
OSTROWSKI TYPE INEQUALITIES FOR MULTIPLE
INTEGRALS VIA DIVERGENCE THEOREM

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper, by the use of Divergence Theorem, we establish
some Ostrowski type inequalities for functions of n-variables de�ned on closed
and bounded bodies of the Euclidean space Rn:

1. Introduction

In paper [2], the authors obtained among others the following results concerning
the di¤erence between the double integral on the disk and the values in the center
or the path integral on the circle:

Theorem 1. If f : D (C;R) ! R has continuous partial derivatives on D (C;R) ;
the disk centered in the point C = (a; b) with the radius R > 0; and
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where � (C;R) is the circle centered in C = (a; b) with the radius R > 0 and
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In the same paper [2] the authors also established the following Ostrowski type
inequality:

Theorem 2. If f has bounded partial derivatives on D(0; 1), the unity disk, then
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For other Ostrowski type integral inequalities for multiple integrals see [3]-[15].
Motivated by the above results, in this paper, by the use of Divergence Theorem,

we establish some Ostrowski type inequalities for functions of n-variables de�ned
on closed and bounded bodies of the Euclidean space Rn:

2. Some Preliminary Facts

Let B be a bounded open subset of Rn (n � 2) with smooth (or piecewise
smooth) boundary @B. Let F = (F1; :::; Fn) be a smooth vector �eld de�ned in
Rn, or at least in B[ @B. Let n be the unit outward-pointing normal of @B. Then
the Divergence Theorem states, see for instance [14]:

(2.1)
Z
B

divFdV =

Z
@B

F � ndA;

where

divF = r � F =
nX
k=1

@Fi
@xi

;

dV is the element of volume in Rn and dA is the element of surface area on @B.
If n = (n1; :::;nn), x = (x1; :::; xn) 2 B and use the notation dx for dV we can

write (2.1) more explicitly as
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Z
@B

Fk (x)nk (x) dA:

By taking the real and imaginary part, we can extend the above equality for
complex valued functions Fk; k 2 f1; :::; ng de�ned on B:
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If n = 2, the normal is obtained by rotating the tangent vector through 90�

(in the correct direction so that it points out). The quantity tds can be written
(dx1; dx2) along the surface, so that

ndA := nds = (dx2;�dx1)
Here t is the tangent vector along the boundary curve and ds is the element of

arc-length.
From (2.2) we get for B � R2 thatZ

B
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Z
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dx1dx2(2.3)
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Z
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which is Green�s theorem in plane.
If n = 3 and if @B is described as a level-set of a function of 3 variables i.e. @B =�
x1; x2; x3 2 R3 j G(x1; x2; x3) = 0

	
, then a vector pointing in the direction of n is

gradG. We shall use the case where G (x1; x2; x3) = x3 � g(x1; x2); (x1; x2) 2 D;
a domain in R2 for some di¤erentiable function g on D and B corresponds to the
inequality x3 < g(x1; x2), namely
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�
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:

Then
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Z
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which is the Gauss-Ostrogradsky theorem in space.
Following Apostol [1], we can also consider a surface described by the vector

equation

(2.5) r (u; v) = x1 (u; v)
�!
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�!
j + x3 (u; v)

�!
k

where (u; v) 2 [a; b]� [c; d] :
If x1; x2; x3 are di¤erentiable on [a; b]� [c; d] we consider the two vectors

@r
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=
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�!
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The cross product of these two vectors @r@u�
@r
@v will be referred to as the fundamental

vector product of the representation r: Its components can be expressed as Jacobian
determinants. In fact, we have [1, p. 420]

@r
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�!
k :

Let @B = r(T ) be a parametric surface described by a vector-valued function r
de�ned on the box T = [a; b] � [c; d] : The area of @B denoted A@B is de�ned by
the double integral [1, p. 424-425]

A@B =

Z b
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We de�ne surface integrals in terms of a parametric representation for the surface.
One can prove that under certain general conditions the value of the integral is
independent of the representation.
Let @B = r(T ) be a parametric surface described by a vector-valued di¤erentiable

function r de�ned on the box T = [a; b] � [c; d] and let f : @B ! C de�ned and
bounded on @B: The surface integral of f over @B is de�ned by [1, p. 430]Z Z

@B

fdA =

Z b
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c
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If @B = r(T ) is a parametric surface, the fundamental vector product N =
@r
@u �

@r
@v is normal to @B at each regular point of the surface. At each such point

there are two unit normals, a unit normal n1, which has the same direction as N ,
and a unit normal n2 which has the opposite direction. Thus

n1 =
N

kNk and n2 = �n1:

Let n be one of the two normals n1 or n2: Let also F be a vector �eld de�ned on
@B and assume that the surface integral,Z Z

@B

(F � n) dA;

called the �ux surface integral, exists. Here F � n is the dot or inner product.
We can write [1, p. 434]Z Z

@B
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Z b
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Z d
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�
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@u
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where the sign " + " is used if n = n1 and the "� " sign is used if n = n2:
If

F (x1; x2; x3) = F1 (x1; x2; x3)
�!
i + F2 (x1; x2; x3)

�!
j + F3 (x1; x2; x3)

�!
k

and

r (u; v) = x1 (u; v)
�!
i + x2 (u; v)

�!
j + x3 (u; v)

�!
k where (u; v) 2 [a; b]� [c; d]

then the �ux surface integral for n = n1 can be explicitly calculated as [1, p. 435]Z Z
@B

(F � n) dA =
Z b

a

Z d

c

F1 (x1 (u; v) ; x2 (u; v) ; x3 (u; v))
@ (x2; x3)

@ (u; v)
dudv(2.9)

+

Z b

a

Z d

c

F2 (x1 (u; v) ; x2 (u; v) ; x3 (u; v))
@ (x3; x1)

@ (u; v)
dudv

+

Z b

a

Z d

c

F3 (x1 (u; v) ; x2 (u; v) ; x3 (u; v))
@ (x1; x2)

@ (u; v)
dudv:

The sum of the double integrals on the right is often written more brie�y as [1, p.
435] Z Z

@B

F1 (x1; x2; x3) dx2 ^ dx3 +
Z Z

@B

F2 (x1; x2; x3) dx3 ^ dx1

+

Z Z
@B

F3 (x1; x2; x3) dx1 ^ dx2

Let B � R3 be a solid in 3-space bounded by an orientable closed surface @B,
and let n be the unit outer normal to @B. If F is a continuously di¤erentiable
vector �eld de�ned on B, we have the Gauss-Ostrogradsky identity

(GO)
ZZZ

B

(divF ) dV =

Z Z
@B

(F � n) dA:

If we express

F (x1; x2; x3) = F1 (x1; x2; x3)
�!
i + F2 (x1; x2; x3)

�!
j + F3 (x1; x2; x3)

�!
k ;

then (2.4) can be written asZZZ
B

�
@F1 (x1; x2; x3)

@x1
+
@F2 (x1; x2; x3)

@x2
+
@F3 (x1; x2; x3)

@x3

�
dx1dx2dx3(2.10)

=

Z Z
@B

F1 (x1; x2; x3) dx2 ^ dx3 +
Z Z

@B

F2 (x1; x2; x3) dx3 ^ dx1

+

Z Z
@B

F3 (x1; x2; x3) dx1 ^ dx2:

3. General Identities

We have the following identity of interest:

Lemma 1. Let B be a bounded closed subset of Rn (n � 2) with smooth (or
piecewise smooth) boundary @B. Let f be a continuously di¤erentiable function
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de�ned in Rn, or at least in an open neighborhood of B and with complex values.
If �k; �k 2 C for k 2 f1; :::; ng with

Pn
k=1 �k = 1 and y 2 B; then

(3.1)
1

V (B)

Z
B

f (x) dx = f (y) +
nX
k=1

1

V (B)

Z
B

(�k � �kxk)
@f (x)

@xk
dx

+
nX
k=1

1

V (B)

Z
@B

(�kxk � �k) [f (x)� f (y)]nk (x) dA:

We also have

(3.2)
1

V (B)

Z
B

f (x) dx = f (y) +
1

n

1

V (B)

nX
k=1

Z
B

(
k � xk)
@f (x)

@xk
dx

+
1

n

nX
k=1

1

V (B)

Z
@B

(xk � 
k) [f (x)� f (y)]nk (x) dA

for all 
k 2 C, where k 2 f1; :::; ng :
In particular, we have

(3.3)
1

V (B)

Z
B

f (x) dx = f (y) +
1

V (B)

nX
k=1

Z
B

�k (yk � xk)
@f (x)

@xk
dx

+

nX
k=1

1

V (B)

Z
@B

�k (xk � yk) [f (x)� f (y)]nk (x) dA

and

(3.4)
1

V (B)

Z
B

f (x) dx = f (y) +
1

n

1

V (B)

nX
k=1

Z
B

(yk � xk)
@f (x)

@xk
dx

+
1

n

nX
k=1

1

V (B)

Z
@B

(xk � yk) [f (x)� f (y)]nk (x) dA:

Proof. Let x = (x1; :::; xn) 2 B: We consider
Fk (x) = (�kxk � �k) f (x) ; k 2 f1; :::; ng

and take the partial derivatives @Fk(x)
@xk

to get

@Fk (x)

@xk
= �kf (x) + (�kxk � �k)

@f (x)

@xk
; k 2 f1; :::; ng :

If we sum this equality over k from 1 to n we get
nX
k=1

@Fk (x)

@xk
=

nX
k=1

�kf (x) +
nX
k=1

(�kxk � �k)
@f (x)

@xk
(3.5)

= f (x) +
nX
k=1

(�kxk � �k)
@f (x)

@xk

for all x = (x1; :::; xn) 2 B:
Now, if we take the integral in the equality (3.5) over (x1; :::; xn) 2 B we get

(3.6)
Z
B

 
nX
k=1

@Fk (x)

@xk

!
dx =

Z
B

f (x) dx+
nX
k=1

Z
B

�
(�kxk � �k)

@f (x)

@xk

�
dx:
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By the Divergence Theorem (2.2) we also have

(3.7)
Z
B

 
nX
k=1

@Fk (x)

@xk

!
dx =

nX
k=1

Z
@B

(�kxk � �k) f (x)nk (x) dA

and by making use of (3.6) and (3.7) we getZ
B

f (x) dx+
nX
k=1

Z
B

�
(�kxk � �k)

@f (x)

@xk

�
dx

=
nX
k=1

Z
@B

(�kxk � �k) f (x)nk (x) dA;

which gives, by rearranging the terms and dividing by V (B) ; that

1

V (B)

Z
B

f (x) dx =
nX
k=1

1

V (B)

Z
B

�
(�k � �kxk)

@f (x)

@xk

�
dx(3.8)

+

nX
k=1

1

V (B)

Z
@B

(�kxk � �k) f (x)nk (x) dA:

If we write now the equality (3.8) for f�f (y) and take into account that @[f�f(y)](x)@xk
=

@f(x)
@xk

; k 2 f1; :::; ng we get the desired identity (3.1).
The identity (3.2) follows by (3.1) for �k = 1

n and �k =
1
n
k; k 2 f1; :::; ng :

The other identities go in a similar way. �

For the body B we consider the coordinates for the centre of gravity

GB := G (xB;1; :::; xB;n)

de�ned by

xB;k :=
1

V (B)

Z
B

xkdx; k 2 f1; :::; ng ;

where

V (B) :=

Z
B

dx

is the volume of B:

Corollary 1. With the assumptions of Lemma 1 we have

(3.9)
1

V (B)

Z
B

f (x) dx = f (GB) +
1

V (B)

nX
k=1

Z
B

�k (xB;k � xk)
@f (x)

@xk
dx

+
nX
k=1

1

V (B)

Z
@B

�k (xk � xB;k) [f (x)� f (GB)]nk (x) dA

and, in particular,

(3.10)
1

V (B)

Z
B

f (x) dx = f (GB) +
1

n

1

V (B)

nX
k=1

Z
B

(xB;k � xk)
@f (x)

@xk
dx

+
1

n

nX
k=1

1

V (B)

Z
@B

(xk � xB;k) [f (x)� f (GB)]nk (x) dA:
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The proof follows by (3.1) on taking �k = �kxB;k; k 2 f1; :::; ng :
For a function f as in Lemma 1 above, we de�ne the points

xB;@f;k :=

R
B
xk

@f(x)
@xk

dxR
B
@f(x)
@xk

dx
; k 2 f1; :::; ng ;

provided that all denominators are not zero.

Corollary 2. With the assumptions of Lemma 1 and if GB;@f := (xB;@f;1; :::; xB;@f;n) 2
B; then we have

(3.11)
1

V (B)

Z
B

f (x) dx = f (GB;@f )

+
nX
k=1

1

V (B)

Z
@B

�k (xk � xB;@f;k) [f (x)� f (GB;@f )]nk (x) dA

and, in particular,

(3.12)
1

V (B)

Z
B

f (x) dx = f (GB;@f )

+
1

n

nX
k=1

Z
@B

(xk � xB;@f;k) [f (x)� f (GB;@f )]nk (x) dA:

The proof follows by (3.1) on taking �k = �kxB;@f;k; k 2 f1; :::; ng and observing
that

nX
k=1

Z
B

(�k � �kxk)
@f (x)

@xk
dx =

nX
k=1

�k

Z
B

(xB;@f;k � xk)
@f (x)

@xk
dx = 0:

For a function f as in Lemma 1 above, we de�ne the points

x@B;f ;k :=

R
@B
xkf (x)nk (x) dAR

@B
f (x)nk (x) dA

; k 2 f1; :::; ng

provided that all denominators are not zero.

Corollary 3. With the assumptions of Lemma 1 and if G@B;f := (x@B;f ;1 ; :::; x@B;f ;n ) 2
B; then we have

(3.13)
1

V (B)

Z
B

f (x) dx = f (G@B;f ) +
nX
k=1

1

V (B)

Z
B

�k (x@B;f ;k �xk)
@f (x)

@xk
dx

and, in particular,

(3.14)
1

V (B)

Z
B

f (x) dx = f (G@B;f ) +
1

n

nX
k=1

1

V (B)

Z
B

(x@B;f ;k �xk)
@f (x)

@xk
dx:

The proof follows by (3.1) on taking �k = �kx@B;f ;k ; k 2 f1; :::; ng and observing
that

nX
k=1

�k

Z
@B

(xk � x@B;f ;k ) f (x)nk (x) dA = 0:
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4. Inequalities for Lipschitzian Functions

Let y 2 B: We assume that the function f : B ! C is surface Lipschitzian in y
if there exists the constants (depending on y) L1; :::; Ln > 0 such that

(4.1) jf (x)� f (y)j �
nX
j=1

Lj jxj � yj j

for all x 2 @B:
We observe that, if f is di¤erentiable on an open neighborhood of B; a convex

subset of Rn; and has bounded partial derivatives on B; then we have

(4.2) jf (x)� f (y)j �
nX
j=1





 @f@xj





B;1

jxj � yj j

for all x; y 2 B, where 



 @f@xj





B;1

:= sup
x2B

����f (x)@xj

���� <1:
Indeed, by making use of the Taylor�s representation theorem we have

f (x) = f (y) +
nX
j=1

(xj � yj)
Z 1

0

@f

@xj
[tx+ (1� t) y] dt

for all x; y 2 B; which implies that

jf (x)� f (y)j �
nX
j=1

jxj � yj j
Z 1

0

���� @f@xj [tx+ (1� t) y]
���� dt

�
nX
j=1





 @f@xj





B;1

jxj � yj j

for all x; y 2 B:

Theorem 3. Let B be a bounded closed subset of Rn (n � 2) with smooth (or
piecewise smooth) boundary @B, �k 2 C for k 2 f1; :::; ng with

Pn
k=1 �k = 1 and

y 2 B: Let f be a continuously di¤erentiable function de�ned in Rn, or at least in
an open neighborhood of B with complex values and such that the surface Lipschitz
condition in y described by (4.1) holds, then

(4.3)

����� 1

V (B)

Z
B

f (x) dx� f (y)� 1

V (B)

nX
k=1

Z
B

�k (yk � xk)
@f (x)

@xk
dx

�����
�

nX
k=1

Lk j�kj
1

V (B)

Z
@B

(xk � yk)2 jnk (x)j dA

+
X

1�k 6=j�n
Lj j�kj

1

V (B)

Z
@B

jxk � ykj jxj � yj j jnk (x)j dA:
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In particular,

(4.4)

����� 1

V (B)

Z
B

f (x) dx� f (y)� 1

n

1

V (B)

nX
k=1

Z
B

(yk � xk)
@f (x)

@xk
dx

�����
� 1

n

nX
k=1

Lk
1

V (B)

Z
@B

(xk � yk)2 jnk (x)j dA

+
1

n

X
1�k 6=j�n

Lj
1

V (B)

Z
@B

jxk � ykj jxj � yj j jnk (x)j dA:

Proof. From the representation (3.3) we have����� 1

V (B)

Z
B

f (x) dx� f (y)� 1

V (B)

nX
k=1

Z
B

�k (yk � xk)
@f (x)

@xk
dx

�����(4.5)

�
�����
nX
k=1

1

V (B)

Z
@B

�k (xk � yk) [f (x)� f (y)]nk (x) dA
�����

�
nX
k=1

1

V (B)

����Z
@B

�k (xk � yk) [f (x)� f (y)]nk (x) dA
����

�
nX
k=1

1

V (B)

Z
@B

j�k (xk � yk) [f (x)� f (y)]nk (x)j dA

=
nX
k=1

1

V (B)

Z
@B

j�kj jxk � ykj jf (x)� f (y)j jnk (x)j dA =:M

Using the condition (4.1) we getZ
@B

j�kj jxk � ykj jf (x)� f (y)j jnk (x)j dA

�
Z
@B

j�kj jxk � ykj
nX
j=1

Lj jxj � yj j jnk (x)j dA

=
nX
j=1

Lj

Z
@B

j�kj jxk � ykj jxj � yj j jnk (x)j dA;

which implies that

M �
nX
k=1

1

V (B)

nX
j=1

Lj

Z
@B

j�kj jxk � ykj jxj � yj j jnk (x)j dA

=
nX
k=1

nX
j=1

Lj j�kj
1

V (B)

Z
@B

jxk � ykj jxj � yj j jnk (x)j dA

=
nX
k=1

Lk j�kj
1

V (B)

Z
@B

(xk � yk)2 jnk (x)j dA

+
X

1�k 6=j�n
Lj j�kj

1

V (B)

Z
@B

jxk � ykj jxj � yj j jnk (x)j dA

and by (4.5) we get the desired result (4.3). �
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A more practical result is incorporated in the following:

Corollary 4. Let B be a bounded closed convex subset of Rn (n � 2) with smooth
(or piecewise smooth) boundary @B and �k 2 C for k 2 f1; :::; ng with

Pn
k=1 �k =

1: If f is di¤erentiable on an open neighborhood of B and has bounded partial
derivatives on B; then for all y 2 B we have

(4.6)

����� 1

V (B)

Z
B

f (x) dx� f (y)� 1

V (B)

nX
k=1

Z
B

�k (yk � xk)
@f (x)

@xk
dx

�����
�

nX
k=1





 @f@xk





B;1

j�kj
1

V (B)

Z
@B

(xk � yk)2 jnk (x)j dA

+
X

1�k 6=j�n





 @f@xj





B;1

j�kj
1

V (B)

Z
@B

jxk � ykj jxj � yj j jnk (x)j dA:

In particular,

(4.7)

����� 1

V (B)

Z
B

f (x) dx� f (y)� 1

n

1

V (B)

nX
k=1

Z
B

(yk � xk)
@f (x)

@xk
dx

�����
� 1

n

nX
k=1





 @f@xk





B;1

1

V (B)

Z
@B

(xk � yk)2 jnk (x)j dA

+
1

n

X
1�k 6=j�n





 @f@xj





B;1

1

V (B)

Z
@B

jxk � ykj jxj � yj j jnk (x)j dA:

Remark 1. If we take y = GB in Corollary 4, then we get

(4.8)

����� 1

V (B)

Z
B

f (x) dx� f (GB)�
1

V (B)

nX
k=1

Z
B

�k (xB;k � xk)
@f (x)

@xk
dx

�����
�

nX
k=1





 @f@xk





B;1

j�kj
1

V (B)

Z
@B

(xk � xB;k)2 jnk (x)j dA

+
X

1�k 6=j�n





 @f@xj





B;1

j�kj
1

V (B)

Z
@B

jxk � xB;kj jxj � xB;j j jnk (x)j dA:

In particular,

(4.9)

����� 1

V (B)

Z
B

f (x) dx� f (GB)�
1

n

1

V (B)

nX
k=1

Z
B

(yk � xk)
@f (x)

@xk
dx

�����
� 1

n

nX
k=1





 @f@xk





B;1

1

V (B)

Z
@B

(xk � xB;k)2 jnk (x)j dA

+
1

n

X
1�k 6=j�n





 @f@xj





B;1

1

V (B)

Z
@B

jxk � xB;kj jxj � xB;j j jnk (x)j dA:
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Also, if GB;@f := (xB;@f;1; :::; xB;@f;n) 2 B; then by Corollary 4 for y = GB;@f we
get

(4.10)

���� 1

V (B)

Z
B

f (x) dx� f (GB;@f )
����

�
nX
k=1





 @f@xk





B;1

j�kj
1

V (B)

Z
@B

(xk � xB;@f;k)2 jnk (x)j dA

+
X

1�k 6=j�n





 @f@xj





B;1

j�kj
1

V (B)

Z
@B

jxk � xB;@f;kj jxj � xB;@f;j j jnk (x)j dA:

In particular,

(4.11)

���� 1

V (B)

Z
B

f (x) dx� f (GB;@f )
����

� 1

n

nX
k=1





 @f@xk





B;1

1

V (B)

Z
@B

(xk � xB;@f;k)2 jnk (x)j dA

+
1

n

X
1�k 6=j�n





 @f@xj





B;1

1

V (B)

Z
@B

jxk � xB;@f;kj jxj � xB;@f;j j jnk (x)j dA:

We also have:

Theorem 4. Let B be a bounded closed convex subset of Rn (n � 2) with smooth (or
piecewise smooth) boundary @B and �k 2 C for k 2 f1; :::; ng with

Pn
k=1 �k = 1: If

f is di¤erentiable on an open neighborhood of B and has bounded partial derivatives
on B; then

(4.12)

���� 1

V (B)

Z
B

f (x) dx� 1

A (@B)

Z
@B

f (y) dA

� 1

V (B)

nX
k=1

Z
B

�k (y@B;k � xk)
@f (x)

@xk
dx

�����
�

nX
k=1

nX
j=1





 @f@xj





B;1

1

V (B)

1

A (@B)

Z
@B

j�kj
�Z

@B

jxk � ykj jxj � yj j dA
�
jnk (x)j dA;

where

y@B;k :=
1

A (@B)

Z
@B

ykdA; k 2 f1; :::; ng :

In particular, we have

(4.13)

���� 1

V (B)

Z
B

f (x) dx� 1

A (@B)

Z
@B

f (y) dA

� 1
n

1

V (B)

nX
k=1

Z
B

(y@B;k � xk)
@f (x)

@xk
dx

�����
� 1

n

nX
k=1

nX
j=1





 @f@xj





B;1

1

V (B)

1

A (@B)

Z
@B

�Z
@B

jxk � ykj jxj � yj j dA
�
jnk (x)j dA:
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Proof. By taking the integral mean 1
A(@B)

R
@B
dA over the variable y on @B in the

identity (3.3) and using Fubini�s theorem, we get

(4.14)
1

V (B)

Z
B

f (x) dx =
1

A (@B)

Z
@B

f (y) dA

+
1

V (B)

nX
k=1

Z
B

�k

�
1

A (@B)

Z
@B

ykdA� xk
�
@f (x)

@xk
dx

+
nX
k=1

1

V (B)

Z
@B

�k
1

A (@B)

�Z
@B

(xk � yk) [f (x)� f (y)] dA
�
nk (x) dA

=
1

A (@B)

Z
@B

f (y) dA+
1

V (B)

nX
k=1

Z
B

�k (y@B;k � xk)
@f (x)

@xk
dx

+
nX
k=1

1

V (B)

Z
@B

�k
1

A (@B)

�Z
@B

(xk � yk) [f (x)� f (y)] dA
�
nk (x) dA:

From (4.14) we get

(4.15)

���� 1

V (B)

Z
B

f (x) dx� 1

A (@B)

Z
@B

f (y) dA

� 1

V (B)

nX
k=1

Z
B

�k (y@B;k � xk)
@f (x)

@xk
dx

�����
�
�����
nX
k=1

1

V (B)

Z
@B

�k
1

A (@B)

�Z
@B

(xk � yk) [f (x)� f (y)] dA
�
nk (x) dA

�����
�

nX
k=1

1

V (B)

����Z
@B

�k
1

A (@B)

�Z
@B

(xk � yk) [f (x)� f (y)] dA
�
nk (x) dA

����
�

nX
k=1

1

V (B)

Z
@B

j�kj
���� 1

A (@B)

�Z
@B

(xk � yk) [f (x)� f (y)] dA
����� jnk (x)j dA

�
nX
k=1

1

V (B)

1

A (@B)

Z
@B

j�kj
�Z

@B

jxk � ykj jf (x)� f (y)j dA
�
jnk (x)j dA =: T:

Using the property (4.2) we get

Z
@B

jxk � ykj jf (x)� f (y)j dA �
Z
@B

jxk � ykj
nX
j=1





 @f@xj





B;1

jxj � yj j dA

=
nX
j=1





 @f@xj





B;1

Z
@B

jxk � ykj jxj � yj j dA;
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which implies that

T �
nX
k=1

1

V (B)

1

A (@B)

Z
@B

j�kj
nX
j=1





 @f@xj





B;1

�
�Z

@B

jxk � ykj jxj � yj j dA
�
jnk (x)j dA

=
nX
k=1

nX
j=1





 @f@xj





B;1

1

V (B)

1

A (@B)

Z
@B

j�kj

�
�Z

@B

jxk � ykj jxj � yj j dA
�
jnk (x)j dA:

This inequality together with (4.15) produces the desired result (4.12). �

For various inequalities in the 3-dimensional case that are similar with the above,
see the recent paper [7]. We omit the details.
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