SOME HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS DEFINED ON CONVEX BODIES IN \mathbb{R}^{n}

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract

In this paper, by the use of Divergence Theorem, we establish some integral inequalities of Hermite-Hadamard type for convex functions of several variables defined on closed and bounded convex bodies in the Euclidean space \mathbb{R}^{n} for any $n \geq 2$.

1. Introduction

In the following, consider D a closed and bounded convex subset of \mathbb{R}^{2}. Define

$$
A_{D}:=\iint_{D} d x d y
$$

the area of D and $\left(\overline{x_{D}}, \overline{y_{D}}\right)$ the centre of mass for D, where

$$
\overline{x_{D}}:=\frac{1}{A_{D}} \iint_{D} x d x d y, \overline{y_{D}}:=\frac{1}{A_{D}} \iint_{D} y d x d y
$$

Consider the function of two variables $f=f(x, y)$ and denote by $\frac{\partial f}{\partial x}$ the partial derivative with respect to the variable x and $\frac{\partial f}{\partial y}$ the partial derivative with respect to the variable y.

In the recent paper [9] we obtained the following Hermite-Hadamard type inequalities:

Theorem 1. Let $f: D \rightarrow \mathbb{R}$ be a differentiable convex function on D, a closed and bounded convex subset of \mathbb{R}^{2} surrounded by the smooth curve ∂D. Then for all $(u, v) \in D$ we have

$$
\begin{align*}
& \frac{\partial f}{\partial x}(u, v)\left(\overline{x_{D}}-u\right)+ \frac{\partial f}{\partial y}(u, v)\left(\overline{y_{D}}-v\right)+f(u, v) \tag{1.1}\\
& \leq \frac{1}{A_{D}} \iint_{D} f(x, y) d x d y \\
& \leq \frac{1}{3} f(u, v)+\frac{1}{3 A_{D}} \oint_{\partial D}[(v-y) f(x, y) d x+(x-u) f(x, y) d y]
\end{align*}
$$

[^0]In particular,

$$
\begin{align*}
& f\left(\overline{x_{D}}, \overline{y_{D}}\right) \leq \frac{1}{A_{D}} \iint_{D} f(x, y) d x d y \tag{1.2}\\
& \quad \leq \frac{1}{3} f\left(\overline{x_{D}}, \overline{y_{D}}\right)+\frac{1}{3 A_{D}} \oint_{\partial D}\left[\left(\overline{y_{D}}-y\right) f(x, y) d x+\left(x-\overline{x_{D}}\right) f(x, y) d y\right]
\end{align*}
$$

We also have:
Corollary 1. With the assumptions of Theorem 1 we have

$$
\begin{align*}
f\left(\overline{x_{D}}, \overline{y_{D}}\right) \leq \frac{1}{A_{D}} \int & \int_{D} f(x, y) d x d y \tag{1.3}\\
& \leq \frac{1}{2 A_{D}} \oint_{\partial D}\left[\left(\overline{y_{D}}-y\right) f(x, y) d x+\left(x-\overline{x_{D}}\right) f(x, y) d y\right]
\end{align*}
$$

Some examples for rectangle and disks on the plane were also provided in [9].
The case of convex function defined on convex body from space was considered in [10] were we obtained the following result:

Theorem 2. Let B be a convex body in the three dimensional space \mathbb{R}^{3} bounded by an orientable closed surface ∂B and $f: B \rightarrow \mathbb{C}$ a continuously differentiable function defined on a open set containing B. If f is convex on B, then for any $(u, v, w) \in B$ we have

$$
\begin{align*}
& f(u, v, w)+\left(\overline{x_{B}}-u\right) \frac{\partial f(u, v, w)}{\partial x} \tag{1.4}\\
& +\left(\overline{y_{B}}-v\right) \frac{\partial f(u, v, w)}{\partial y}+\left(\overline{z_{B}}-w\right) \frac{\partial f(u, v, w)}{\partial z} \\
& \quad \leq \frac{1}{V(B)} \iiint_{B} f(x, y, z) d x d y d z \\
& \quad \leq \frac{1}{4} f(u, v, w)+\frac{1}{4} \frac{1}{V(B)}\left[\iint_{\partial B}(x-u) f(x, y, z) d y \wedge d z\right. \\
& \left.+\iint_{\partial B}(y-v) f(x, y, z) d z \wedge d x+\iint_{\partial B}(z-w) f(x, y, z) d x \wedge d y\right]
\end{align*}
$$

where

$$
\overline{x_{B}}:=\frac{1}{V(B)} \iiint_{B} x d x d y d z, \overline{y_{B}}:=\frac{1}{V(B)} \iiint_{B} y d x d y d z
$$

and

$$
\overline{z_{B}}:=\frac{1}{V(B)} \iiint_{B} z d x d y d z
$$

In particular, we have

$$
\begin{align*}
& f\left(\overline{x_{B}}, \overline{y_{B}}, \overline{z_{B}}\right) \leq \frac{1}{V(B)} \iiint_{B} f(x, y, z) d x d y d z \tag{1.5}\\
& \quad \leq \frac{1}{4} f\left(\overline{x_{B}}, \overline{y_{B}}, \overline{z_{B}}\right)+\frac{1}{4} \frac{1}{V(B)}\left[\iint_{\partial B}\left(x-\overline{x_{B}}\right) f(x, y, z) d y \wedge d z\right. \\
& \left.+\iint_{\partial B}\left(y-\overline{y_{B}}\right) f(x, y, z) d z \wedge d x+\iint_{\partial B}\left(z-\overline{z_{B}}\right) f(x, y, z) d x \wedge d y\right]
\end{align*}
$$

We also have:
Corollary 2. With the assumptions of Theorem 2,

$$
\begin{align*}
& \frac{1}{V(B)} \iiint_{B} f(x, y, z) d x d y d z \leq \frac{1}{3} \frac{1}{V(B)}\left[\iint_{S}\left(x-\overline{x_{B}}\right) f(x, y, z) d y \wedge d z\right. \tag{1.6}\\
& \left.\quad+\iint_{S}\left(y-\overline{y_{B}}\right) f(x, y, z) d z \wedge d x+\iint_{S}\left(z-\overline{z_{B}}\right) f(x, y, z) d x \wedge d y\right]
\end{align*}
$$

Examples for 3-dimensional balls and spheres were also considered in [10].
For other Hermite-Hadamard type integral inequalities for multiple integrals, see [2]-[8], [11]-[15] and [17]-[19].

Motivated by the above results, in this paper, by the use of Divergence Theorem, we establish some integral inequalities of Hermite-Hadamard type for convex functions of several variables defined on closed and bounded convex bodies in the Euclidean space \mathbb{R}^{n} for any $n \geq 2$.

2. Some Preliminary Facts

Let B be a bounded open subset of $\mathbb{R}^{n}(n \geq 2)$ with smooth (or piecewise smooth) boundary ∂B. Let $F=\left(F_{1}, \ldots, F_{n}\right)$ be a smooth vector field defined in \mathbb{R}^{n}, or at least in $B \cup \partial B$. Let \mathbf{n} be the unit outward-pointing normal of ∂B. Then the Divergence Theorem states, see for instance [16]:

$$
\begin{equation*}
\int_{B} \operatorname{div} F d V=\int_{\partial B} F \cdot n d A \tag{2.1}
\end{equation*}
$$

where

$$
\operatorname{div} F=\nabla \cdot F=\sum_{k=1}^{n} \frac{\partial F_{i}}{\partial x_{i}}
$$

$d V$ is the element of volume in \mathbb{R}^{n} and $d A$ is the element of surface area on ∂B.
If $\mathbf{n}=\left(\mathbf{n}_{1}, \ldots, \mathbf{n}_{n}\right), x=\left(x_{1}, \ldots, x_{n}\right) \in B$ and use the notation $d x$ for $d V$ we can write (2.1) more explicitly as

$$
\begin{equation*}
\sum_{k=1}^{n} \int_{B} \frac{\partial F_{k}(x)}{\partial x_{k}} d x=\sum_{k=1}^{n} \int_{\partial B} F_{k}(x) n_{k}(x) d A \tag{2.2}
\end{equation*}
$$

By taking the real and imaginary part, we can extend the above equality for complex valued functions $F_{k}, k \in\{1, \ldots, n\}$ defined on B.

If $n=2$, the normal is obtained by rotating the tangent vector through 90° (in the correct direction so that it points out). The quantity $t d s$ can be written ($d x_{1}, d x_{2}$) along the surface, so that

$$
n d A:=n d s=\left(d x_{2},-d x_{1}\right)
$$

Here t is the tangent vector along the boundary curve and $d s$ is the element of arc-length.

From (2.2) we get for $B \subset \mathbb{R}^{2}$ that

$$
\begin{align*}
& \int_{B} \frac{\partial F_{1}\left(x_{1}, x_{2}\right)}{\partial x_{1}} d x_{1} d x_{2}+\int_{B} \frac{\partial F_{2}\left(x_{1}, x_{2}\right)}{\partial x_{2}} d x_{1} d x_{2} \tag{2.3}\\
&=\int_{\partial B} F_{1}\left(x_{1}, x_{2}\right) d x_{2}-\int_{\partial B} F_{2}\left({ }_{1}, x_{2}\right) d x_{1}
\end{align*}
$$

which is Green's theorem in plane.

If $n=3$ and if ∂B is described as a level-set of a function of 3 variables i.e. $\partial B=$ $\left\{x_{1}, x_{2}, x_{3} \in \mathbb{R}^{3} \mid G\left(x_{1}, x_{2}, x_{3}\right)=0\right\}$, then a vector pointing in the direction of \mathbf{n} is $\operatorname{grad} G$. We shall use the case where $G\left(x_{1}, x_{2}, x_{3}\right)=x_{3}-g\left(x_{1}, x_{2}\right),\left(x_{1}, x_{2}\right) \in D$, a domain in \mathbb{R}^{2} for some differentiable function g on D and B corresponds to the inequality $x_{3}<g\left(x_{1}, x_{2}\right)$, namely

$$
B=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{3}<g\left(x_{1}, x_{2}\right)\right\}
$$

Then

$$
\mathbf{n}=\frac{\left(-g_{x_{1}},-g_{x_{2}}, 1\right)}{\left(1+g_{x_{1}}^{2}+g_{x_{2}}^{2}\right)^{1 / 2}}, d A=\left(1+g_{x_{1}}^{2}+g_{x_{2}}^{2}\right)^{1 / 2} d x_{1} d x_{2}
$$

and

$$
\mathbf{n} d A=\left(-g_{x_{1}},-g_{x_{2}}, 1\right) d x_{1} d x_{2}
$$

From (2.2) we get

$$
\begin{align*}
\int_{B}\left(\frac{\partial F_{1}\left(x_{1}, x_{2}, x_{3}\right)}{\partial x_{1}}+\frac{\partial F_{2}\left(x_{1}, x_{2}, x_{3}\right)}{\partial x_{2}}\right. & \left.+\frac{\partial F_{3}\left(x_{1}, x_{2}, x_{3}\right)}{\partial x_{3}}\right) d x_{1} d x_{2} d x_{3} \tag{2.4}\\
= & -\int_{D} F_{1}\left(x_{1}, x_{2}, g\left(x_{1}, x_{2}\right)\right) g_{x_{1}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
& -\int_{D} F_{1}\left(x_{1}, x_{2}, g\left(x_{1}, x_{2}\right)\right) g_{x_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
& +\int_{D} F_{3}\left(x_{1}, x_{2}, g\left(x_{1}, x_{2}\right)\right) d x_{1} d x_{2}
\end{align*}
$$

which is the Gauss-Ostrogradsky theorem in space.
Following Apostol [1], we can also consider a surface described by the vector equation

$$
\begin{equation*}
r(u, v)=x_{1}(u, v) \vec{i}+x_{2}(u, v) \vec{j}+x_{3}(u, v) \vec{k} \tag{2.5}
\end{equation*}
$$

where $(u, v) \in[a, b] \times[c, d]$.
If x_{1}, x_{2}, x_{3} are differentiable on $[a, b] \times[c, d]$ we consider the two vectors

$$
\frac{\partial r}{\partial u}=\frac{\partial x_{1}}{\partial u} \vec{i}+\frac{\partial x_{2}}{\partial u} \vec{j}+\frac{\partial x_{3}}{\partial u} \vec{k}
$$

and

$$
\frac{\partial r}{\partial v}=\frac{\partial x_{1}}{\partial v} \vec{i}+\frac{\partial x_{2}}{\partial v} \vec{j}+\frac{\partial x_{3}}{\partial v} \vec{k}
$$

The cross product of these two vectors $\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v}$ will be referred to as the fundamental vector product of the representation r. Its components can be expressed as Jacobian determinants. In fact, we have [1, p. 420]

$$
\begin{align*}
\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v} & =\left|\begin{array}{cc}
\frac{\partial x_{2}}{\partial u} & \frac{\partial x_{3}}{\partial u} \\
\frac{\partial x_{2}}{\partial v} & \frac{\partial x_{3}}{\partial v}
\end{array}\right| \vec{i}+\left|\begin{array}{cc}
\frac{\partial x_{3}}{\partial u} & \frac{\partial x_{1}}{\partial u} \\
\frac{\partial x_{3}}{\partial v} & \frac{\partial x_{1}}{\partial v}
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
\frac{\partial x_{1}}{\partial u} & \frac{\partial x_{2}}{\partial u} \\
\frac{\partial x_{1}}{\partial v} & \frac{\partial x_{2}}{\partial v}
\end{array}\right| \vec{k} \tag{2.6}\\
& =\frac{\partial\left(x_{2}, x_{3}\right)}{\partial(u, v)} \vec{i}+\frac{\partial\left(x_{3}, x_{1}\right)}{\partial(u, v)} \vec{j}+\frac{\partial\left(x_{1}, x_{2}\right)}{\partial(u, v)} \vec{k}
\end{align*}
$$

Let $\partial B=r(T)$ be a parametric surface described by a vector-valued function r defined on the box $T=[a, b] \times[c, d]$. The area of ∂B denoted $A_{\partial B}$ is defined by the double integral [1, p. 424-425]

$$
\begin{align*}
A_{\partial B} & =\int_{a}^{b} \int_{c}^{d}\left\|\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v}\right\| d u d v \tag{2.7}\\
& =\int_{a}^{b} \int_{c}^{d} \sqrt{\left(\frac{\partial\left(x_{2}, x_{3}\right)}{\partial(u, v)}\right)^{2}+\left(\frac{\partial\left(x_{3}, x_{1}\right)}{\partial(u, v)}\right)^{2}+\left(\frac{\partial\left(x_{1}, x_{2}\right)}{\partial(u, v)}\right)^{2}} d u d v
\end{align*}
$$

We define surface integrals in terms of a parametric representation for the surface. One can prove that under certain general conditions the value of the integral is independent of the representation.

Let $\partial B=r(T)$ be a parametric surface described by a vector-valued differentiable function r defined on the box $T=[a, b] \times[c, d]$ and let $f: \partial B \rightarrow \mathbb{C}$ defined and bounded on ∂B. The surface integral of f over ∂B is defined by [1, p. 430]

$$
\begin{align*}
\iint_{\partial B} f d A & =\int_{a}^{b} \int_{c}^{d} f\left(x_{1}, x_{2}, x_{3}\right)\left\|\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v}\right\| d u d v \tag{2.8}\\
& =\int_{a}^{b} \int_{c}^{d} f\left(x_{1}(u, v), x_{2}(u, v), x_{3}(u, v)\right) \\
& \times \sqrt{\left(\frac{\partial\left(x_{2}, x_{3}\right)}{\partial(u, v)}\right)^{2}+\left(\frac{\partial\left(x_{3}, x_{1}\right)}{\partial(u, v)}\right)^{2}+\left(\frac{\partial\left(x_{1}, x_{2}\right)}{\partial(u, v)}\right)^{2}} d u d v
\end{align*}
$$

If $\partial B=r(T)$ is a parametric surface, the fundamental vector product $N=$ $\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v}$ is normal to ∂B at each regular point of the surface. At each such point there are two unit normals, a unit normal \mathbf{n}_{1}, which has the same direction as N, and a unit normal \mathbf{n}_{2} which has the opposite direction. Thus

$$
\mathbf{n}_{1}=\frac{N}{\|N\|} \text { and } \mathbf{n}_{2}=-\mathbf{n}_{1}
$$

Let \mathbf{n} be one of the two normals \mathbf{n}_{1} or \mathbf{n}_{2}. Let also F be a vector field defined on ∂B and assume that the surface integral,

$$
\iint_{\partial B}(F \cdot \mathbf{n}) d A
$$

called the flux surface integral, exists. Here $F \cdot \mathbf{n}$ is the dot or inner product.
We can write [1, p. 434]

$$
\iint_{\partial B}(F \cdot \mathbf{n}) d A= \pm \int_{a}^{b} \int_{c}^{d} F(r(u, v)) \cdot\left(\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v}\right) d u d v
$$

where the sign $"+"$ is used if $\mathbf{n}=\mathbf{n}_{1}$ and the $"-"$ sign is used if $\mathbf{n}=\mathbf{n}_{2}$.
If

$$
F\left(x_{1}, x_{2}, x_{3}\right)=F_{1}\left(x_{1}, x_{2}, x_{3}\right) \vec{i}+F_{2}\left(x_{1}, x_{2}, x_{3}\right) \vec{j}+F_{3}\left(x_{1}, x_{2}, x_{3}\right) \vec{k}
$$

and

$$
r(u, v)=x_{1}(u, v) \vec{i}+x_{2}(u, v) \vec{j}+x_{3}(u, v) \vec{k} \text { where }(u, v) \in[a, b] \times[c, d]
$$

then the flux surface integral for $\mathbf{n}=\mathbf{n}_{1}$ can be explicitly calculated as [1, p. 435]

$$
\begin{align*}
\iint_{\partial B}(F \cdot \mathbf{n}) d A & =\int_{a}^{b} \int_{c}^{d} F_{1}\left(x_{1}(u, v), x_{2}(u, v), x_{3}(u, v)\right) \frac{\partial\left(x_{2}, x_{3}\right)}{\partial(u, v)} d u d v \tag{2.9}\\
& +\int_{a}^{b} \int_{c}^{d} F_{2}\left(x_{1}(u, v), x_{2}(u, v), x_{3}(u, v)\right) \frac{\partial\left(x_{3}, x_{1}\right)}{\partial(u, v)} d u d v \\
& +\int_{a}^{b} \int_{c}^{d} F_{3}\left(x_{1}(u, v), x_{2}(u, v), x_{3}(u, v)\right) \frac{\partial\left(x_{1}, x_{2}\right)}{\partial(u, v)} d u d v
\end{align*}
$$

The sum of the double integrals on the right is often written more briefly as $[1, \mathrm{p}$. 435]

$$
\begin{aligned}
\iint_{\partial B} F_{1}\left(x_{1}, x_{2}, x_{3}\right) d x_{2} \wedge d x_{3}+\iint_{\partial B} F_{2} & \left(x_{1}, x_{2}, x_{3}\right) d x_{3} \wedge d x_{1} \\
& +\iint_{\partial B} F_{3}\left(x_{1}, x_{2}, x_{3}\right) d x_{1} \wedge d x_{2}
\end{aligned}
$$

Let $B \subset \mathbb{R}^{3}$ be a solid in 3 -space bounded by an orientable closed surface ∂B, and let \mathbf{n} be the unit outer normal to ∂B. If F is a continuously differentiable vector field defined on B, we have the Gauss-Ostrogradsky identity

$$
\begin{equation*}
\iiint_{B}(\operatorname{div} F) d V=\iint_{\partial B}(F \cdot \mathbf{n}) d A \tag{GO}
\end{equation*}
$$

If we express

$$
F\left(x_{1}, x_{2}, x_{3}\right)=F_{1}\left(x_{1}, x_{2}, x_{3}\right) \vec{i}+F_{2}\left(x_{1}, x_{2}, x_{3}\right) \vec{j}+F_{3}\left(x_{1}, x_{2}, x_{3}\right) \vec{k}
$$

then (2.4) can be written as

$$
\begin{array}{r}
\iiint_{B}\left(\frac{\partial F_{1}\left(x_{1}, x_{2}, x_{3}\right)}{\partial x_{1}}+\frac{\partial F_{2}\left(x_{1}, x_{2}, x_{3}\right)}{\partial x_{2}}+\frac{\partial F_{3}\left(x_{1}, x_{2}, x_{3}\right)}{\partial x_{3}}\right) d x_{1} d x_{2} d x_{3} \tag{2.10}\\
=\iint_{\partial B} F_{1}\left(x_{1}, x_{2}, x_{3}\right) d x_{2} \wedge d x_{3}+\iint_{\partial B} F_{2}\left(x_{1}, x_{2}, x_{3}\right) d x_{3} \wedge d x_{1} \\
+\iint_{\partial B} F_{3}\left(x_{1}, x_{2}, x_{3}\right) d x_{1} \wedge d x_{2}
\end{array}
$$

3. General Identities

We have the following identity of interest:
Lemma 1. Let B be a bounded open subset of $\mathbb{R}^{n}(n \geq 2)$ with smooth (or piecewise smooth) boundary ∂B. Let f be a continuously differentiable function defined in \mathbb{R}^{n}, or at least in $B \cup \partial B$ and with complex values. If $\alpha_{k}, \beta_{k} \in \mathbb{C}$ for $k \in\{1, \ldots, n\}$ with $\sum_{k=1}^{n} \alpha_{k}=1$, then

$$
\begin{align*}
\int_{B} f(x) d x=\sum_{k=1}^{n} \int_{B}\left(\beta_{k}-\alpha_{k} x_{k}\right) & \frac{\partial f(x)}{\partial x_{k}} d x \tag{3.1}\\
& +\sum_{k=1}^{n} \int_{\partial B}\left(\alpha_{k} x_{k}-\beta_{k}\right) f(x) n_{k}(x) d A
\end{align*}
$$

We also have

$$
\begin{align*}
& \int_{B} f(x) d x=\frac{1}{n} \sum_{k=1}^{n} \int_{B}\left(\gamma_{k}-x_{k}\right) \frac{\partial f(x)}{\partial x_{k}} d x \tag{3.2}\\
&+\frac{1}{n} \sum_{k=1}^{n} \int_{\partial B}\left(x_{k}-\gamma_{k}\right) f(x) n_{k}(x) d A
\end{align*}
$$

for all $\gamma_{k} \in \mathbb{C}$ where $k \in\{1, \ldots, n\}$.
Proof. Let $x=\left(x_{1}, \ldots, x_{n}\right) \in B$. We consider

$$
F_{k}(x)=\left(\alpha_{k} x_{k}-\beta_{k}\right) f(x), k \in\{1, \ldots, n\}
$$

and take the partial derivatives $\frac{\partial F_{k}(x)}{\partial x_{k}}$ to get

$$
\frac{\partial F_{k}(x)}{\partial x_{k}}=\alpha_{k} f(x)+\left(\alpha_{k} x_{k}-\beta_{k}\right) \frac{\partial f(x)}{\partial x_{k}}, k \in\{1, \ldots, n\}
$$

If we sum this equality over k from 1 to n we get

$$
\begin{align*}
\sum_{k=1}^{n} \frac{\partial F_{k}(x)}{\partial x_{k}} & =\sum_{k=1}^{n} \alpha_{k} f(x)+\sum_{k=1}^{n}\left(\alpha_{k} x_{k}-\beta_{k}\right) \frac{\partial f(x)}{\partial x_{k}} \tag{3.3}\\
& =f(x)+\sum_{k=1}^{n}\left(\alpha_{k} x_{k}-\beta_{k}\right) \frac{\partial f(x)}{\partial x_{k}}
\end{align*}
$$

for all $x=\left(x_{1}, \ldots, x_{n}\right) \in B$.
Now, if we take the integral in the equality (3.3) over $\left(x_{1}, \ldots, x_{n}\right) \in B$ we get

$$
\begin{equation*}
\int_{B}\left(\sum_{k=1}^{n} \frac{\partial F_{k}(x)}{\partial x_{k}}\right) d x=\int_{B} f(x) d x+\sum_{k=1}^{n} \int_{B}\left[\left(\alpha_{k} x_{k}-\beta_{k}\right) \frac{\partial f(x)}{\partial x_{k}}\right] d x \tag{3.4}
\end{equation*}
$$

By the Divergence Theorem (2.2) we also have

$$
\begin{equation*}
\int_{B}\left(\sum_{k=1}^{n} \frac{\partial F_{k}(x)}{\partial x_{k}}\right) d x=\sum_{k=1}^{n} \int_{\partial B}\left(\alpha_{k} x_{k}-\beta_{k}\right) f(x) n_{k}(x) d A \tag{3.5}
\end{equation*}
$$

and by making use of (3.4) and (3.5) we get

$$
\begin{aligned}
\int_{B} f(x) d x+\sum_{k=1}^{n} \int_{B}\left[\left(\alpha_{k} x_{k}-\beta_{k}\right) \frac{\partial f(x)}{\partial x_{k}}\right] & d x \\
= & \sum_{k=1}^{n} \int_{\partial B}\left(\alpha_{k} x_{k}-\beta_{k}\right) f(x) n_{k}(x) d A
\end{aligned}
$$

which gives the desired representation (3.1).
The identity (3.2) follows by (3.1) for $\alpha_{k}=\frac{1}{n}$ and $\beta_{k}=\frac{1}{n} \gamma_{k}, k \in\{1, \ldots, n\}$.
For the body B we consider the coordinates for the centre of gravity

$$
G_{B}:=G\left(\overline{x_{B, 1}}, \ldots, \overline{x_{B, n}}\right)
$$

defined by

$$
\overline{x_{B, k}}:=\frac{1}{V(B)} \int_{B} x_{k} d x, k \in\{1, \ldots, n\}
$$

where

$$
V(B):=\int_{B} x d x
$$

is the volume of B.
Corollary 3. With the assumptions of Lemma 1 we have

$$
\begin{align*}
& \int_{B} f(x) d x=\sum_{k=1}^{n} \int_{B} \alpha_{k}\left(\overline{x_{B, k}}-x_{k}\right) \frac{\partial f(x)}{\partial x_{k}} d x \tag{3.6}\\
&+\sum_{k=1}^{n} \int_{\partial B} \alpha_{k}\left(x_{k}-\overline{x_{B, k}}\right) f(x) n_{k}(x) d A
\end{align*}
$$

and, in particular,

$$
\begin{align*}
& \int_{B} f(x) d x=\frac{1}{n} \sum_{k=1}^{n} \int_{B}\left(\overline{x_{B, k}}-x_{k}\right) \frac{\partial f(x)}{\partial x_{k}} d x \tag{3.7}\\
&+\frac{1}{n} \sum_{k=1}^{n} \int_{\partial B}\left(x_{k}-\overline{x_{B, k}}\right) f(x) n_{k}(x) d A
\end{align*}
$$

The proof follows by (3.1) on taking $\beta_{k}=\alpha_{k} \overline{x_{B, k}}, k \in\{1, \ldots, n\}$.
For a function f as in Lemma 1 above, we define the points

$$
x_{B, \partial f, k}:=\frac{\int_{B} x_{k} \frac{\partial f(x)}{\partial x_{k}} d x}{\int_{B} \frac{\partial f(x)}{\partial x_{k}} d x}, k \in\{1, \ldots, n\}
$$

provided that all denominators are not zero.
Corollary 4. With the assumptions of Lemma 1 we have

$$
\begin{equation*}
\int_{B} f(x) d x=\sum_{k=1}^{n} \int_{\partial B} \alpha_{k}\left(x_{k}-x_{B, \partial f, k}\right) f(x) n_{k}(x) d A \tag{3.8}
\end{equation*}
$$

and, in particular,

$$
\begin{equation*}
\int_{B} f(x) d x=\frac{1}{n} \sum_{k=1}^{n} \int_{\partial B}\left(x_{k}-x_{B, \partial f, k}\right) f(x) n_{k}(x) d A . \tag{3.9}
\end{equation*}
$$

The proof follows by (3.1) on taking $\beta_{k}=\alpha_{k} x_{B, \partial f, k}, k \in\{1, \ldots, n\}$ and observing that

$$
\sum_{k=1}^{n} \int_{B}\left(\beta_{k}-\alpha_{k} x_{k}\right) \frac{\partial f(x)}{\partial x_{k}} d x=\sum_{k=1}^{n} \alpha_{k} \int_{B}\left(x_{B, \partial f, k}-x_{k}\right) \frac{\partial f(x)}{\partial x_{k}} d x=0
$$

For a function f as in Lemma 1 above, we define the points

$$
x_{\partial B, f, k}:=\frac{\int_{\partial B} x_{k} f(x) n_{k}(x) d A}{\int_{\partial B} f(x) n_{k}(x) d A}, k \in\{1, \ldots, n\}
$$

provided that all denominators are not zero.
Corollary 5. With the assumptions of Lemma 1 we have

$$
\begin{equation*}
\int_{B} f(x) d x=\sum_{k=1}^{n} \int_{B} \alpha_{k}\left(x_{\partial B, f, k}-x_{k}\right) \frac{\partial f(x)}{\partial x_{k}} d x \tag{3.10}
\end{equation*}
$$

and, in particular,

$$
\begin{equation*}
\int_{B} f(x) d x=\frac{1}{n} \sum_{k=1}^{n} \int_{B}\left(x_{\partial B, f, k}-x_{k}\right) \frac{\partial f(x)}{\partial x_{k}} d x \tag{3.11}
\end{equation*}
$$

The proof follows by (3.1) on taking $\beta_{k}=\alpha_{k} x_{\partial B, f, k}, k \in\{1, \ldots, n\}$ and observing that

$$
\begin{aligned}
\sum_{k=1}^{n} \int_{\partial B}\left(\alpha_{k} x_{k}-\beta_{k}\right) f(x) n_{k} & (x) d A \\
& =\sum_{k=1}^{n} \alpha_{k} \int_{\partial B}\left(x_{k}-x_{\partial B, f, k}\right) f(x) n_{k}(x) d A=0
\end{aligned}
$$

4. Inequalities for Convex Functions

We have the following result that generalizes the inequalities from Introduction:
Theorem 3. Let B be a bounded convex and closed subset of $\mathbb{R}^{n}(n \geq 2)$ with smooth (or piecewise smooth) boundary ∂B. Let f be a continuously differentiable convex function defined on an open neighborhood of B, then for all $y \in B$ we have

$$
\begin{align*}
f(y)+\sum_{k=1}^{n} & \frac{\partial f(y)}{\partial x_{k}}\left(\overline{x_{B, k}}-y_{k}\right) \leq \frac{1}{V(B)} \int_{B} f(x) d x \tag{4.1}\\
& \leq \frac{1}{n+1} f(y)+\frac{1}{n+1} \sum_{k=1}^{n} \frac{1}{V(B)} \int_{\partial B}\left(x_{k}-y_{k}\right) f(x) n_{k}(x) d A
\end{align*}
$$

In particular,

$$
\begin{align*}
f\left(G_{B}\right) & \leq \frac{1}{V(B)} \int_{B} f(x) d x \tag{4.2}\\
& \leq \frac{1}{n+1} f\left(G_{B}\right)+\frac{1}{n+1} \sum_{k=1}^{n} \frac{1}{V(B)} \int_{\partial B}\left(x_{k}-\overline{x_{B, k}}\right) f(x) n_{k}(x) d A
\end{align*}
$$

where $G_{B} \in B$ is the centre of gravity for B, i.e., $G_{B}:=G\left(\overline{x_{B, 1}}, \ldots, \overline{x_{B, n}}\right)$.
Proof. Since $f: B \rightarrow \mathbb{R}$ is a differentiable convex function on B, then for all $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in B$ we have the gradient inequalities

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{\partial f(y)}{\partial x_{k}}\left(x_{k}-y_{k}\right) \leq f(x)-f(y) \leq \sum_{k=1}^{n} \frac{\partial f(x)}{\partial x_{k}}\left(x_{k}-y_{k}\right) \tag{4.3}
\end{equation*}
$$

Taking the integral mean $\frac{1}{V(B)} \int_{B}$ in (4.3) over the variable $x \in B$ we deduce

$$
\begin{align*}
\sum_{k=1}^{n} \frac{\partial f(y)}{\partial x_{k}}\left(\frac{1}{V(B)} \int_{B} x_{k} d x-y_{k}\right) \leq & \frac{1}{V(B)} \int_{B} f(x) d x-f(y) \tag{4.4}\\
& \leq \sum_{k=1}^{n} \frac{1}{V(B)} \int_{B} \frac{\partial f(x)}{\partial x_{k}}\left(x_{k}-y_{k}\right) d x
\end{align*}
$$

From the equality (3.2) we get for $\gamma_{k}=y_{k}, k \in\{1, \ldots, n\}$ that

$$
\begin{aligned}
\int_{B} f(x) d x=\frac{1}{n} \sum_{k=1}^{n} \int_{B}\left(y_{k}-x_{k}\right) \frac{\partial f(x)}{\partial x_{k}} & d \\
& +\frac{1}{n} \sum_{k=1}^{n} \int_{\partial B}\left(x_{k}-y_{k}\right) f(x) n_{k}(x) d A
\end{aligned}
$$

namely

$$
\sum_{k=1}^{n} \int_{B}\left(x_{k}-y_{k}\right) \frac{\partial f(x)}{\partial x_{k}} d x=\sum_{k=1}^{n} \int_{\partial B}\left(x_{k}-y_{k}\right) f(x) n_{k}(x) d A-n \int_{B} f(x) d x
$$

Since

$$
\sum_{k=1}^{n} \frac{\partial f(y)}{\partial x_{k}}\left(\frac{1}{V(B)} \int_{B} x_{k} d x-y_{k}\right)=\sum_{k=1}^{n} \frac{\partial f(y)}{\partial x_{k}}\left(\overline{x_{B, k}}-y_{k}\right)
$$

and

$$
\begin{aligned}
\sum_{k=1}^{n} \frac{1}{V(B)} \int_{B} & \frac{\partial f(x)}{\partial x_{k}}\left(x_{k}-y_{k}\right) d x \\
& =\sum_{k=1}^{n} \frac{1}{V(B)} \int_{\partial B}\left(x_{k}-y_{k}\right) f(x) n_{k}(x) d A-n \frac{1}{V(B)} \int_{B} f(x) d x,
\end{aligned}
$$

hence by (4.4) we get

$$
\begin{align*}
& \sum_{k=1}^{n} \frac{\partial f(y)}{\partial x_{k}}\left(\overline{x_{B, k}}-y_{k}\right) \leq \frac{1}{V(B)} \int_{B} f(x) d x-f(y) \tag{4.5}\\
& \quad \leq \sum_{k=1}^{n} \frac{1}{V(B)} \int_{\partial B}\left(x_{k}-y_{k}\right) f(x) n_{k}(x) d A-n \frac{1}{V(B)} \int_{B} f(x) d x .
\end{align*}
$$

Now, from the first inequality in (4.5) we get the first inequality in (4.1). The second inequality in (4.5) can be written as

$$
\begin{aligned}
\frac{1}{V(B)} \int_{B} f(x) d x+\frac{n}{V(B)} & \int_{B} f(x) d x \\
& \leq f(y)+\sum_{k=1}^{n} \frac{1}{V(B)} \int_{\partial B}\left(x_{k}-y_{k}\right) f(x) n_{k}(x) d A
\end{aligned}
$$

which is equivalent to the second part of (4.1).
Corollary 6. With the assumptions of Theorem 3 we have

$$
\begin{equation*}
\frac{1}{V(B)} \int_{B} f(x) d x \leq \frac{1}{n} \sum_{k=1}^{n} \frac{1}{V(B)} \int_{\partial B}\left(x_{k}-\overline{x_{B, k}}\right) f(x) n_{k}(x) d A \tag{4.6}
\end{equation*}
$$

Proof. From (4.2) we have

$$
\begin{align*}
\frac{1}{V(B)} \int_{B} f(x) d x \leq & \frac{1}{n+1} f\left(G_{B}\right) \tag{4.7}\\
& \quad+\frac{1}{n+1} \sum_{k=1}^{n} \frac{1}{V(B)} \int_{\partial B}\left(x_{k}-\overline{x_{B, k}}\right) f(x) n_{k}(x) d A
\end{align*}
$$

and since

$$
f\left(G_{B}\right) \leq \frac{1}{V(B)} \int_{B} f(x) d x
$$

hence

$$
\begin{align*}
& \text { 8) } \frac{1}{n+1} f\left(G_{B}\right)+\frac{1}{n+1} \sum_{k=1}^{n} \frac{1}{V(B)} \int_{\partial B}\left(x_{k}-\overline{x_{B, k}}\right) f(x) n_{k}(x) d A \tag{4.8}\\
& \leq \\
& \leq \frac{1}{n+1} \frac{1}{V(B)} \int_{B} f(x) d x+\frac{1}{n+1} \sum_{k=1}^{n} \frac{1}{V(B)} \int_{\partial B}\left(x_{k}-\overline{x_{B, k}}\right) f(x) n_{k}(x) d A .
\end{align*}
$$

By (4.7) and (4.8) we get

$$
\begin{aligned}
\frac{1}{V(B)} \int_{B} f(x) d x \leq \frac{1}{n+1} & \frac{1}{V(B)} \int_{B} f(x) d x \\
& +\frac{1}{n+1} \sum_{k=1}^{n} \frac{1}{V(B)} \int_{\partial B}\left(x_{k}-\overline{x_{B, k}}\right) f(x) n_{k}(x) d A
\end{aligned}
$$

that is equivalent to (4.6).
Corollary 7. With the assumptions of Theorem 3 and if the vector $\left(x_{\partial B, f, 1}, \ldots, x_{\partial B, f, n}\right) \in$ B, then

$$
\begin{align*}
& f\left(x_{\partial B, f, 1}, \ldots, x_{\partial B, f, n}\right)+\sum_{k=1}^{n} \frac{\partial f(y)}{\partial x_{k}}\left(\overline{x_{B, k}}-x_{\partial B, f, k}\right) \tag{4.9}\\
& \leq \frac{1}{V(B)} \int_{B} f(x) d x \leq \frac{1}{n+1} f\left(x_{\partial B, f, 1}, \ldots, x_{\partial B, f, n}\right)
\end{align*}
$$

The proof follows by (4.1) observing that

$$
\sum_{k=1}^{n} \frac{1}{V(B)} \int_{\partial B}\left(x_{k}-x_{\partial B, f, k}\right) f(x) n_{k}(x) d A=0
$$

We also have the following result:
Corollary 8. With the assumptions of Theorem 3 and if we define

$$
\begin{equation*}
\overline{s_{\partial B, k}}:=\frac{1}{A(\partial B)} \int_{\partial B} y_{k} d S, k \in\{1, \ldots, n\} \tag{4.10}
\end{equation*}
$$

where $A(\partial B)$ is the area of the surface ∂B, then we have the inequality

$$
\begin{align*}
& \text { (4.11) } \frac{1}{A(\partial B)} \int_{\partial B} f(y) d S+ \tag{4.11}\\
& \sum_{k=1}^{n} \frac{1}{A(\partial B)} \int_{\partial B} \frac{\partial f(y)}{\partial x_{k}}\left(\overline{x_{B, k}}-y_{k}\right) d S \\
& \\
& \leq \frac{1}{V(B)} \int_{B} f(x) d x \\
& \leq \frac{1}{n+1} \frac{1}{A(\partial B)} \int_{\partial B} f(y) d S+ \\
& \frac{1}{n+1} \sum_{k=1}^{n} \frac{1}{V(B)} \int_{\partial B}\left(x_{k}-\overline{s_{\partial B, k}}\right) f(x) n_{k}(x) d A
\end{align*}
$$

Proof. If we take the integral mean $\frac{1}{A(\partial B)} \int_{\partial B}(\cdot) d S$ over the variable $y \in \partial B$, then we get

$$
\begin{align*}
& \frac{1}{A(\partial B)} \int_{\partial B} f(y) d S+\frac{1}{A(\partial B)} \int_{\partial B}\left(\sum_{k=1}^{n} \frac{\partial f(y)}{\partial x_{k}}\left(\overline{x_{B, k}}-y_{k}\right)\right) d S \tag{4.12}\\
& \leq \frac{1}{V(B)} \int_{B} f(x) d x \\
& \leq \frac{1}{n+1} \frac{1}{A(\partial B)} \int_{\partial B} f(y) d S \\
&+\frac{1}{n+1} \frac{1}{A(\partial B)} \int_{\partial B}\left(\sum_{k=1}^{n} \frac{1}{V(B)} \int_{\partial B}\left(x_{k}-y_{k}\right) f(x) n_{k}(x) d A\right) d S .
\end{align*}
$$

Now, observe that

$$
\frac{1}{A(\partial B)} \int_{\partial B}\left(\sum_{k=1}^{n} \frac{\partial f(y)}{\partial x_{k}}\left(\overline{x_{B, k}}-y_{k}\right)\right) d S=\sum_{k=1}^{n} \frac{1}{A(\partial B)} \int_{\partial B} \frac{\partial f(y)}{\partial x_{k}}\left(\overline{x_{B, k}}-y_{k}\right) d S
$$

and

$$
\begin{array}{r}
\frac{1}{A(\partial B)} \int_{\partial B}\left(\sum_{k=1}^{n} \frac{1}{V(B)} \int_{\partial B}\left(x_{k}-y_{k}\right) f(x) n_{k}(x) d A\right) d S \\
=\sum_{k=1}^{n} \frac{1}{V(B)} \frac{1}{A(\partial B)} \int_{\partial B}\left(\int_{\partial B}\left(x_{k}-y_{k}\right) f(x) n_{k}(x) d A\right) d S \\
=\sum_{k=1}^{n} \frac{1}{V(B)} \int_{\partial B}\left(x_{k}-\frac{1}{A(\partial B)} \int_{\partial B} y_{k} d S\right) f(x) n_{k}(x) d A \text { (by Fubini's theorem) } \\
=\sum_{k=1}^{n} \frac{1}{V(B)} \int_{\partial B}\left(x_{k}-\overline{s_{\partial B, k}}\right) f(x) n_{k}(x) d A \text { (by 4.10). }
\end{array}
$$

By making use of the inequality (4.12) we then obtain the desired result (4.11).
Remark 1. By taking $n=2$ in the above inequalities we recapture some results from [9] while for $n=3$ we obtain results from [10]. The details are omitted.

References

[1] T. M. Apostol, Calculus Volume II, Multi Variable Calculus and Linear Algebra, with Applications to Differential Equations and Probability, SECOND EDITION John Wiley \& Sons, New York London Sydney Toronto, 1969.
[2] A. Barani, Hermite-Hadamard and Ostrowski type inequalities on hemispheres, Mediterr. J. Math. 13 (2016), 4253-4263
[3] M. Bessenyei, The Hermite-Hadamard inequality on simplices, Amer. Math. Monthly 115 (2008), 339-345.
[4] J. de la Cal and J. Cárcamo, Multidimensional Hermite-Hadamard inequalities and the convex order, Journal of Mathematical Analysis and Applications, vol. 324, no. 1, pp. 248-261, 2006.
[5] S. S. Dragomir, On Hadamard's inequality on a disk, Journal of Ineq. Pure \& Appl. Math., 1 (2000), No. 1, Article 2. [Online https://www.emis.de/journals/JIPAM/article95.html?sid=95].
[6] S. S. Dragomir, On Hadamard's inequality for the convex mappings defined on a ball in the space and applications, Math. Ineq. \& Appl., 3 (2) (2000), 177-187.
[7] S. S. Dragomir, Double integral inequalities of Hermite-Hadamard type for h-convex functions on linear spaces. Analysis (Berlin) 37 (2017), no. 1, 13-22.
[8] S. S. Dragomir, Hermite-Hadamard type integral inequalities for double integral on general domains, Preprint RGMIA Res. Rep. Coll. 22 (2019), Art. 46, 10 pp. [Online http://rgmia.org/papers/v22/v22a46.pdf.]
[9] S. S. Dragomir, Hermite-Hadamard type integral inequalities for double and path integrals on general domains via Green's identity, Preprint RGMIA Res. Rep. Coll. 22 (2019), Art. 54, 13 pp . [Online http://rgmia.org/papers/v22/v22a54.pdf].
[10] S. S. Dragomir, Some Hermite-Hadamard type inequalities for convex functions defined on convex bodies via Gauss-Ostrogradsky identity, Preprint RGMIA Res. Rep. Coll. 22 (2019), Art. 61, 15 pp . [Online http://rgmia.org/papers/v22/v22a61.pdf].
[11] B. Gavrea, On Hadamard's inequality for the convex mappings defined a convex domain in the space. Journal of Inequalities in Pure and Applied Mathematics, Volume 1, Issue 1, Article 9, 2000. [https://www.emis.de/journals/JIPAM/article102.html?sid=102].
[12] M. Matłoka, On Hadamard's inequality for h-convex function on a disk, Applied Mathematics and Computation 235 (2014) 118-123
[13] F.-C. Mitroi and E. Symeonidis, The converse of the Hermite-Hadamard inequality on simplices. Expo. Math. 30 (2012), 389-396.
[14] E. Neuman, Inequalities involving multivariate convex functions II, Proc. Amer. Math. Soc. 109 (1990), 965-974.
[15] E. Neuman, J. Pečarić, Inequalities involvingmultivariate convex functions, J. Math. Anal. Appl. 137 (1989), 541-549.
[16] M. Singer, The divergence theorem, Online [https://www.maths.ed.ac.uk/~jmf/Teaching/ Lectures/divthm.pdf]
[17] S. Wasowicz and A. Witkowski, On some inequality of Hermite-Hadamard type. Opusc. Math. 32 (3)(2012), 591-600
[18] F.-L. Wang, The generalizations to several-dimensions of the classical Hadamard's inequality, Mathematics in Practice and Theory, vol. 36, no. 9, pp. 370-373, 2006 (Chinese).
[19] F.-L. Wang, A family of mappings associated with Hadamard's inequality on a hypercube, International Scholarly Research Network ISRN Mathematical Analysis Volume 2011, Article ID 594758, 9 pages doi:10.5402/2011/594758.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the WitwaterSrand, , Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 26D15.
 Key words and phrases. Hermite-Hadamard inequality, Multiple integral inequalities, Green identity, Gauss-Ostrogradsky identity, Divergence theorem.

