� xD) f (x; y) dy]

=
1

AD

Z b

a

[(yD � y (t))x0 (t) + (x (t)� xD) y0 (t)] f (x (t) ; y (t)) dt

=
1

�R2

Z 2�

0

�
sin2 � + cos2 �

�
R2f (R cos � + a;R sin � + b) d�

=
1

�

Z 2�

0

f (R cos � + a;R sin � + b) d�

andZ Z
D

�
(xD � x)

@f (x; y)

@x
+ (yD � y)

@f (x; y)

@y

�
dxdy

= �
Z R

0

Z 2�

0

�
cos �

@f (r cos � + a; r sin � + b)

@x

+sin �
@f (r cos � + a; r sin � + b)

@y

�
r2d�dr

and by the equality (2.2) we have

(7.1)
1

�R2

Z Z
D(C;R)

f (x; y) dxdy

= �1
2

Z R

0

Z 2�

0

�
cos �

@f (r cos � + a; r sin � + b)

@x

+sin �
@f (r cos � + a; r sin � + b)

@y

�
r2d�dr

+
1

2�

Z 2�

0

f (R cos � + a;R sin � + b) d�:

We also have the perturbed identity

(7.2)
1

�R2

Z Z
D(C;R)

f (x; y) dxdy � �

= �1
2

Z R

0

Z 2�

0

�
cos �

@f (r cos � + a; r sin � + b)

@x

+sin �
@f (r cos � + a; r sin � + b)

@y

�
r2d�dr

+
1

2�

Z 2�

0

[f (R cos � + a;R sin � + b)� �] d�

for all � 2 C.
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In particular, we have

(7.3)
1

�R2

Z Z
D(C;R)

f (x; y) dxdy � f (a; b)

= �1
2

Z R

0

Z 2�

0

�
cos �

@f (r cos � + a; r sin � + b)

@x

+sin �
@f (r cos � + a; r sin � + b)

@y

�
r2d�dr

+
1

2�

Z 2�

0

[f (R cos � + a;R sin � + b)� f (a; b)] d�:

If we have the following boundedness condition on the boundary

jf (x; y)� f (a; b)j �M for all (x; y) 2 C (C;R)
then by (7.3) we get

(7.4)

����� 1�R2
Z Z

D(C;R)

f (x; y) dxdy � f (a; b)

+
1

2

Z R

0

Z 2�

0

�
cos �

@f (r cos � + a; r sin � + b)

@x

+sin �
@f (r cos � + a; r sin � + b)

@y

�
r2d�dr

���� �M:
Also, if there exists the constants L; K > 0 such that the following Lipschitz

type condition holds

jf (R cos � + a;R sin � + b)� f (a; b)j � R [jcos �jL+ jsin �jK]
for all � 2 [0; 2�] ; then by (7.3) we get

(7.5)

����� 1�R2
Z Z

D(C;R)

f (x; y) dxdy � f (a; b)

+
1

2

Z R

0

Z 2�

0

�
cos �

@f (r cos � + a; r sin � + b)

@x

+sin �
@f (r cos � + a; r sin � + b)

@y

�
r2d�dr

����
� 1

2�

Z 2�

0

jf (R cos � + a;R sin � + b)� f (a; b)j d�

� 1

2�

Z 2�

0

R [jcos �jL+ jsin �jK] d� = 2R

�
(L+K):

Other inequalities may be also stated, however the details are not presented here.
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