
CHARACTERIZATIONS OF CLASSES OF HARMONIC CONVEX FUNCTIONS
AND APPLICATIONS

IMRAN ABBAS BALOCH

Abstract. In this paper, we consider classes of harmonic convex functions and give their special
characterizations. Furthermore, we consider Hermite Hadamard type inequalities related to these
classes to give some non-numeric estimate of well-known definite integrals.

1. Introduction

The classical or the usual convexity is defined as follows:
A function f : ∅ 6= I ⊆ R −→ R, is said to be convex on I if inequality

f (tx+ (1− t) y) ≤ tf(x) + (1− t) f(y)

holds for all x, y ∈ I and t ∈ [0, 1].
A number of papers have been written on inequalities using the classical convexity and one of the

most fascinating inequalities in mathematical analysis is stated as follows

(1.1) f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f(x)dx ≤ f(a) + f(b)

2
,

where f : I ⊆ R −→ R be a convex mapping and a, b ∈ I with a ≤ b . Both the inequalities hold
in reversed direction if f is concave. The inequalities stated in (1.1) are known as Hermite-Hadamard
inequalities.

For more results on (1.1) which provide new proof, significantly extensions, generalizations, refine-
ments, counterparts, new Hermite-Hadamard-type inequalities and numerous applications, we refer the
interested reader [1, 2, 3, 4] and the references therein.

The usual notion of convex function have been generalized in diverse manners. Some of them is the
so called harmonically convex function, harmonically (α,m)-convex function and p-convex, which are
stated in the definitions below.

Definition 1.1. [9] A function f : I ⊂ R\{0} → R is said to be harmonically-convex function on I if

f

(
xy

tx+ (1− t)y

)
≤ tf (y) + (1− t) f (x)

holds for all x, y ∈ I and t ∈ [0, 1]. If the inequality is reversed, then f is said to be harmonically
concave.

Definition 1.2. [10] A function f : I ⊂ R\{0} → R is said to be harmonically (α,m)-convex function
on I if

f

(
mxy

mty + (1− t)x

)
≤ tαf (x) +m (1− tα) f (y)

holds for all x, y ∈ I and t ∈ [0, 1], where α ∈ [0, 1] and m ∈ (0, 1]. If the inequality is reversed, then f
is said to be harmonically (α,m)-concave.
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Definition 1.3. [12] Let I ⊂ R be a real interval. A function f : I → R is p-convex, where p ∈ R/{0}
if

f
(
[txp + (1− t)yp]

1
p

)
≤ tf (y) + (1− t) f (x)

holds for all x, y ∈ I and t ∈ [0, 1]. If the inequality is reversed, then f is said to be p-concave.

2. Main Results

The convexity of functions and their generalized forms, play an important role in many fields such
as Economic Science, Biology, Optimization. In recent years, several extensions, refinements, and gen-
eralizations have been considered for classical convexity. In [7], I. A. Baloch and İ. İşcan defined a new
class of functions which is defined as follow:

Definition 2.1. [7] [6] A function f : I ⊂ R\{0} → R is said to be harmonically (s,m)-convex function
on I if

f

(
mxy

mty + (1− t)x

)
≤ tsf (x) +m (1− t)s f (y)

holds for all x, y ∈ I and t ∈ [0, 1], where s ∈ (0, 1] and m ∈ (0, 1]. If the inequality is reversed, then f
is said to be harmonically (s,m)-concave.

Definition 2.2. [5] A function f : I ⊂ R\{0} → R is said to be harmonically (p, (s,m))-convex function,
where p ∈ R/{0}, s,m ∈ (0, 1], if

f

(
mxy

[t(my)p + (1− t)xp]
1
p

)
≤ tsf(x) +m(1− t)sf(y),

for all x, y ∈ I with my ∈ I and t ∈ [0, 1]. If the inequality is reversed, then f is said to be harmonically
(p, (s,m))-concave.

Now, first of all, we give an example of harmonic convex function which is not convex function.

x

y

f(x) = ln(x)
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Here, some more examples of harmonic convex functions.

x

y

f(x) =
√
x

x

y

f(x) = 1
x2

x

y

f(x) =


1−x
x if 0 < x ≤ 1

0 if 1 < x ≤ 2
x−2
x if x > 2

Lemma 2.3. Let I ⊂ R/{0} be a real interval such that ∀x ∈ I ⇒ 1
x ∈ I. A function f : I → R is

harmonically convex if and only if f( 1x ) is convex.

Proof. A function f is harmonically convex function on I if and only if

f

(
xy

tx+ (1− t)y

)
≤ tf(y) + (1− t)f(x)
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for all x, y ∈ I and t ∈ [0, 1]. Equivalently, a function f is harmonically convex function on I if and only
if

f

(
1

t
y + 1−t

x

)
≤ tf(y) + (1− t)f(x)

for all x, y ∈ I and t ∈ [0, 1]. Since, x, y ∈ I, this implies that 1
x ,

1
y ∈ I and therefore, above inequality

remains true if we replace x by 1
x and y by 1

y . This means that a function f is harmonically convex
function on I if and only if

f

(
1

ty + (1− t)x

)
≤ tf(1

y
) + (1− t)f( 1

x
)

for all x, y ∈ I and t ∈ [0, 1]. This show that a function f is harmonically convex function on I if and
only if f( 1x ) is convex.

Lemma 2.4. [11] Let f be a real function defined on an interval I ⊂ R. Then, f is convex if and only
if ∣∣∣∣∣∣

1 x f(x)
1 y f(y)
1 z f(z)

∣∣∣∣∣∣
/∣∣∣∣∣∣

1 x x2

1 y y2

1 z z2

∣∣∣∣∣∣ ≥ 0

for all three distinct points x, y, z of I; equivalently, if and only if

(2.1)

∣∣∣∣∣∣
1 x f(x)
1 y f(y)
1 z f(z)

∣∣∣∣∣∣ ≥ 0

for all x < y < z in I.

Lemma 2.5. Let I ⊂ R/{0} be a real interval such that ∀x ∈ I ⇒ 1
x ∈ I. A function f : I → R is

harmonically convex if and only if xf(x) is convex.

Proof. From the Lemma 2.3, a function f is harmonically convex function on I if and only if f( 1x ) is
convex and by 2.4, a function f( 1x ) is convex if and only if∣∣∣∣∣∣

1 x1 f( 1
x1
)

1 x2 f( 1
x2
)

1 x3 f( 1
x3
)

∣∣∣∣∣∣ ≥ 0

for all x1, x2, x3 ∈ I such that x1 < x2 < x3. Equivalently∣∣∣∣∣∣
1 1

y1
f(y1)

1 1
y2

f(y2)

1 1
y3

f(y3)

∣∣∣∣∣∣ ≥ 0

whenever y1 > y2 > y1. Now, by the multiplying the ith row of the determinant by yi, interchanging
the first and third row, first and second column, and relabeling y3 = z1, y2 = z2 and y1 = z3, we arrive
at ∣∣∣∣∣∣

1 z1 z1f(z1)
1 z2 z2f(z2)
1 z3 z3f(z3)

∣∣∣∣∣∣ ≥ 0

for all z1, z2, z3 ∈ I such that z1 < z2 < z3, which is equivalent to the convexity of the function zf(z).

Proposition 2.6. [9] Let I ⊂ R/{0} be a real interval and f : I → R is a function, then ;
1) If I ⊂ (0,∞) and f is convex and nondecreasing function, then f is harmonically convex function.
2) If I ⊂ (0,∞) and f is harmonically convex and nonincreasing function, then f is convex function.
3) If I ⊂ (−∞, 0) and f is harmonically convex and nondecreasing function, then f is convex function.
3) If I ⊂ (−∞, 0) and f is convex and nonincreasing function, then f is harmonically convex function.
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Proof. The proof is immediate by following inequality

0 ≤ t(1− t)(x− y)2

for all x, y ∈ I. Equivalently,
xy

tx+ (1− t)y
≤ ty + (1− t)x

for all x, y ∈ (0,∞), and
xy

tx+ (1− t)y
≥ ty + (1− t)x

for all x, y ∈ (−∞, 0).

Examples:
• Let f : (0,∞)→ R, f(x) = x and g : (−∞, 0)→ R, g(x) = x, then f is a harmonically convex

function and g is a harmonically concave function.
• Let f : (0,∞)→ R,

f(x) =

{
x, 0 < x < 2
4− 4

x , x ≥ 2

is harmonically convex function on (0,∞), since xf(x) is convex on (0,∞).
• Let f : (0,∞)→ R,

f(x) =
(x− 1)2 + 1

x

is harmonically convex function on (0,∞), since xf(x) is convex on (0,∞).
• By the Proposition 2.6, increasing convex function is harmonically convex. This means that ex

is harmonically convex.
The following result of the Hermite-Hadamard type holds for class of harmonically convex functions.

Theorem 1. [9] Let f : I ⊂ R/{0} → R be harmonically convex and a, b ∈ I with a < b. If f ∈ L[a, b],
then following inequalities hold

(2.2) f

(
2ab

a+ b

)
≤ (ab)

b− a

∫ b

a

f(x)

x2
dx ≤ f(a) + f(b)

2
.

The above inequalities are sharp.

Now,using Lemma 2.5, we get following interesting result.

Theorem 2. Let I ⊂ R/{0} be a real interval such that ∀x ∈ I ⇒ 1
x ∈ I. If function f : I → R is

harmonically convex and a, b ∈ I with a < b such that f ∈ L[a, b], then following inequalities hold

(2.3)
(
a+ b

2

)
f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

xf(x)dx ≤ af(a) + bf(b)

2
.

Proof. Since, f(x) is harmonically convex on I such that ∀x ∈ I ⇒ 1
x ∈ I, therefore by Lemma 2.5

xf(x) is convex on I. Hence, by the use of inequality (1.1), we get required result.

Theorem 3. [8] Let I ⊂ R be a real interval. If function f : I → R is p-convex, where p ∈ R/{0} and
a, b ∈ I with a < b such that f ∈ L[a, b], then following inequalities hold

(2.4) f

([
ap + bp

2

] 1
p
)
≤ p

bp − ap

∫ b

a

f(x)

x1−p
dx ≤ f(a) + f(b)

2
.

Lemma 2.7. Let I ⊂ R/{0} be a real interval such that ∀x ∈ I ⇒ 1
x ∈ I. A function f : I → R is

harmonically p-convex if and only if f( 1x ) is p-convex.
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Proof. A function f is harmonically p-convex function on I if and only if

f

(
xy

[typ + (1− t)xp]
1
p

)
≤ tf(x) + (1− t)f(y)

for all x, y ∈ I and t ∈ [0, 1]. Equivalently, a function f is harmonically p-convex function on I if and
only if

f

(
1

[ txp + 1−t
yp ]

1
p

)
≤ tf(x) + (1− t)f(y)

for all x, y ∈ I and t ∈ [0, 1]. Since, x, y ∈ I, this implies that 1
x ,

1
y ∈ I and therefore, above inequality

remains true if we replace x by 1
x and y by 1

y . This means that a function f is harmonically p-convex
function on I if and only if

f

(
1

[txp + (1− t)yp]
1
p

)
≤ tf( 1

x
) + (1− t)f(1

y
)

for all x, y ∈ I and t ∈ [0, 1]. This show that a function f is harmonically p-convex function on I if and
only if f( 1x ) is p-convex.

Lemma 2.8. Let I ⊂ R be a real interval. A function f : I → R is p-convex function if and only if∣∣∣∣∣∣
1 xp f(x)
1 yp f(y)
1 zp f(z)

∣∣∣∣∣∣ ≥ 0

for all x, y, z ∈ I such that x < y < z.

Lemma 2.9. Let I ⊂ R/{0} be a real interval such that ∀x ∈ I ⇒ 1
x ∈ I.A function f : I → R is

harmonically p-convex if and only if xpf(x) is convex.

Proof. From the Lemma 2.7, a function f is harmonically p-convex function on I if and only if f( 1x ) is
p-convex and by Lemma 2.8, a function f( 1x ) is p-convex if and only if∣∣∣∣∣∣

1 xp1 f( 1
x1
)

1 xp2 f( 1
x2
)

1 xp3 f( 1
x3
)

∣∣∣∣∣∣ ≥ 0

for all x1, x2, x3 ∈ I such that x1 < x2 < x3. Equivalently∣∣∣∣∣∣∣
1 1

yp1
f(y1)

1 1
yp2

f(y2)

1 1
yp3

f(y3)

∣∣∣∣∣∣∣ ≥ 0

whenever y1 > y2 > y1. Now, by the multiplying the ith row of the determinant by ypi , interchanging
the first and third row, first and second column, and relabeling y3 = z1, y2 = z2 and y1 = z3, we arrive
at ∣∣∣∣∣∣

1 zp1 zp1f(z1)
1 zp2 zp2f(z2)
1 zp3 zp3f(z3)

∣∣∣∣∣∣ ≥ 0

for all z1, z2, z3 ∈ I such that z1 < z2 < z3, which is equivalent to the convexity of the function zpf(z).

Proposition 2.10. Let I ⊂ R/{0} be a real interval, p ∈ R/{0} and f : I → R is a function, then;
• If p ≥ 1 and harmonically convex and nondecreasing function, then f is harmonically p-convex
function.

• If p ≥ 1 and harmonically p-convex and nonincreasing function, then f is harmonically convex
function.
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• If p ≥ 1 and harmonically p-concave and nondecreasing function, then f is harmonically concave
function.

• If p ≥ 1 and harmonically concave and nonincreasing function, then f is harmonically p-concave
function.

• If p ≤ 1 and harmonically p-convex and nondecreasing function, then f is harmonically convex
function.

• If p ≤ 1 and harmonically convex and nonincreasing function, then f is harmonically p-convex
function.

• If p ≤ 1 and harmonically concave and nondecreasing function, then f is harmonically p-concave
function.

• If p ≤ 1 and harmonically p-concave and nonincreasing function, then f is harmonically concave
function.

Proof. Since f(x) = xp, p ∈ (−∞, 0) ∪ [1,∞), is convex function on (0,∞) and f(x) = xp, p ∈ (0, 1], is
a concave function on (0,∞), therefore the proof is obvious from the following power mean inequalities

[txp + (1− t)yp]
1
p ≥ tx+ (1− t)y, p ≥ 1

,
which is equivalent to

xy

[txp + (1− t)yp]
1
p

≤ xy

tx+ (1− t)y
, p ≥ 1

,
and

[txp + (1− t)yp]
1
p ≤ tx+ (1− t)y, p ≤ 1

,
which is equivalent to

xy

tx+ (1− t)y
≤ xy

[txp + (1− t)yp]
1
p

, p ≥ 1,

for all x, y ∈ (0,∞) and t ∈ [0, 1].

Similar to inequality given in Theorem 1, we proved the result for harmonically p-convex functions as
given below

Theorem 4. [5] Let I ⊂ R/{0} be a real interval and f : I ⊂ (0,∞) → R be harmonically p-convex,
a, b ∈ I with a < b. If f ∈ L[a, b], then following inequalities hold

(2.5) f

(
2

1
p ab

[ap + bp]
1
p

)
≤ p(ab)p

bp − ap

∫ b

a

f(x)

xp+1
dx ≤ f(a) + f(b)

2
.

Also, by using Lemma 2.9 and Theorem 3, we have another interesting result as

Theorem 5. Let I ⊂ R/{0} be a real interval such that ∀x ∈ I ⇒ 1
x ∈ I. If function f : I → R is

harmonically p-convex, where p ∈ R/{0} and a, b ∈ I with a < b such that f ∈ L[a, b], then following
inequalities hold

(2.6)
(
ap + bp

2

)
f

([
ap + bp

2

] 1
p
)
≤ p

bp − ap

∫ b

a

f(x)

x1−2p
dx ≤ apf(a) + bpf(b)

2
.
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3. Applications

• we have relation between Harmonic, Logarithmic and Arithmetic means as follow

2ab

a+ b
≤ ab

b− a
(ln b− ln a) ≤ a+ b

2
(HLA inequality)

whose proof is a direct consequence of inequality of Theorem 1 for f(x) = x, ∀x ∈ (0,∞).
Furthermore, we have following consequence of inequality of Theorem 2 for f(x) = x, ∀x ∈
(0,∞). (

a+ b

2

)2

≤ 1

3
(a2 + ab+ b2) ≤ a2 + b2

2
.

Even in more general setting for p ∈ R/{0, 1}, we have

2
1
p ab

[ap + bp]
1
p

≤ p(ab)p

bp − ap
(
b1−p − a1−p

1− p
) ≤ a+ b

2

which is direct consequence of inequality of Theorem 4 and we have(
ap + bp

2

) p+1
p

≤ p

bp − ap
.
b2p+1 − a2p−1

2p+ 1
≤ ap+1 + bp+1

2
.

which is direct consequence of inequality of Theorem 5 for f(x) = x , ∀x ∈ (0,∞).
• For a, b ∈ (0,∞) and a 6= b, we have

e
2ab
a+b ≤ ab

b− a

∫ b

a

ex

x2
dx ≤ ea + eb

2
,

whose proof is a direct consequence of inequality of Theorem 1 and we have

(
a+ b

2
).e

a+b
2 ≤ (1− a)ea + (b− 1)eb

b− a
≤ aea + beb

2
.

which is a direct consequence of inequality of Theorem 2 for f(x) = ex which is not only
harmonic convex function, even it is a harmonic p-convex function too. Therefore, for p ≥ 1,
we have

e

2
1
p ab

[ap+bp]
1
p ≤ p(ab)p

bp − ap

∫ b

a

ex

xp+1
dx ≤ ea + eb

2
.

From above discussion, it is easy to conclude that we have good estimate of
∫ b
a
ex

xn dx ∀n ∈ N
• Since f(x) = x2ex

2

is non-decreasing convex function on (0, 1), so it is harmonic convex function.
Therefore, by using inequality of Theorem 1 for a, b ∈ (0,∞) and a 6= b, we have(

2ab

a+ b

)2

e(
2ab
a+b )

2

≤ ab

b− a

∫ b

a

ex
2

dx ≤ a2ea
2

+ b2eb
2

2

for all a, b ∈ (0,∞).
• Since, f(x) = sin(−x) is convex and non-decreasing function in (0, π2 ), therefore it is harmonic

convex ∀x ∈ (0, π2 ). Therefore, by using inequality of Theorem 1 for a, b ∈ (0,∞), we have

sin a+ sin b

2
≤ ab

b− a

∫ b

a

sinx

x2
dx ≤ sin(

2ab

a+ b
)

Similarly, we can estimate
∫ b
a

sin x
xn dx and

∫ b
a

cos x
xn dx for all n ∈ N such that a, b ∈ (0,∞).
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6. Conclusion

The harmonic convexity of a function is the basis for many inequalities in mathematics as you may see
in this research paper. Furthermore, harmonic convexity provide analytic tool to estimate several

known definite integral like
∫ b
a
ex

xn dx,
∫ b
a
ex

2

dx,
∫ b
a

sin x
xn dx and

∫ b
a

cos x
xn dx ∀n ∈ N, where a, b ∈ (0,∞).

We have discussed several important aspect of harmonic p-convex functions and encourage interested
researcher to explore more interesting results for this class.
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