
SOME MULTIPLE INTEGRAL INEQUALITIES VIA THE
DIVERGENCE THEOREM

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper, by the use of the divergence theorem, we establish
some inequalities for functions de�ned on closed and bounded subsets of the
Euclidean space Rn; n � 2:

1. Introduction

Let @D be a simple, closed counterclockwise curve bounding a region D and f
de�ned on an open set containing D and having continuous partial derivatives on
D: In the recent paper [4], by the use of Green�s identity, we have shown among
others that

(1.1)

������
Z Z

D

f (x; y) dxdy � 1
2

I
@D

[(� � y) f (x; y) dx+ (x� �) f (x; y) dy]

������
� 1

2

Z Z
D

�
j�� xj

����@f (x; y)@x

����+ j� � yj ����@f (x; y)@y

����� dxdy =:M (�; �; f)

for all �; � 2 C and

(1.2) M (�; �; f)
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where p; q > 1; 1
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1
q = 1;

sup(x;y)2D j�� xj



@f@x




D;1
+ sup(x;y)2D j� � yj




@f@y



B;1
;

where k�kD;p are the usual Lebesgue norms, we recall that

kgkD;p :=

8<:
�RR

D
jg (x; y)jp dxdy

�1=p
; p � 1;

sup(x;y)2D jg (x; y)j ; p =1:
Applications for rectangles and disks were also provided in [4]. For some recent

double integral inequalities see [1], [2] and [3].
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2 S. S. DRAGOMIR

We also considered similar inequalities for 3-dimensional bodies as follows, see
[5]. Let B be a solid in the three dimensional space R3 bounded by an orientable
closed surface @B. If f : B ! C is a continuously di¤erentiable function de�ned on
a open set containing B, then by making use of the Gauss-Ostrogradsky identity,
we have obtained the following inequality

(1.3)

����ZZZ
B

f (x; y; z) dxdydz � 1
3
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����@f (x; y; z)@z
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for all �; �; 
 complex numbers. Moreover, we have the bounds

(1.4) M (�; �; 
; f)
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RRR
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@f@y




B;p

�RRR
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B;p

�RRR
B
j
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1
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@f@x




B;1
+ sup(x;y;z)2B j� � yj




@f@y



B;1

+sup(x;y;z)2B j
 � zj



@f@z 




B;1
:

Applications for 3-dimensional balls were also given in [5]. For some triple inte-
gral inequalities see [6] and [9].
Motivated by the above results, in this paper we establish several similar inequal-

ities for multiple integrals for functions de�ned on bonded subsets of Rn (n � 2)
with smooth (or piecewise smooth) boundary @B: To achieve this goal we make use
of the well known divergence theorem for multiple integrals as summarized below.

2. Some Preliminary Facts

Let B be a bounded open subset of Rn (n � 2) with smooth (or piecewise
smooth) boundary @B. Let F = (F1; :::; Fn) be a smooth vector �eld de�ned in
Rn, or at least in B[ @B. Let n be the unit outward-pointing normal of @B. Then
the Divergence Theorem states, see for instance [8]:

(2.1)
Z
B

divFdV =

Z
@B

F � ndA;
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where

divF = r � F =
nX
k=1

@Fi
@xi

;

dV is the element of volume in Rn and dA is the element of surface area on @B.
If n = (n1; :::;nn), x = (x1; :::; xn) 2 B and use the notation dx for dV we can

write (2.1) more explicitly as

(2.2)
nX
k=1

Z
B

@Fk (x)

@xk
dx =

nX
k=1

Z
@B

Fk (x)nk (x) dA:

By taking the real and imaginary part, we can extend the above equality for
complex valued functions Fk; k 2 f1; :::; ng de�ned on B:
If n = 2, the normal is obtained by rotating the tangent vector through 90�

(in the correct direction so that it points out). The quantity tds can be written
(dx1; dx2) along the surface, so that

ndA := nds = (dx2;�dx1)
Here t is the tangent vector along the boundary curve and ds is the element of

arc-length.
From (2.2) we get for B � R2 that

(2.3)
Z
B

@F1 (x1; x2)

@x1
dx1dx2 +

Z
B

@F2 (x1; x2)

@x2
dx1dx2

=

Z
@B

F1 (x1; x2) dx2 �
Z
@B

F2 (x1; x2) dx1;

which is Green�s theorem in plane.
If n = 3 and if @B is described as a level-set of a function of 3 variables i.e. @B =�
x1; x2; x3 2 R3 j G(x1; x2; x3) = 0

	
, then a vector pointing in the direction of n is

gradG. We shall use the case where G (x1; x2; x3) = x3 � g(x1; x2); (x1; x2) 2 D;
a domain in R2 for some di¤erentiable function g on D and B corresponds to the
inequality x3 < g(x1; x2), namely

B =
�
(x1; x2; x3) 2 R3 j x3 < g(x1; x2)

	
:

Then

n =
(�gx1 ;�gx2 ; 1)�
1 + g2x1 + g

2
x2

�1=2 ; dA = �1 + g2x1 + g2x2�1=2 dx1dx2
and

ndA = (�gx1 ;�gx2 ; 1) dx1dx2:
From (2.2) we get

(2.4)
Z
B

�
@F1 (x1; x2; x3)

@x1
+
@F2 (x1; x2; x3)

@x2
+
@F3 (x1; x2; x3)

@x3

�
dx1dx2dx3

= �
Z
D

F1 (x1; x2; g(x1; x2)) gx1 (x1; x2) dx1dx2

�
Z
D

F1 (x1; x2; g(x1; x2)) gx2(x1; x2)dx1dx2

+

Z
D

F3 (x1; x2; g(x1; x2)) dx1dx2
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which is the Gauss-Ostrogradsky theorem in space.

3. Identities of Interest

We have the following identity of interest:

Theorem 1. Let B be a bounded open subset of Rn (n � 2) with smooth (or
piecewise smooth) boundary @B. Let f be a continuously di¤erentiable function
de�ned in Rn, or at least in B[ @B and with complex values. If �k; �k 2 C for
k 2 f1; :::; ng with

Pn
k=1 �k = 1; then

(3.1)
Z
B

f (x) dx =
nX
k=1

Z
B

(�k � �kxk)
@f (x)

@xk
dx

+
nX
k=1

Z
@B

(�kxk � �k) f (x)nk (x) dA:

We also have

(3.2)
Z
B

f (x) dx =
1

n

nX
k=1

Z
B

(
k � xk)
@f (x)

@xk
dx

+
1

n

nX
k=1

Z
@B

(xk � 
k) f (x)nk (x) dA

for all 
k 2 C, where k 2 f1; :::; ng :

Proof. Let x = (x1; :::; xn) 2 B: We consider

Fk (x) = (�kxk � �k) f (x) ; k 2 f1; :::; ng

and take the partial derivatives @Fk(x)
@xk

to get

@Fk (x)

@xk
= �kf (x) + (�kxk � �k)

@f (x)

@xk
; k 2 f1; :::; ng :

If we sum this equality over k from 1 to n we get
nX
k=1

@Fk (x)

@xk
=

nX
k=1

�kf (x) +
nX
k=1

(�kxk � �k)
@f (x)

@xk
(3.3)

= f (x) +
nX
k=1

(�kxk � �k)
@f (x)

@xk

for all x = (x1; :::; xn) 2 B:
Now, if we take the integral in the equality (3.3) over (x1; :::; xn) 2 B we get

(3.4)
Z
B

 
nX
k=1

@Fk (x)

@xk

!
dx =

Z
B

f (x) dx+
nX
k=1

Z
B

�
(�kxk � �k)

@f (x)

@xk

�
dx:

By the Divergence Theorem (2.2) we also have

(3.5)
Z
B

 
nX
k=1

@Fk (x)

@xk

!
dx =

nX
k=1

Z
@B

(�kxk � �k) f (x)nk (x) dA
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and by making use of (3.4) and (3.5) we getZ
B

f (x) dx+
nX
k=1

Z
B

�
(�kxk � �k)

@f (x)

@xk

�
dx

=
nX
k=1

Z
@B

(�kxk � �k) f (x)nk (x) dA

which gives the desired representation (3.1).
The identity (3.2) follows by (3.1) for �k = 1

n and �k =
1
n
k; k 2 f1; :::; ng : �

For the body B we consider the coordinates for the centre of gravity

G (xB;1; :::; xB;n)

de�ned by

xB;k :=
1

V (B)

Z
B

xkdx; k 2 f1; :::; ng ;

where

V (B) :=

Z
B

xdx

is the volume of B:

Corollary 1. With the assumptions of Theorem 1 we have

(3.6)
Z
B

f (x) dx =
nX
k=1

Z
B

�k (xB;k � xk)
@f (x)

@xk
dx

+
nX
k=1

Z
@B

�k (xk � xB;k) f (x)nk (x) dA

and, in particular,

(3.7)
Z
B

f (x) dx =
1

n

nX
k=1

Z
B

(xB;k � xk)
@f (x)

@xk
dx

+
1

n

nX
k=1

Z
@B

(xk � xB;k) f (x)nk (x) dA:

The proof follows by (3.1) on taking �k = �kxB;k; k 2 f1; :::; ng :
For a function f as in Theorem 1 above, we de�ne the points

xB;@f;k :=

R
B
xk

@f(x)
@xk

dxR
B
@f(x)
@xk

dx
; k 2 f1; :::; ng ;

provided that all denominators are not zero.

Corollary 2. With the assumptions of Theorem 1 we have

(3.8)
Z
B

f (x) dx =
nX
k=1

Z
@B

�k (xk � xB;@f;k) f (x)nk (x) dA

and, in particular,

(3.9)
Z
B

f (x) dx =
1

n

nX
k=1

Z
@B

(xk � xB;@f;k) f (x)nk (x) dA:
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The proof follows by (3.1) on taking �k = �kxB;@f;k; k 2 f1; :::; ng and observing
that

nX
k=1

Z
B

(�k � �kxk)
@f (x)

@xk
dx =

nX
k=1

�k

Z
B

(xB;@f;k � xk)
@f (x)

@xk
dx = 0:

For a function f as in Theorem 1 above, we de�ne the points

x@B;f ;k :=

R
@B
xkf (x)nk (x) dAR

@B
f (x)nk (x) dA

; k 2 f1; :::; ng

provided that all denominators are not zero.

Corollary 3. With the assumptions of Theorem 1 we have

(3.10)
Z
B

f (x) dx =
nX
k=1

Z
B

�k (x@B;f ;k �xk)
@f (x)

@xk
dx

and, in particular,

(3.11)
Z
B

f (x) dx =
1

n

nX
k=1

Z
B

(x@B;f ;k �xk)
@f (x)

@xk
dx:

The proof follows by (3.1) on taking �k = �kx@B;f ;k ; k 2 f1; :::; ng and observing
that

nX
k=1

Z
@B

(�kxk � �k) f (x)nk (x) dA = 0:

4. Some Integral Inequalities

We have the following result generalizing the inequalities from the introduction:

Theorem 2. Let B be a bounded open subset of Rn (n � 2) with smooth (or
piecewise smooth) boundary @B. Let f be a continuously di¤erentiable function
de�ned in Rn, or at least in B[ @B and with complex values. If �k; �k 2 C for
k 2 f1; :::; ng with

Pn
k=1 �k = 1; then

(4.1)

�����
Z
B

f (x) dx�
nX
k=1

Z
@B

(�kxk � �k) f (x)nk (x) dA
�����

�
nX
k=1

Z
B

j�k � �kxkj
����@f (x)@xk

���� dx

�

8>>>>>>>>>><>>>>>>>>>>:

Pn
k=1

R
B
j�k � �kxkj dx




@f(x)@xk





B;1Pn

k=1

�R
B
j�k � �kxkj

q
dx
�1=q 


@f(x)@xk





B;p

where p; q > 1; 1
p +

1
q = 1;Pn

k=1 supx2B j�k � �kxkj



@f(x)@xk





B;1
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We also have

(4.2)

�����
Z
B

f (x) dx� 1

n

nX
k=1

Z
@B

(xk � 
k) f (x)nk (x) dA
�����

� 1

n

nX
k=1

Z
B

j
k � xkj
����@f (x)@xk

���� dx

� 1

n

8>>>>>>>>>><>>>>>>>>>>:

Pn
k=1

R
B
j
k � xkj dx




@f(x)@xk





B;1Pn

k=1

�R q
B
j
k � xkj

q
dx
�1=q 


@f(x)@xk





B;p

where p; q > 1; 1
p +

1
q = 1;Pn

k=1 supx2B j
k � xkj



@f(x)@xk





B;1

for all 
k 2 C, where k 2 f1; :::; ng :

Proof. By the identity (3.1) we have�����
Z
B

f (x) dx�
nX
k=1

Z
@B

(�kxk � �k) f (x)nk (x) dA
�����

=

�����
nX
k=1

Z
B

(�k � �kxk)
@f (x)

@xk
dx

����� �
nX
k=1

����Z
B

(�k � �kxk)
@f (x)

@xk
dx

����
�

nX
k=1

Z
B

����(�k � �kxk) @f (x)@xk

���� dx;
which proves the �rst inequality in (4.1).
By Hölder�s integral inequality for multiple integrals we have

Z
B

����(�k � �kxk) @f (x)@xk

���� dx �

8>>>>>>>>><>>>>>>>>>:

supx2B

���@f(x)@xk

��� RB j�k � �kxkj dx
�R

B

���@f(x)@xk

���p�1=p �RB j�k � �kxkjq dx�1=q
where p; q > 1; 1

p +
1
q = 1;

supx2B j�k � �kxkj
R
B

���@f(x)@xk

��� dx

=

8>>>>>>>>>><>>>>>>>>>>:

R
B
j�k � �kxkj dx




 @f
@xk





B;1�R

B
j�k � �kxkj

q
dx
�1=q 


 @f

@xk





B;p

where p; q > 1; 1
p +

1
q = 1;

supx2B j�k � �kxkj



 @f
@xk





B;1

;

which proves the last part of (4.1). �
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Corollary 4. With the assumptions of Theorem 2 we have

(4.3)

�����
Z
B

f (x) dx� 1

n

nX
k=1

Z
@B

(xk � xB;k) f (x)nk (x) dA
�����

� 1

n

nX
k=1

Z
B

jxB;k � xkj
����@f (x)@xk

���� dx

� 1

n

8>>>>>>>>>><>>>>>>>>>>:

Pn
k=1

R
B
jxB;k � xkj dx




@f(x)@xk





B;1Pn

k=1

�R q
B
jxB;k � xkjq dx

�1=q 


@f(x)@xk





B;p

where p; q > 1; 1
p +

1
q = 1;Pn

k=1 supx2B jxB;k � xkj



@f(x)@xk





B;1

and

(4.4)

����Z
B

f (x) dx

���� � 1

n

nX
k=1

Z
B

jx@B;f ;k �xkj
����@f (x)@xk

���� dx

� 1

n

8>>>>>>>>>><>>>>>>>>>>:

Pn
k=1

R
B
jx@B;f ;k �xkj dx




@f(x)@xk





B;1Pn

k=1

�R q
B
jx@B;f ;k �xkjq dx

�1=q 


@f(x)@xk





B;p

where p; q > 1; 1
p +

1
q = 1;Pn

k=1 supx2B jx@B;f ;k �xkj



@f(x)@xk





B;1
:

We also have the dual result:

Theorem 3. With the assumption of Theorem 2 we have

(4.5)

�����
Z
B

f (x) dx�
nX
k=1

Z
B

(�k � �kxk)
@f (x)

@xk
dx

�����
�

nX
k=1

Z
@B

j�kxk � �kj jnk (x)j jf (x)j dA

�

8>>>>>>><>>>>>>>:

kfk@B;1
Pn

k=1

R
@B
j�kxk � �kj jnk (x)j dA;

kfk@B;p
Pn

k=1

�R
@B
j�kxk � �kj

q jnk (x)jq dA
�1=q

where p; q > 1; 1
p +

1
q = 1;

kfk@B;1
Pn

k=1 supx2@B jj�kxk � �kj jnk (x)jj ;

where

kfk@B;p :=

8<:
�R
@B
jf (x)jp dA

�1=p
; p � 1;

supx2@B jf (x)j ; p =1:
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In particular,

(4.6)

�����
Z
B

f (x) dx� 1

n

nX
k=1

Z
B

(
k � xk)
@f (x)

@xk
dx

�����
� 1

n

nX
k=1

Z
@B

j
k � xkj jnk (x)j jf (x)j dA

� 1

n

8>>>>>>><>>>>>>>:

kfk@B;1
Pn

k=1

R
@B
j
k � xkj jnk (x)j dA;

kfk@B;p
Pn

k=1

�R
@B
j
k � xkj

q jnk (x)jq dA
�1=q

where p; q > 1; 1
p +

1
q = 1;

kfk@B;1
Pn

k=1 supx2@B [j
k � xkj jnk (x)j] :

Proof. From the identity (3.1) we have�����
Z
B

f (x) dx�
nX
k=1

Z
B

(�k � �kxk)
@f (x)

@xk
dx

�����
=

�����
nX
k=1

Z
@B

(�kxk � �k) f (x)nk (x) dA
�����

�
nX
k=1

����Z
@B

(�kxk � �k) f (x)nk (x) dA
���� � nX

k=1

Z
@B

j(�kxk � �k) f (x)nk (x)j dA;

which proves the �rst inequality in (4.5).
By Hölder�s inequality for functions de�ned on @B we have

Z
@B

j�kxk � �kj jnk (x)j jf (x)j dA �

8>>>>>>><>>>>>>>:

R
@B
j�kxk � �kj jnk (x)j dA kfk@B;1 ;�R

@B
j�kxk � �kj

q jnk (x)jq dA
�1=q kfk@B;p

where p; q > 1; 1
p +

1
q = 1;

supx2@B jj�kxk � �kj jnk (x)jj kfk@B;1 ;

which proves the second part of the inequality (4.5). �

We also have:

Corollary 5. With the assumptions of Theorem 2 we have

(4.7)

�����
Z
B

f (x) dx� 1

n

nX
k=1

Z
B

(xB;k � xk)
@f (x)

@xk
dx

�����
� 1

n

nX
k=1

Z
@B

jxB;k � xkj jnk (x)j jf (x)j dA
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� 1

n

8>>>>>>><>>>>>>>:

kfk@B;1
Pn

k=1

R
@B
jxB;k � xkj jnk (x)j dA;

kfk@B;p
Pn

k=1

�R
@B
jxB;k � xkjq jnk (x)jq dA

�1=q
where p; q > 1; 1

p +
1
q = 1;

kfk@B;1
Pn

k=1 supx2@B [jxB;k � xkj jnk (x)j]
and

(4.8)

����Z
B

f (x) dx

���� � 1

n

nX
k=1

Z
@B

jxB;@f;k � xkj jnk (x)j jf (x)j dA

� 1

n

8>>>>>>><>>>>>>>:

kfk@B;1
Pn

k=1

R
@B
jxB;@f;k � xkj jnk (x)j dA;

kfk@B;p
Pn

k=1

�R
@B
jxB;@f;k � xkjq jnk (x)jq dA

�1=q
where p; q > 1; 1

p +
1
q = 1;

kfk@B;1
Pn

k=1 supx2@B [jxB;@f;k � xkj jnk (x)j] :

If we take n = 2 in Theorem 3, then we get other results from [4], while for n = 3
we recapture some results from [5].

References

[1] H. Budak and M. Z. Sarikaya, Generalized weighted µCebysev and Ostrowski type inequalities
for double integrals. TWMS J. Appl. Eng. Math. 7 (2017), no. 2, 272�281.

[2] H. Budak and M. Z. Sarikaya, On weighted Grüss type inequalities for double integrals. Com-
mun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 66 (2017), no. 2, 53�61.

[3] S. S. Dragomir, Double integral inequalities of Hermite-Hadamard type for h-convex functions
on linear spaces. Analysis (Berlin) 37 (2017), no. 1, 13�22.

[4] S. S. Dragomir, Some inequalities for double and path integrals on general domains via
Green�s identity, Preprint RGMIA Res. Rep. Coll. 22 (2019), Art. 55, 17 pp. [Online
http://rgmia.org/papers/v22/v22a55.pdf].

[5] S. S. Dragomir, Some triple integral inequalities for functions de�ned on 3-dimensional bodies
via Gauss-Ostrogradsky identity, Preprint RGMIA Res. Rep. Coll. 22 (2019), Art. 60, 21 pp.
[Online http://rgmia.org/papers/v22/v22a60.pdf].

[6] B. G. Pachpatte, New inequalities of Ostrowski and Grüss type for triple integrals. Tamkang
J. Math. 40 (2009), no. 2, 117�127

[7] D. B. Pachpatte, Some Ostrowski type inequalities for double integrals on time scales. Acta
Appl. Math. 161 (2019), 1�11.

[8] M. Singer, The divergence theorem, [Online https://www.maths.ed.ac.uk/~jmf/Teaching/
Lectures/divthm.pdf].

[9] W. T. Sulaiman, Integral inequalities concerning triple integrals. J. Concr. Appl. Math. 8
(2010), no. 4, 585�593.

1Mathematics, College of Engineering & Science, Victoria University, PO Box 14428,
Melbourne City, MC 8001, Australia.

E-mail address : sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir

2DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences,
School of Computer Science, & Applied Mathematics, University of the Witwater-
srand,, Private Bag 3, Johannesburg 2050, South Africa




