OSTROWSKI TYPE INEQUALITIES FOR MULTIPLE
INTEGRALS VIA DIVERGENCE THEOREM

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper, by the use of Divergence Theorem, we establish
some Ostrowski type inequalities for functions of n-variables defined on closed
and bounded bodies of the Euclidean space R™.

1. INTRODUCTION

In paper [2], the authors obtained among others the following results concerning
the difference between the double integral on the disk and the values in the center
or the path integral on the circle:

Theorem 1. If f : D(C,R) — R has continuous partial derivatives on D (C,R),
the disk centered in the point C = (a,b) with the radius R > 0, and
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The constant % is sharp.
We also have
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2 S.S. DRAGOMIR
where o (C, R) is the circle centered in C = (a,b) with the radius R > 0 and

1

— dl
R o f(y)dl(v)

(1.3) 'f(C) -

bz
Ox D(C,R),00

In the same paper [2] the authors also established the following Ostrowski type
inequality:

D(C,R),00 H oy

Theorem 2. If f has bounded partial derivatives on D(0,1), the unity disk, then

(14) 'fw,v);//m Sy

2 |l|o 1
<= Hf (uarcsinu+\/1—u2(2+u2)>
7 ||| 0z D(0,1),00 3
0 1
—|—Hf <varcsinv—|— 1—02 (2+v2)>
y D(0,1),00 3

for any (u,v) € D (0,1).

For other Ostrowski type integral inequalities for multiple integrals see [3]-[15].

Motivated by the above results, in this paper, by the use of Divergence Theorem,
we establish some Ostrowski type inequalities for functions of n-variables defined
on closed and bounded bodies of the Euclidean space R™.

2. SOME PRELIMINARY FACTS

Let B be a bounded open subset of R™ (n > 2) with smooth (or piecewise
smooth) boundary dB. Let F' = (F1,...,F),) be a smooth vector field defined in
R™, or at least in BU 0B. Let n be the unit outward-pointing normal of dB. Then
the Divergence Theorem states, see for instance [14]:

(2.1) /dideV:/ F -ndA,
B oB

where
OF;
ox;’

divF =V -F = Z

dV is the element of volume in R™ and dA is the element of surface area on 0B.
If n=(ny,...,n,), z = (z1,...,2,) € B and use the notation dz for dV we can
write (2.1) more explicitly as

(2.2) Z/ 81;];k = ; /83 F, (z) ng (z) dA.

By taking the real and imaginary part, we can extend the above equality for
complex valued functions Fy, k € {1,...,n} defined on B.
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If n = 2, the normal is obtained by rotating the tangent vector through 90°
(in the correct direction so that it points out). The quantity tds can be written
(dz1,dzs) along the surface, so that

ndA := nds = (dxe, —dz1)

Here ¢ is the tangent vector along the boundary curve and ds is the element of

arc-length.
From (2.2) we get for B C R? that
OF; OF:
(2.3) / A e Y (x17x2)d.%‘1dl‘2 + / by (x17x2)d$1d.%‘2
B o0x1 B Oz

=/ F1($1,$2)d$2—/ Fy (z1,22) dxy,
oB oB

which is Green’s theorem in plane.

If n = 3 and if 9B is described as a level-set of a function of 3 variables i.e. 0B =
{xh Zo, T3 € R3 | Gz, 29,23) = 0}, then a vector pointing in the direction of n is
grad G. We shall use the case where G (21,2, 23) = 3 — g(z1,22), (z1,22) € D,
a domain in R? for some differentiable function g on D and B corresponds to the
inequality x3 < g(x1,22), namely

B = {(xl,mg,xg) eER? | x3 < g(ml,mg)}.

Then
(_g:cl y “Y9xas 1)

n-= ’
(1+g2 +g2,)""

1/2
dA = (1—|—gfc1 +99252) / dz1dzo

and
ndA = (7.9%1 y TY9xas 1) dxidxs.
From (2.2) we get

(2.4) / (8F1 (21,22, 3) n OF, (21,22, 23) n OF; (z1, 22, w3)
B

dxidxad
81'1 6332 81‘3 ) T1aT2ats

= */ Fy (21, 22,9(21,72)) g, (71, 22) dx1d2
D
*/ Fy (71,22, 9(21,2)) Guo (1, T2)d2z1dT2
D

+/ F3(x1,22,9(x1,22)) deidro
D

which is the Gauss-Ostrogradsky theorem in space.
Following Apostol [1], we can also consider a surface described by the vector
equation

(2.5) r(u,v) =z (u,v) T+ (u,v) 7 + z3 (u,v) &

where (u,v) € [a,b] x [c,d].
If 21, xo, x5 are differentiable on [a, b] X [c, d] we consider the two vectors

or _Ori—  Ozp— Oz

0" ou T ou? T
and or 9 d )

r_Odmo Oz Omyp

ED) 8vz+8'vj+8vk'
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The cross product of these two vectors 2 Fu X % will be referred to as the fundamental
vector product of the representation r. Its components can be expressed as Jacobian
determinants. In fact, we have [1, p. 420]

Omy dzg Ozg Oz Oz Omy

or or ou ou | — Ou u | — ou ou | —

(2.6) — x — = i+ i+ k
ou v dzy dzy dzz day dz1 dza
ov v ov ov ov ov

0 (2, x3) T4 0 ($3,$1)7 n 0 (z1,m2) —
0 (u,v) 0 (u,v) 9 (u,v)
Let 0B = r(T') be a parametric surface described by a vector-valued function r

defined on the box T = [a,b] X [¢,d]. The area of OB denoted Ayp is defined by
the double 1ntegral 1, p 424- 425]

dudv

I ¢ ) () () e

We define surface integrals in terms of a parametric representation for the surface.
One can prove that under certain general conditions the value of the integral is
independent of the representation.

Let 9B = r(T') be a parametric surface described by a vector-valued differentiable
function r defined on the box T' = [a,b] X [¢,d] and let f : 0B — C defined and
bounded on dB. The surface integral of f over B is defined by [1, p. 430]

3 [ f e[ [ e |2

or  or
:L[f@meﬂwmmwm

0
8(1‘2,333) 2 8(1‘3,.%‘1) 2 8(%1,3’;2) 2
e e —_— ———— | dudv.
X¢<amm o ) T\ ) MY
If 0B = r(T) is a parametric surface, the fundamental vector product N =
g—; X g—f} is normal to B at each regular point of the surface. At each such point

there are two unit normals, a unit normal n;, which has the same direction as N,
and a unit normal ny which has the opposite direction. Thus

(2.7) Asp =

dudv

n; = and ny = —nj.

N
|V
Let n be one of the two normals n; or ny. Let also F' be a vector field defined on
OB and assume that the surface integral,

J [ rooe

called the flux surface integral, exists. Here F' - n is the dot or inner product.
We can write [1, p. 434]

or Or
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where the sign ” + 7 is used if n = n; and the ” —” sign is used if n = ny.

If
- — -
F (21, 22,73) = F1 (21, 22,73) © + F2 (21, 22,23) § + F3 (21,22, 73) k
and
— — —
r(u,v) = z1 (u,v) i +x2 (u,v) j + 3 (u,v) k where (u,v) € [a,b] X [c,d]

then the flux surface integral for n = n; can be explicitly calculated as [1, p. 435]

(2.9) //83 (F-n)dA = // Fy (21 (), 22 (u,0) , @ (1, v))ag”f’x;’)dudv

/ / B (21 (1, 0) , 22 (u, 0) , s (1, v))ém

/ / Fy (21 (w,0) , 22 (u,0) , 3 (4, 0)) 8§f1’x§)d do.

dudv

The sum of the double integrals on the right is often written more briefly as [1, p.
435]

// " $175€2,$3)d9€2/\d$3+// Fy (w1, 22, 73) drg A day
oB
/ Fs (zq, 22, x3) dry A doo
aB

Let B C R? be a solid in 3-space bounded by an orientable closed surface 05,
and let n be the unit outer normal to dB. If F is a continuously differentiable
vector field defined on B, we have the Gauss-Ostrogradsky identity

(GO) ///B(divF)dV://aB(F n)dA

If we express

- e -
F($1,$2,$3) :F1 (.’131,332,333) ? +F2 (1'1,.732,333) J +F3 (331,.’1327333) ka

then (2.4) can be written as

(2.10) /// (5F1 (1,22, x3) n OF, (x1,%2,23) n O0F3 ($1,$2,$3)> drydiades
B

O, Oxo Oz

:// F1 (331,1’2,:E3)d172/\d1‘3+// FQ(Il,Q,‘Q,LEg)d"Eg/\dIl
OB 0B

+// Fg(l’l,xg,ﬂl’g)dﬂ)l/\dﬂfg.
0B

3. GENERAL IDENTITIES

We have the following identity of interest:

Lemma 1. Let B be a bounded closed subset of R™ (n > 2) with smooth (or
piecewise smooth) boundary 0B. Let f be a continuously differentiable function
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defined in R™, or at least in an open neighborhood of B and with complex values.
If ag, B, € C for k€ {1,...,n} with >} _, ar =1 and y € B, then

(3.1) ﬁ/gf(x) dx = f(y) + 2 ﬁ/}g(ﬁk — agTk) 3gx(j)dx

3

We also have

62 g [T@l =0+ 1 2 [ om0 G

k=1"B
2Dyl el )= e )04
for all v, € C, where k € {1,...,n}.
In particular, we have
9 g [, =10+ 0 2 [ o0 2
+};V(13/830%(w — ) [f (2) = f (y)] i () dA
and
(3'4) ﬁ/}gf(x) dx = f(?/) + %%13) Z/B (yk — -'Ek:) agx(f)daj
k=1
P13 [ @) @) - W) ) d

Proof. Let x = (21, ...,x,) € B. We consider
Fk (LE) = (akmk - Bk:) f({,C) ) ke {17 7n}
and take the partial derivatives 8%@) to get
Tl

OFy, (z) of (x)

Der = apf (@) + (apxr — B) Fr ke{l,..,n}.
If we sum this equality over k from 1 to n we get
— OF (x) _ - - of (x)
(3.5) oo = D oanf (@) + ) (anzr — By) “orn
k=1 k=1 k=1
- af (x
= £ @)+ Y (e — 1) 2

for all x = (z1,...,xn) € B.
Now, if we take the integral in the equality (3.5) over (z1,...,2,) € B we get

(3.6) /B (zn: az;,; S”) dz — /B @) dx+§ /B [(akxk _8,) agx(j) da.

k=1
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By the Divergence Theorem (2.2) we also have

s [ (Z o i) )dng | (@i = 50 1 @) () 4

and by making use of (3.6) and (3.7) we get
0
/f d$+2/ {Oékxk Br) g:n(k)}

= ;/83 (O‘kxk - Bk) f (.’L’) Nk (aj) d,47

which gives, by rearranging the terms and dividing by V (B), that

1 1 of (z )]
3.8 — x)dr = 7/ [ — T dx
89 g [, @ =2 g [0 T

"1
" 1; V(B) /aB (akr, = B) [ () ng (x) dA.

If we write now the equality (3.8) for f—f (y) and take into account that W%(g)](as) =
97) ' € {1,...,n} we get the desired identity (3.1).

Oz
The identity (3.2) follows by (3.1) for a; =  and 8, = 2v,, k € {1,...,n}.
The other identities go in a similar way. O

For the body B we consider the coordinates for the centre of gravity

GB = G(mB,l,...,mBm)
defined by

5,
Tk = —— | zrde, ke {l,...,n},
V(B) Jp

V(B) ::/ dz
B
Corollary 1. With the assumptions of Lemma 1 we have
1 1 & of (z)
—_— dx = — — Tk d
7m0 =£1G) gy 3 [ e omm )

1
3 i L, o = TER U @) = (Gl () 4

k=1

where

is the volume of B.

and, in particular,

(3.10 /f dl'_ GB —l-*iZ/ Bk — k g;:)dl‘

o ; m /aB (zr —Tpx) [f () — f(GB)] g (z) dA.
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The proof follows by (3.1) on taking 8, = axTpr, k € {1,...,n}.
For a function f as in Lemma 1 above, we define the points
Jo i
TB,Ofk = B 6f? )k , ke {1,...,71},
B 3a7k dm

provided that all denominators are not zero.

Corollary 2. With the assumptions of Lemma 1 and if Gpof = (B,0f,1s - TB,0fn) €
B, then we have

(3.11) V(lB)/ f(z)dz = f(GBp,oy)

+Z 157 [, o (@ = 2p0p0) [ @) = £ Gop)| e ) dA

and, in particular,

(3.12) ﬁ/Bf(if)dﬂU:f(GB,af)

1 n
T n kZ:l /83 (zx — B osk) [f (¥) — f(Gof)]nk (z) dA.

The proof follows by (3.1) on taking 5, = axrp afk, k € {1,...,n} and observing
that

x) - of (z)
Z/ — o xg) x = kZ:l Olk/B (xB,af K — Tk) B dx = 0.
For a function f as in Lemma 1 above, we define the points

dA
TOB,fk = f‘}];:kf ()ilA , ke{l,..,n}

provided that all denominators are not zero.

Corollary 3. With the assumptions of Lemma 1 and if Gap,f := (ZaB,f11 -, LoB,fom ) €
B, then we have

0
(3.13) /f f(Gon.y) +Z /ak (€oB. 1k xk)%j)dx

and, in particular,

L Y TRYE &« SIS S N A C)
(3.14) V(.B)/]3f(x)dx_f(GdB’f)+n;V B)/B(deJ,k- a:k) - dz.

The proof follows by (3.1) on taking 3, = axZaB,f.k, k € {1,...,n} and observing
that

n

Zak /aB (xx —zaB, £k ) [ (x) g () dA = 0.

k=1
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4. INEQUALITIES FOR LIPSCHITZIAN FUNCTIONS

Let y € B. We assume that the function f : B — C is surface Lipschitzian in y
if there exists the constants (depending on y) L1, ..., L, > 0 such that

(4.1) If () = f ()] < ZLj [z — ;]

for all x € 0B.
We observe that, if f is differentiable on an open neighborhood of B, a convex
subset of R™, and has bounded partial derivatives on B, then we have

(4.2) £ ( Ix' — yjl
833] J J
for all z, y € B, where
‘ ﬁ = sup (x) < Q.
0rjllp o weB| OT;

Indeed, by making use of the Taylor’s representation theorem we have
F@=FW)+Y (w—y) | 7T+ (1 —t)yldt
) 0 a[lfj
for all z, y € B, which implies that

1f( ‘<Z|‘r]7yj

of
690.7

f
Ox;

+(1—t)y] at

lzj — vl
B,oc0

for all z, y € B.

Theorem 3. Let B be a bounded closed subset of R™ (n > 2) with smooth (or
piecewise smooth) boundary OB, oy, € C for k € {1,...,n} with >_}_, ay = 1 and
y € B. Let f be a continuously differentiable function defined in R™, or at least in
an open neighborhood of B with complex values and such that the surface Lipschitz
condition in y described by (4.1) holds, then

! )= L S — o) 2@ g
5yl @t =10 = g 2 [ el =) T

n 1 N
<> Lyloy 7/ T —yx)" |nk (z)|dA
2 \ |V(B) 6B( )" Ink ()]

1
£ S Lyl gy o=l = o (@) a4,

1<k#j<n

(4.3)
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In particular,

1 1 8f(ﬂs)
(4.4) W/Bf(gc)dx fy nv(z;/ — ) 55, P da
+% Z Ly /\xk yil [z — ;1 I ()] dA.

(4.5)

/f Jdo = F () - ()

Zm/wa’“( o =) [f (@) = £ ()] e () dA

k=1
<3 gy |, o on @)~ o) 4
—ngg/ o 310 1 () — £ ()] e 0] A

n

Using the condition (4. ) we get

/ okl lk — w1 (&) — £ ()] s, ()] dA
s/ el — ol S Ly o5 — e ()] dA

j=1
=St [ lallen — wul o — gyl o )] 04,
= Jom

which implies that

n 1 n
M < ZWZLJ'/B || |lzx — gkl 25 — ;] [y (2)| A

Yy o] s / 2k — yl [ — 93] I (2)] dA

k=1 j=1
=ij |a\#/ (25— y1)? e ()] dA
k kv( k— Yk k
£ Lo g /m uil |25 — yj] |k ()] dA

1<k#j<n
and by (4.5) we get the desired result (4.3).
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A more practical result is incorporated in the following:

Corollary 4. Let B be a bounded closed convex subset of R™ (n > 2) with smooth
(or piecewise smooth) boundary OB and oy, € C for k € {1,...,n} with Y ;_, oy, =
1. If f is differentiable on an open neighborhood of B and has bounded partial
derivatives on B, then for all y € B we have

(4.6)

1 1 of (x)
7V(B) Bf(x)d:cf (y) V(B Z/ak . dx
<3|
p>
<ktj<

|Oék| (IB)/ (@1 — yi)? [, ()] dA

1
vl gy |l = el ey = 5 o ()] a4,

8m] B,c0

In particular,

n

(4.7)

1 0f (@)
V<B>/Bf”dwf D= 5 20, ) Ty

/ (2 — )% g ()] dA
0B

k=1

8£Uk

B,c0
1 of 1 /
T . TR |2k — vkl |z =yl [nk (2)| dA.
n 1<1§<n 9zjll g V (B) Jos I

Remark 1. If we take y = G in Corollary 4, then we get

(4.8) V(lB)/Bf(x) de — f(Gp) — V(IB);/BM (Tor — xk) agqf)d:c

1 2
_— — dA
Z o, 1 gy |, 7 e )
af 1
T oF mw—/ 2k — TB | 25 — 75| I ()| dA.
1§]§;§n .’L'] B,c0 V (B) OB ! !

In particular,

1 f(x)
(4.9) 7B )/f( z)dz — f (Gp) — nV Z/ Yr — Tk axk dz
of 1 2
1 d 1
o ;J BWV(B)/BBW—WII%—WInk(x)ldA-

1<k#j<n
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AZSO’ Zf GB,@f = (:UB,af,lv "'axB,af,n) € B, then by CO?"O”(M’y 4 for Yy = GB,@f we
get

fa)de—f (GB,af)‘

N
=
=2
<
| =
=
S

n af 1 )
<2\ o2 Ao - dA
B kzzl Ok || g oo o V(B) /z’)B (@ = p.0p4)" Ini (@)
of 1
* 9z, |0"€|7/ |k — xB.o5 k] |75 ()| dA.
1§/;§n 97 || g oo V(B) Jop /
In particular,
(.11) #/f( ) do— f (Gr.op)
vy R
#/ (zr — @ )% |ng ()] dA
(‘3xk V(B) [, o~ TB0rk)" M
1 8f 1 /
o E V(R Tk — TB,0f,k| 1T )| dA.
nl<’;<n Ozl p o V (B) 8B| k= @narkl |2 (@)l

We also have:

Theorem 4. Let B be a bounded closed convex subset of R™ (n > 2) with smooth (or
piecewise smooth) boundary OB and oy, € C for k € {1,...,n} with Y ;_; a = 1. If
f is differentiable on an open neighborhood of B and has bounded partial derivatives
on B, then

(4.12) ‘ /f G )/ f(y)dA

Z / (YoB.k — Tk) agﬂfj)dx

k

%B)Aém) Lol ([ o= mlie; —lda) )]

333

k=1j5=1

833]

where

1
= A dA, ke{l,..,n}.
VOB k= 1 (5B) /8Byk , ke{l,..,n}

In particular, we have

(413) \V(lB)/Bde—l)/ F (y) dA

Tll Z/ UoB.k — Tk) (J;x(:)dx

V(lB) A((19B) /E,B </E)B |z — yxl|z; —ydeA> Iy, ()| dA.

8$J
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Proof. By taking the integral mean m [ dA over the variable y on 0B in the
identity (3.3) and using Fubini’s theorem, we get

(114) /f 5 [,
T Z/ (A(am et =) G
+ile | s (/ (ax = ) [ 0) = ()]0 ) s ) a4
A(a) WAt g kﬁ:l/B (voB s — k)agaka)dx

Z / ﬁ </aB (@ = y) [ (2) = F ()] dA) ny, (x) dA.

k=

From (4.14) we get

(4.15) ‘/f

k=1
- 1
e /aB " a(B) ( S O AC ) dA) ni () dA
< ZW /dBakA(ﬁB) (/dB(xk—yk)[f(w)—f(y)]dA) nk(x)dA’

Using the property (4.2) we get

/\xk—ykuf |dA</ 2k —

of
1(9ij

3%’ B

|z —y;| dA

/ |2k — Yl lz; — y;| dA,
o JoB
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which implies that

- 1
T< -
- Z V A(0B) / 6.’1}] B
k=1 ,00
x / xk—yk||xg—yjdA)|nk<>|dA
aB
- ZZ V(lB) A(gB) / o
k=1j=1 9B
<( xk—ykuxj—yjdA) g ()] 44,
aB
This inequality together with (4.15) produces the desired result (4.12). O

For various inequalities in the 3-dimensional case that are similar with the above,

see the recent paper [7]. We omit the details.
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