SOME MULTIPLE INTEGRAL INEQUALITIES VIA THE
DIVERGENCE THEOREM

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper, by the use of the divergence theorem, we establish
some inequalities for functions defined on closed and bounded subsets of the
Euclidean space R™, n > 2.

1. INTRODUCTION

Let 0D be a simple, closed counterclockwise curve bounding a region D and f
defined on an open set containing D and having continuous partial derivatives on
D. In the recent paper [4], by the use of Green’s identity, we have shown among
others that

v [ [ 1@udedy =5 f 160 f @) do+ (@ a) fw)d)

oD
9 0
<5 [ [ [lo=al| 2252 15— o120 vy = a1 o 5:)

for all , 5 € C and
(12) M (a,pB;f)

18], . J1 o= aldady+ |95 15,18 = vl oy
9 1/ o) 1/
< ‘3% D7p(ffD|a—x|qudy) ‘1_|_‘87£ Dyp(ffD\,B—y|qda:dy) a

where p, ¢ > 1, ]%Jr%:l;

of
ox

of
1 + Sup(a:,y)ED |5 - yl HainBJ )

SUP(g,4)eD |a - LL’| ‘ D

where |- , are the usual Lebesgue norms, we recall that
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Applications for rectangles and disks were also provided in [4]. For some recent
double integral inequalities see [1], [2] and [3].
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We also considered similar inequalities for 3-dimensional bodies as follows, see
[5]. Let B be a solid in the three dimensional space R bounded by an orientable
closed surface 0B. If f : B — C is a continuously differentiable function defined on
a open set containing B, then by making use of the Gauss-Ostrogradsky identity,
we have obtained the following inequality
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Applications for 3-dimensional balls were also given in [5]. For some triple inte-
gral inequalities see [6] and [9].

Motivated by the above results, in this paper we establish several similar inequal-
ities for multiple integrals for functions defined on bonded subsets of R™ (n > 2)
with smooth (or piecewise smooth) boundary 0B. To achieve this goal we make use
of the well known divergence theorem for multiple integrals as summarized below.

2. SOME PRELIMINARY FACTS

Let B be a bounded open subset of R™ (n > 2) with smooth (or piecewise
smooth) boundary dB. Let F = (Fy,...,F,) be a smooth vector field defined in
R™, or at least in BU dB. Let n be the unit outward-pointing normal of 9B. Then
the Divergence Theorem states, see for instance [8]:
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where

" OF;
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dV is the element of volume in R™ and dA is the element of surface area on 9B.
If n=(ny,..,n,), z = (x1,..,2,) € B and use the notation dz for dV we can

write (2.1) more explicitly as

" 8Fk (x) - "
(2.2) ; /B = dx_; /a Fila)m (@) da.

By taking the real and imaginary part, we can extend the above equality for
complex valued functions Fy, k € {1, ...,n} defined on B.

If n = 2, the normal is obtained by rotating the tangent vector through 90°
(in the correct direction so that it points out). The quantity tds can be written
(dz1,dzs) along the surface, so that

ndA = nds = (dxq, —dz1)

Here t is the tangent vector along the boundary curve and ds is the element of
arc-length.
From (2.2) we get for B C R? that
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which is Green’s theorem in plane.

If n = 3 and if 9B is described as a level-set of a function of 3 variables i.e. 0B =
{xh Zo, T3 € R3 | Gz, 29,23) = 0}, then a vector pointing in the direction of n is
grad G. We shall use the case where G (21,2, 23) = 3 — g(z1,22), (z1,22) € D,
a domain in R? for some differentiable function g on D and B corresponds to the
inequality x3 < g(z1,22), namely

B = {(351,%2,333) ER? | a3 < 9(%;332)}'

Then
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From (2.2) we get
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which is the Gauss-Ostrogradsky theorem in space.

3. IDENTITIES OF INTEREST

We have the following identity of interest:

Theorem 1. Let B be a bounded open subset of R™ (n > 2) with smooth (or
piecewise smooth) boundary OB. Let f be a continuously differentiable function
defined in R™, or at least in BU 0B and with complex values. If ay, 8;, € C for
ke{l,...,n} with Y ,_, ay =1, then

(3.1) / f(x)de = Z/ — apTk) gx(z)dx

+Z/ arwy — By) f(x) ny (x) dA.

We also have

(3.2) /B f(z)ds = / — ) ax(:)dx
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n
k=179

for all v, € C, where k € {1,...,n}.
Proof. Let x = (1, ...,x,) € B. We consider
Fy, (z) = (apar — Bg) f (), k€ {l,...n}

and take the partial derivatives 3F’“(x) to get

OFy (x) _ of (z)
. =aif () + (wzr — By) 02y ke{l,...,n}.
If we sum this equality over k from 1 to n we get
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for all x = (21, ...,x,) € B.
Now, if we take the integral in the equality (3.3) over (z1,...,z,) € B we get
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By the Divergence Theorem (2.2) we also have
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and by making use of (3.4) and (3.5) we get

/f dx+2/{ak:z:k Br) g;k)}

- ; /63 (axzr — Bi) f(z) ny (z) dA

which gives the desired representation (3.1).
The identity (3.2) follows by (3.1) for ay, = L and 8, = L, k € {1,...,n}.

n

For the body B we consider the coordinates for the centre of gravity

G (xB,la "',xB,n)

defined by
1
TBE = B /Bxkdx, ke{l,..,n},

V(B) = /B wda

where

is the volume of B.

Corollary 1. With the assumptions of Theorem 1 we have
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The proof follows by (3.1) on taking 8, = axTpr, k € {1,...,n}.
For a function f as in Theorem 1 above, we define the points
Jp oGt de
TB.ofk ‘= 97 (x) , ked{l,..,n},
B Bmk
provided that all denominators are not zero.

Corollary 2. With the assumptions of Theorem 1 we have
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The proof follows by (3.1) on taking 5, = axzp.ask, k € {1,...,n} and observing
that

of (@), _ N of () . _
Z/ Ozkl’k ) B dx = ; (677 . (l'B,af,k - :ck) kadx =0.
For a function f as in Theorem 1 above, we define the points
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Corollary 3. With the assumptions of Theorem 1 we have
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The proof follows by (3.1) on taking 5, = arzas,f.ix, k € {1,...,n} and observing
that

S [, e F@m@aa=0

4. SOME INTEGRAL INEQUALITIES

We have the following result generalizing the inequalities from the introduction:

Theorem 2. Let B be a bounded open subset of R™ (n > 2) with smooth (or
piecewise smooth) boundary OB. Let f be a continuously differentiable function
defined in R™, or at least in BU 0B and with complex values. If oy, B, € C for
ke{l,..,n} with > }_, ap =1, then
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We also have

/1@ x_,z/ (2 —74) f (@) i () dA
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for all v, € C, where k € {1,...,n}.
Proof. By the identity (3.1) we have
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— JoB
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which proves the first inequality in (4.1).
By Holder’s integral inequality for multiple integrals we have
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which proves the last part of (4.1).
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Corollary 4. With the assumptions of Theorem 2 we have

1 n
(4.3) / flz)yde— =" / (zr — Tox) f (z) i (z) dA
B ni_1J/oB
1< of (x)
< = - d
_nZ/B\zB,k | 9,
k=1
of(x
> okh=1 )5 [TBR — x| dw H gwk)
n [ 1/ of(x
< 1 > k=t (f; TBx — xk|qu ' H Bffr(fk)
= 1,1
n wherep,q>1,;+a
n J— of (x
> k=15UPsep [TBE — Tkl HafT(k) B
and
1< of (x)
a) | [ r@de <23 [ foan g -anl |22 a
k=1
> ket Jp |lmom 1ok ﬂkW’?H%ﬁf) .
n 1/ of (x
1) Xia (Jplwos. gk =il dz) q” gmk)
n

1. 1_9
where p, ¢ > 1, 5—}—5—

2]
> k=1 8UDse [ToB, £k —Tk| ‘ %5

B,1
We also have the dual result:

Theorem 3. With the assumption of Theorem 2 we have
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In particular,
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<o [ = @)]1f )] 4
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Proof. From the identity (3.1) we have
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which proves the first inequality in (4.5).
By Holder’s inequality for functions defined on 0B we have
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We also have:

Corollary 5. With the assumptions of Theorem 2 we have
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105,00 2okt Jou [TBE — w] [0 (2)| dA;
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||f||aB,1 > h=15UWscop [[TB,05k — x| Ing (2)]].

If we take n = 2 in Theorem 3, then we get other results from [4], while for n = 3

we recapture some results from [5].
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