INEQUALITIES FOR DOUBLE INTEGRALS OF SCHUR
CONVEX FUNCTIONS ON SYMMETRIC AND CONVEX
DOMAINS

SILVESTRU SEVER DRAGOMIR1!:2

ABSTRACT. In this paper, by making use of Green’s identity for double inte-
grals, we establish some integral inequalities for Schur convex functions defined
on domains D C R? that are symmetric, convex and have nonempty interiors.
Examples for squares and disks are also provided.

1. INTRODUCTION

For any x = (21, ...,x,) € R", let x11) > ... > 2}, denote the components of x in
decreasing order, and let x| = (x[l], ...,a:[n}) denote the decreasing rearrangement
of z. For x, y € R™, © < y if, by definition,

k k
Dic1 TE S i Yy k=1,.,n— 1

2o i) = 2 Y-

When z < y, = is said to be majorized by y (y majorizes x). This notation and
terminology was introduced by Hardy, Littlewood and Pdélya in 1934.

Functions that preserve the ordering of majorization are said to be Schur-convex.
Perhaps “Schur-increasing” would be more appropriate, but the term “Schur-convex”
is by now well entrenched in the literature, [3, p.80].

A real-valued function ¢ defined on a set A C R™ is said to be Schur-convex on
A if
(1.1) r<yon A= ¢(x) <o(y).

If, in addition, ¢ () < ¢ (y) whenever & < y but z is not a permutation of y, then
¢ is said to be strictly Schur-conver on A. If A =R", then ¢ is simply said to be
Schur-convex or strictly Schur-convex.

For fundamental properties of Schur convexity see the monograph [3] and the
references therein. For some recent results, see [1]-[2] and [4]-[6].

The following result is known in the literature as Schur-Ostrowski theorem [3, p.
84]:

Theorem 1. Let I C R be an open interval and let ¢ : I — R be continuously
differentiable. Necessary and sufficient conditions for ¢ to be Schur-convexr on I™
are

(1.2) ¢ is symmetric on 1™,

1991 Mathematics Subject Classification. 26D15.
Key words and phrases. Schur convex functions, Double integral inequalities.
1

RGMIA Res. Rep. Coll. 22 (2019), Art. 69, 12 pp. Received 9/07/19


e5011831
Typewritten Text
RGMIA Res. Rep. Coll. 22 (2019), Art. 69, 12 pp.   Received 9/07/19


2 S.S. DRAGOMIR

and for all i # j, with i, j € {1,...,n},

(1.3) (zi — 25) [8253(32) — 8(.1(2)} >0 forall z € I™,
i J

where E?T(i denotes the partial derivative of ¢ with respect to its k-th argument.

With the aid of (1.2), condition (1.3) can be replaced by the condition

(1.4) (21 — 22) [a;if)agg(;j)} >0 forall z € I™.

This simplified condition is sometimes more convenient to verify.

The above condition is not sufficiently general for all applications because the
domain of ¢ may not be a Cartesian product.

Let A C R™ be a set with the following properties:

(i) A is symmetric in the sense that x € A = z1II € A for all permutations IT of
the coordinates.

(ii) A is convex and has a nonempty interior.

We have the following result, [3, p. 85].

Theorem 2. If ¢ is continuously differentiable on the interior of A and continuous
on A, then necessary and sufficient conditions for ¢ to be Schur-convex on A are

(1.5) ¢ is symmetric on A
and
(1.6) (21 — 22) {agx(f) - ac’()b;g] >0 forall z € A.

It is well known that any symmetric convex function defined on a symmetric
convex set A is Schur convex, [3, p. 97]. If the function ¢ : A — R is symmetric
and quasi-convex, namely

¢ (au+ (1 — a)v) <max{¢(u), ¢ (v)}

for all @ € [0,1] and u, v € A, a symmetric convex set, then ¢ is Schur convex on
A [3, p. 98].

In this paper we establish some integral inequalities for Schur convex functions
defined on domains D C R? that are symmetric, convex and have nonempty inte-
riors. Examples for squares and disks are also provided.

2. MAIN RESULTS

For a function f : D — C having partial derivatives on the domain D C R? we
define Apsp: D — C as

Nor.p () = (z —y) (f)f gc y) _of ((;; y>> .

Let 0D be a simple, closed counterclockwise curve in the zy-plane, bounding a
region D. Let L and M be scalar functions defined at least on an open set containing
D. Assume L and M have continuous first partial derivatives. Then the following
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equality is well known as the Green theorem (see https://en.wikipedia.org/wiki/
Green%27s_theorem)

(@) /L(aMa(j’y)—aLéz’y))dxdyzai (L (2, y) dz + M (z,y) dy).

By applying this equality for real and imaginary parts, we can also state it for
complex valued functions P and Q.

Moreover, if the curve 9D is described by the function r(¢) = (z (¢),y(¢)),
t € [a,b], with z, y differentiable on (a,b) then we can calculate the path integral
as

b
74 (L (z,y) do + M (x, ) dy) = / L (2 (£),y (£) 2/ () + M (2 (1), (£) ¥’ (1) dt.

oD

We have the following identity of interest:

Lemma 1. Let 0D be a simple, closed counterclockwise curve in the xy-plane,
bounding a region D. Assume that the function f: D — C has continuous partial
derivatives on the domain D. Then

@1 @) f @) dot =) f @)= [ [ fy)day
oD
= %//DAaﬁD (.T},y) d.’l?dy
Proof. Consider the functions

M (z,y) = (z —y) f (z,y) and L (2,y) := (z —y) f (2,y)

for (z,y) € D.
We have
0 0
=y )] = f ) + (o) LY
and
0 of (z,
Sl =) ()] = £ ) + () LY
for (z,y) € D.
If we add these two equalities, then we get
(2.2) oM (@y) _OL(@y) =2f(z,y) + Aay.p (2,9)

ox dy

for (z,y) € D.
If we integrate this equality on D, then we obtain

(2.3) / /D (aMa(f’y) - aLéﬁ’”) dzdy

:2//Df($,y)dxdy+//DAaf,D(I,y)dfﬂdy-
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From Green’s identity we also have

(2.4) //D (aMa(j’y) - aLéZ’ y)> dwdy = f (L (z,y) dz + M (z,y) dy)

oD

— f o= f @)des (=9 @) dy).

oD

By employing (2.3) and (2.4) we deduce the desired equality (2.1). O

Corollary 1. With the assumptions of Lemma 1 and if the curve 0D is described
by the function r(t) = (z (t),y(t)), t € [a,b], with z, y differentiable on (a,b),
then

b
29 5[ @O-y@) OO @ O+ Ot~ [ [ ) dey

1
:i// Aog.p (x,y) dedy.
D

We have the following result for Schur convex functions defined on symmetric
convex domains of R?.

Theorem 3. Let D C R? be symmetric, convex and has a nonempty interior. If
¢ s continuously differentiable on the interior of D, continuous and Schur convex

on D and OD is a simple, closed counterclockwise curve in the xy-plane bounding
D, then

20 [ [ ooty <54 (@=-non) ot =96 ) i)

oD
If ¢ is Schur concave on D, then the sign of inequality reverses in (2.6).
The proof follows by Lemma 1 and Theorem 1.

Corollary 2. Let D C R? be symmetric, convex and has a nonempty interior. If ¢
is continuously differentiable on the interior of D, continuous and convex or quasi-
convex on D and 0D is a simple, closed counterclockwise curve in the xy-plane
bounding D, then the inequality (2.6) is valid.

Remark 1. With the assumptions of Theorem 8 and if the curve D is described
by the function r(t) = (x (t),y(t)), t € [a,b], with z, y differentiable on (a,b),
then

en [ [ @iy < [ @0O-y@)o@ w00 @ 0+ @)

b
a



INEQUALITIES FOR DOUBLE INTEGRALS OF SCHUR CONVEX FUNCTIONS 5

Let a < b. Put A = (a,a), B = (b,a), C = (b,b), D = (a,b) € R? the vertices
of the square ABCD = [a, b]2 . Consider the counterclockwise segments

z=(1—-t)a+tdb
, tel0,1]

r=">
BC{ ,tG[O,l]

and

r=a
DA : , tel0,1].
y=(1—-t)b+ta

Therefore 9 (ABCD) = ABUBC UCDU DA.
For any function f defined on ABCD, we have

f[(x—y)f(x,y>dx+<x—y>f<z,y>dy1

AB

:(b—a)/1 (1= t)a+tb—a) f((1—t)a+ib,a)dt
0
:(b—a)2/1tf((1—t)a+tb,a)dt,

0

]{[(x—y)f(%y)dwr(x—y)f(wvy)dy]

BC

:(b—a)/l(b—(1—t)a—tb)f(b,(l—t)a+tb)dt
0
:(b—a)Q/l(1—t)f(b,(1—t)a+tb)dt,

]{[(:c*y)f(x,y)dx+(w*y)f(ay)dy]

CD

:(a—b)/ol((l—t)b+ta—b)f((1—t)b+ta,b)dt
tf ((1—t)b+ta,b) dt

(1—=1t)f((1—¢t)a+tb,b)dt (by change of variable).
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and
e 0)f @o)do+ (@) £ @0) )
DA
_ (a—b)/ (a—(1—1t)b—ta) f(a,(1—t)b+ ta) dt
0 1
= (afb)z/o (1—1) f(a,(1 —t)b+ta)dt
= (a—b)* /1 tf (a,(1 —t)a+ tb)dt (by change of variable).
0
Therefore
(2.8 § l@-nf @yt @) f @o)d

d(ABCD)

:(b—a)Q/Oltf((l—t)a+tb,a)dt+(b—a)2/01 (=) f (b, (1 — ) a+ th) dt

+(b—a,)2/1 (1—t)f((l—t)a+tb,b)dt+(b—a)2/1tf(a,(1—t)a+tb)dt

0 0

:(b—a)2/01t[f((1—t)a+tb,a)+f(a,(1—t)a+tb)]dt

+(ba)2/01(1t)[f(b,(1t)a+tb)+f((1t)a+tb,b)]dt.

Since the vast majority of examples of Schur convex functions are defined on the
Cartesian product of intervals, we can state the following result of interest:

Corollary 3. If ¢ is continuously differentiable on the interior of D = [a,b]2,
continuous on D and Schur convez, then

1 bopb 1
(2.9) (b—a)Q/a /a gf)(m,y)dmdyg/o to((1—t)a+tba)dt

+/0 (1—1)$((1—t)a+tb,b)dt.

Proof. From (2.6) we get

1 b b
(2.10) (ba)z/a /a ¢ (z,y) dedy
1

p((1—t)a+tba)+ ¢ (a,(1 —1t)a+th)
[ [oumnesnagneesn,

! d((1—t)a+1tb,b)+ ¢ (b, (1 —t)a+tb)
+/0 (1—t){ 5 }dt.

Since ¢ is symmetric on D = [a, b}Q, hence

& ((1—t)a+tha)=¢(a, (1 —1t)a+th)
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and
(1 —t)a+1thb)=¢ (b, (1—1t)a+th)
for all ¢ € [0,1] and by (2.10) we get (2.9). O

Remark 2. By making the change of variable x = (1 —t)a + tb, t € [0,1], then
de = (b—a)dt, t = 7=2 and by (2.9) we get

a

1 b b
(2.11) (ba)Q/a /a ¢ (z,y) dedy

1 br—a 1 bph— =z
< -
< [ e [ e

or, equivalently,
b b b b
(2.12) / / ¢ (z,y) dxdy < / (x—a)¢(z,a)dx + / (b—x) ¢ (z,b)dx.

3. LOWER AND UPPER SCHUR CONVEXITY

Start with the following extensions of Schur convex functions:

Definition 1. Let D be symmetric, convex and has a nonempty interior in R? and
a symmetric function f: D — R having continuous partial derivatives on D C R2.

(i) For m € R, f is called m-lower Schur convex on D if
(3.1) m(z—y)® < Nog,p (z,y) for all (z,y) € D.
(ii) For M € R, f is called M -upper Schur convex on D if
(3.2) Nofp (z,y) < M (z— y)? for all (z,y) € D.
(i) For m, M € R with m < M, f is called (m, M)-Schur convex on D if
(3.3) m(z — y)2 <Assp(z,y) <M(z— y)2 for all (z,y) € D.
We have the following simple but useful result :

Proposition 1. Let D be symmetric, convexr and has a nonempty interior in R?

and a symmetric function f : D — R having continuous partial derivatives on
D C R%

(i) For m € R, f is m-lower Schur convex on D iff f,, : D — R,
1
Im (x,y) = f(m,y) - §m (mQ + yQ)

18 Schur convex on D.
(ii) For M € R, f is M-upper Schur convex on D iff far : D — R,

Far (@,9) = 5M (2 +47) ~ f (2,9)

is Schur convex on D.
(iii) For m, M € R with m < M, f is (m,M)-Schur convex on D iff f,, and
far are Schur convex on D.
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Proof. (i). Observe that

for all (z,y) € D, which proves the statement.
The statements (ii) and (iii) follow in a similar way. O

We have:

Theorem 4. Let 0D be a simple, closed counterclockwise curve in the xy-plane,
bounding a domain D C R? that is symmetric, convex and has a nonempty interior.

(i) Assume that the function f: D — R is m-lower Schur convex, then

(3.4) %m / /D (z —y)? dzdy
1

S%]g (@- 0 f @) det @) @i~ [ [ 7 dsdy

(ii) Assume that the function f: D — R is M-upper Schur convez, then

35 3fle-ni@ndte-—i@odl- [ [ @)y

oD
1 2
§7M// (z —y)* dady.
2 D

(iii) Assume that the function f: D — R is (m, M)-Schur convez, then

(3.6) %m / /D (2 — 1)? dady
1

S5%[(x—y)f(%y)dwr(w—y)f(x,y)dy}—//Df(x,y)dwdy

oD
SEM‘// (m—y)dedy.
2 D

Proof. (i) Since fm, (z,y) == f (z,y) — 3m (2 + y?) is Schur convex on D, then by
(2.6) we get

[ [ty dedy < 5 4 (=) o @) da 2= 9) o o 9) ).
oD
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namely
(3.7) //D [f (r,) — 5 (7 + yﬂ dwdy
< ;82)4 {@n 1@ - Gn )| e
+(z -y {f (z,y) — %m (z? + yz)} dy} :
Since
[ [ i@ - gt o) sty = [ [ i deay
- %m//D (2 +y?) dady
and
3P {0 |fen - g a
oD

+(z—y) {f (z,y) — %m (=% + yz)} dy}

1

5P le—)f @o)do+ (@ —3) f @0) dy)

oD

— im]{ [(z®+y?) dz + (2° + y*) dy]
oD

hence, by (3.7), we get

(3.8) %m {;f [(z—y) (2* + ¥°) dz + (z — y) (2° + ¥*) dy]

—//D(;E2+y2)d$dy}

f[(a?—y)f(:my)der(x—y>f(w7y)dy}—//Df(x,y)dxdy-

oD

<

N =

Further, if we use the identity (2.1) for the function g (x,y) = 22 + y* we get

%f [(z —y) (2* + y*) dz + (z — y) (z° + ¥?) dy] —//jj(a:2+y2)d:cdy

oD
:%//DQ(x—y)dedyz//D(m—y)dedyy

which together with (3.8) gives the desired result (3.4).
The statements (ii) and (iii) follow in a similar way and we omit the details.

O
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If f is symmetric on D we have

A8f7D (I,y) = (SC — y) <8‘f§:;’ y) o 8fé-7;a y))

] ey

for all (x,y) € D.
If
of (@y) _ 9f(y,x)

_Qdz = Oz

39 0<k<
x—y

< K < oo for all (z,y) € D with « # y,

then
0<k(z-— y)2 < Aot p(z,y) <K (z —y)2 for all (z,y) € D.

By making use of Theorem 4 we can state the following result:

Corollary 4. Let 0D be a simple, closed counterclockwise curve in the xy-plane,
bounding a domain D C R? that is symmetric, convex and has a nonempty interior.
If f is continuously differentiable on the interior of D, continuous and symmetric
on D and the partial derivative % satisfies the condition (3.9), then we have the
inequalities

(310) 0< %k//D(z—y)Qd:cdy
S%j{[(x_y)f(x>y)d$+(x_y)f(%y)dy]—//Df(x,y)dxdy

oD
1

ng// (m—y)2dmdy.
)

Remark 3. If D = [a,b]* and since

b b by 3 33
/ / (x—y)2da:dy:/ (b=z) —g(w %) da:zl(b—a)4
hence by (3.10) we get

1 4
. < — —
(311) 0< k(b-a)

g/ab(x—a)f(x,a)daH—/ab(b—x)f(x,b)dz—/ab/abf(a:,y)d:z:dy

1 4
< —K((b-
< pkl-a
provided that f is continuously differentiable on the interior of [a,b]Q, continuous
and symmetric on [a,b]” and the partial derivative % satisfies the condition (3.9).

4. EXAMPLES FOR DISKS
We consider the closed disk D (O, R) centered in O (0,0) and of radius R > 0.
This is parametrized by

T =1cosf
€ [0,R], 6 €]0,27]
y=rsinf
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and the circle C (O, R) is parametrized by

= Rcosf
, 0 €]0,2n].
y = Rsin6

Observe that, if ¢ : D (O, R) — R, then

f (& —9) 6 (2,9) do + (z — ) 6 (=, ) dy]
C(O\R)

=- R(Rcosf — Rsinf)sin ¢ (Rcosf, Rsin ) df
0

2
—|—/ R(Rcosf — Rsinf) cos ¢ (Rcosf, Rsin ) df
0
27

= R? ¢ (Rcos, Rsin @) (cosd — sin0)* do.
0

Also, we have

R p2m
/ / ¢ (x,y) dedy = / / ¢ (rcosf,rsinf) rdrdf.
D(O,R) 0o Jo

Using Theorem 3 we can state the following result:

Proposition 2. If ¢ is continuously differentiable on the interior of D (O, R),
continuous and Schur convex on D (O, R), then

R 27
(4.1) / / @ (rcosf,rsinf) rdrdf
0o Jo

2m
< %RQ/ ¢ (Rcos 0, Rsin ) (cos 0 — sin ) do.
0

Now, observe that

/ / (z — y)? dady
D(O,R)

R p27m
/ / (Rcosf — Rsin®)® rdrdf
o Jo

2m
= 1R4 / (cos O — sin6)* do
2 0

1 2

= §R4/ (1 —2sinfcosf)df = mR*.
0

We also have, by Corollary 4, that:

Proposition 3. If ¢ is continuously differentiable on the interior of D (O, R), con-

tinuous and Schur convex on D (O, R) and the derivative % satisfies the condition
(8.9) on D (O, R), then

2

1 1
(4.2) §7TkR4 < §R2 ¢ (Rcos, Rsinf) (cosd — sin0)* df
0

R 2
1
*/ / ¢ (rcos@,rsinf) rdrdd < §7TKR4.
o Jo
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