# INEQUALITIES FOR DOUBLE INTEGRALS OF SCHUR CONVEX FUNCTIONS ON SYMMETRIC AND CONVEX DOMAINS 

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$


#### Abstract

In this paper, by making use of Green's identity for double integrals, we establish some integral inequalities for Schur convex functions defined on domains $D \subset \mathbb{R}^{2}$ that are symmetric, convex and have nonempty interiors. Examples for squares and disks are also provided.


## 1. Introduction

For any $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, let $x_{[1]} \geq \ldots \geq x_{[n]}$ denote the components of $x$ in decreasing order, and let $x_{\downarrow}=\left(x_{[1]}, \ldots, x_{[n]}\right)$ denote the decreasing rearrangement of $x$. For $x, y \in \mathbb{R}^{n}, x \prec y$ if, by definition,

$$
\left\{\begin{array}{l}
\sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]}, k=1, \ldots, n-1 ; \\
\sum_{i=1}^{n} x_{[i]}=\sum_{i=1}^{n} y_{[i]} .
\end{array}\right.
$$

When $x \prec y, x$ is said to be majorized by $y$ ( $y$ majorizes $x$ ). This notation and terminology was introduced by Hardy, Littlewood and Pólya in 1934.

Functions that preserve the ordering of majorization are said to be Schur-convex. Perhaps "Schur-increasing" would be more appropriate, but the term "Schur-convex" is by now well entrenched in the literature, [3, p.80].

A real-valued function $\phi$ defined on a set $\mathcal{A} \subset \mathbb{R}^{n}$ is said to be Schur-convex on $\mathcal{A}$ if

$$
\begin{equation*}
x \prec y \text { on } \mathcal{A} \Rightarrow \phi(x) \leq \phi(y) \tag{1.1}
\end{equation*}
$$

If, in addition, $\phi(x)<\phi(y)$ whenever $x \prec y$ but $x$ is not a permutation of $y$, then $\phi$ is said to be strictly Schur-convex on $\mathcal{A}$. If $\mathcal{A}=\mathbb{R}^{n}$, then $\phi$ is simply said to be Schur-convex or strictly Schur-convex.

For fundamental properties of Schur convexity see the monograph [3] and the references therein. For some recent results, see [1]-[2] and [4]-[6].

The following result is known in the literature as Schur-Ostrowski theorem [3, p. 84]:
Theorem 1. Let $I \subset \mathbb{R}$ be an open interval and let $\phi: I^{n} \rightarrow \mathbb{R}$ be continuously differentiable. Necessary and sufficient conditions for $\phi$ to be Schur-convex on $I^{n}$ are

$$
\begin{equation*}
\phi \text { is symmetric on } I^{n}, \tag{1.2}
\end{equation*}
$$

[^0]and for all $i \neq j$, with $i, j \in\{1, \ldots, n\}$,
\[

$$
\begin{equation*}
\left(z_{i}-z_{j}\right)\left[\frac{\partial \phi(z)}{\partial x_{i}}-\frac{\partial \phi(z)}{\partial x_{j}}\right] \geq 0 \text { for all } z \in I^{n} \tag{1.3}
\end{equation*}
$$

\]

where $\frac{\partial \phi}{\partial x_{k}}$ denotes the partial derivative of $\phi$ with respect to its $k$-th argument.
With the aid of (1.2), condition (1.3) can be replaced by the condition

$$
\begin{equation*}
\left(z_{1}-z_{2}\right)\left[\frac{\partial \phi(z)}{\partial x_{1}}-\frac{\partial \phi(z)}{\partial x_{2}}\right] \geq 0 \text { for all } z \in I^{n} \tag{1.4}
\end{equation*}
$$

This simplified condition is sometimes more convenient to verify.
The above condition is not sufficiently general for all applications because the domain of $\phi$ may not be a Cartesian product.

Let $\mathcal{A} \subset \mathbb{R}^{n}$ be a set with the following properties:
(i) $\mathcal{A}$ is symmetric in the sense that $x \in \mathcal{A} \Rightarrow x \Pi \in \mathcal{A}$ for all permutations $\Pi$ of the coordinates.
(ii) $\mathcal{A}$ is convex and has a nonempty interior.

We have the following result, [3, p. 85].
Theorem 2. If $\phi$ is continuously differentiable on the interior of $\mathcal{A}$ and continuous on $\mathcal{A}$, then necessary and sufficient conditions for $\phi$ to be Schur-convex on $\mathcal{A}$ are

$$
\begin{equation*}
\phi \text { is symmetric on } \mathcal{A} \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(z_{1}-z_{2}\right)\left[\frac{\partial \phi(z)}{\partial x_{1}}-\frac{\partial \phi(z)}{\partial x_{2}}\right] \geq 0 \text { for all } z \in \mathcal{A} \tag{1.6}
\end{equation*}
$$

It is well known that any symmetric convex function defined on a symmetric convex set $\mathcal{A}$ is Schur convex, [3, p. 97]. If the function $\phi: \mathcal{A} \rightarrow \mathbb{R}$ is symmetric and quasi-convex, namely

$$
\phi(\alpha u+(1-\alpha) v) \leq \max \{\phi(u), \phi(v)\}
$$

for all $\alpha \in[0,1]$ and $u, v \in \mathcal{A}$, a symmetric convex set, then $\phi$ is Schur convex on $\mathcal{A}$ [3, p. 98].

In this paper we establish some integral inequalities for Schur convex functions defined on domains $D \subset \mathbb{R}^{2}$ that are symmetric, convex and have nonempty interiors. Examples for squares and disks are also provided.

## 2. Main Results

For a function $f: D \rightarrow \mathbb{C}$ having partial derivatives on the domain $D \subset \mathbb{R}^{2}$ we define $\Lambda_{\partial f, D}: D \rightarrow \mathbb{C}$ as

$$
\Lambda_{\partial f, D}(x, y):=(x-y)\left(\frac{\partial f(x, y)}{\partial x}-\frac{\partial f(x, y)}{\partial y}\right)
$$

Let $\partial D$ be a simple, closed counterclockwise curve in the $x y$-plane, bounding a region $D$. Let $L$ and $M$ be scalar functions defined at least on an open set containing $D$. Assume $L$ and $M$ have continuous first partial derivatives. Then the following
equality is well known as the Green theorem (see https://en.wikipedia.org/wiki/ Green\%27s_theorem)

$$
\begin{equation*}
\iint_{D}\left(\frac{\partial M(x, y)}{\partial x}-\frac{\partial L(x, y)}{\partial y}\right) d x d y=\oint_{\partial D}(L(x, y) d x+M(x, y) d y) \tag{G}
\end{equation*}
$$

By applying this equality for real and imaginary parts, we can also state it for complex valued functions $P$ and $Q$.

Moreover, if the curve $\partial D$ is described by the function $r(t)=(x(t), y(t))$, $t \in[a, b]$, with $x, y$ differentiable on $(a, b)$ then we can calculate the path integral as

$$
\oint_{\partial D}(L(x, y) d x+M(x, y) d y)=\int_{a}^{b}\left[L(x(t), y(t)) x^{\prime}(t)+M(x(t), y(t)) y^{\prime}(t)\right] d t
$$

We have the following identity of interest:
Lemma 1. Let $\partial D$ be a simple, closed counterclockwise curve in the xy-plane, bounding a region $D$. Assume that the function $f: D \rightarrow \mathbb{C}$ has continuous partial derivatives on the domain $D$. Then

$$
\begin{align*}
\frac{1}{2} \oint_{\partial D}[(x-y) f(x, y) d x+(x-y) f(x, y) d y] & -\iint_{D} f(x, y) d x d y  \tag{2.1}\\
& =\frac{1}{2} \iint_{D} \Lambda_{\partial f, D}(x, y) d x d y
\end{align*}
$$

Proof. Consider the functions

$$
M(x, y):=(x-y) f(x, y) \text { and } L(x, y):=(x-y) f(x, y)
$$

for $(x, y) \in D$.
We have

$$
\frac{\partial}{\partial x}[(x-y) f(x, y)]=f(x, y)+(x-y) \frac{\partial f(x, y)}{\partial x}
$$

and

$$
\frac{\partial}{\partial y}[(y-x) f(x, y)]=f(x, y)+(y-x) \frac{\partial f(x, y)}{\partial y}
$$

for $(x, y) \in D$.
If we add these two equalities, then we get

$$
\begin{equation*}
\frac{\partial M(x, y)}{\partial x}-\frac{\partial L(x, y)}{\partial y}=2 f(x, y)+\Lambda_{\partial f, D}(x, y) \tag{2.2}
\end{equation*}
$$

for $(x, y) \in D$.
If we integrate this equality on $D$, then we obtain

$$
\begin{align*}
& \iint_{D}\left(\frac{\partial M(x, y)}{\partial x}-\frac{\partial L(x, y)}{\partial y}\right) d x d y  \tag{2.3}\\
& =2 \iint_{D} f(x, y) d x d y+\iint_{D} \Lambda_{\partial f, D}(x, y) d x d y
\end{align*}
$$

From Green's identity we also have

$$
\begin{align*}
\iint_{D}\left(\frac{\partial M(x, y)}{\partial x}-\frac{\partial L(x, y)}{\partial y}\right) d x d y=\oint_{\partial D}(L(x, y) d x+M(x, y) d y)  \tag{2.4}\\
=\oint_{\partial D}[(x-y) f(x, y) d x+(x-y) f(x, y) d y]
\end{align*}
$$

By employing (2.3) and (2.4) we deduce the desired equality (2.1).

Corollary 1. With the assumptions of Lemma 1 and if the curve $\partial D$ is described by the function $r(t)=(x(t), y(t)), t \in[a, b]$, with $x$, $y$ differentiable on $(a, b)$, then

$$
\begin{array}{r}
\frac{1}{2} \int_{a}^{b}(x(t)-y(t)) f(x(t), y(t))\left(x^{\prime}(t)+y^{\prime}(t)\right) d t-\iint_{D} f(x, y) d x d y  \tag{2.5}\\
=\frac{1}{2} \iint_{D} \Lambda_{\partial f, D}(x, y) d x d y
\end{array}
$$

We have the following result for Schur convex functions defined on symmetric convex domains of $\mathbb{R}^{2}$.

Theorem 3. Let $D \subset \mathbb{R}^{2}$ be symmetric, convex and has a nonempty interior. If $\phi$ is continuously differentiable on the interior of $D$, continuous and Schur convex on $D$ and $\partial D$ is a simple, closed counterclockwise curve in the xy-plane bounding $D$, then

$$
\begin{equation*}
\iint_{D} \phi(x, y) d x d y \leq \frac{1}{2} \oint_{\partial D}[(x-y) \phi(x, y) d x+(x-y) \phi(x, y) d y] \tag{2.6}
\end{equation*}
$$

If $\phi$ is Schur concave on $D$, then the sign of inequality reverses in (2.6).
The proof follows by Lemma 1 and Theorem 1.
Corollary 2. Let $D \subset \mathbb{R}^{2}$ be symmetric, convex and has a nonempty interior. If $\phi$ is continuously differentiable on the interior of $D$, continuous and convex or quasiconvex on $D$ and $\partial D$ is a simple, closed counterclockwise curve in the xy-plane bounding $D$, then the inequality (2.6) is valid.

Remark 1. With the assumptions of Theorem 3 and if the curve $\partial D$ is described by the function $r(t)=(x(t), y(t)), t \in[a, b]$, with $x$, $y$ differentiable on $(a, b)$, then

$$
\begin{equation*}
\iint_{D} \phi(x, y) d x d y \leq \frac{1}{2} \int_{a}^{b}(x(t)-y(t)) \phi(x(t), y(t))\left(x^{\prime}(t)+y^{\prime}(t)\right) d t \tag{2.7}
\end{equation*}
$$

Let $a<b$. Put $A=(a, a), B=(b, a), C=(b, b), D=(a, b) \in \mathbb{R}^{2}$ the vertices of the square $A B C D=[a, b]^{2}$. Consider the counterclockwise segments

$$
\begin{aligned}
& A B:\left\{\begin{array}{l}
x=(1-t) a+t b \\
y=a
\end{array}, t \in[0,1]\right. \\
& B C:\left\{\begin{array}{l}
x=b \\
y=(1-t) a+t b
\end{array}, t \in[0,1]\right. \\
& C D:\left\{\begin{array}{l}
x=(1-t) b+t a \\
y=b
\end{array}, t \in[0,1]\right.
\end{aligned}
$$

and

$$
D A:\left\{\begin{array}{l}
x=a \\
y=(1-t) b+t a
\end{array}, t \in[0,1] .\right.
$$

Therefore $\partial(A B C D)=A B \cup B C \cup C D \cup D A$.
For any function $f$ defined on $A B C D$, we have

$$
\begin{aligned}
& \oint_{A B}[(x-y) f(x, y) d x+(x-y) f(x, y) d y] \\
& =(b-a) \int_{0}^{1}((1-t) a+t b-a) f((1-t) a+t b, a) d t \\
& =(b-a)^{2} \int_{0}^{1} t f((1-t) a+t b, a) d t \\
& \quad \oint_{B C}[(x-y) f(x, y) d x+(x-y) f(x, y) d y] \\
& \quad=(b-a) \int_{0}^{1}(b-(1-t) a-t b) f(b,(1-t) a+t b) d t \\
& \quad=(b-a)^{2} \int_{0}^{1}(1-t) f(b,(1-t) a+t b) d t \\
& \oint_{C D}[(x-y) f(x, y) d x+(x-y) f(x, y) d y] \\
& =(a-b) \int_{0}^{1}((1-t) b+t a-b) f((1-t) b+t a, b) d t \\
& =(a-b)^{2} \int_{0}^{1} t f((1-t) b+t a, b) d t \\
& =(a-b)^{2} \int_{0}^{1}(1-t) f((1-t) a+t b, b) d t(\text { by change of variable })
\end{aligned}
$$

and

$$
\begin{aligned}
& \oint_{D A}[(x-y) f(x, y) d x+(x-y) f(x, y) d y] \\
& =(a-b) \int_{0}^{1}(a-(1-t) b-t a) f(a,(1-t) b+t a) d t \\
& =(a-b)^{2} \int_{0}^{1}(1-t) f(a,(1-t) b+t a) d t \\
& =(a-b)^{2} \int_{0}^{1} t f(a,(1-t) a+t b) d t \text { (by change of variable). }
\end{aligned}
$$

Therefore

$$
\begin{gathered}
=(b-a)^{2} \int_{0}^{1} t f((1-t) a+t b, a) d t+(b-a)^{2} \int_{0}^{1}(1-t) f(b,(1-t) a+t b) d t \\
+(b-a)^{2} \int_{0}^{1}(1-t) f((1-t) a+t b, b) d t+(b-a)^{2} \int_{0}^{1} t f(a,(1-t) a+t b) d t \\
=(b-a)^{2} \int_{0}^{1} t[f((1-t) a+t b, a)+f(a,(1-t) a+t b)] d t \\
\quad+(b-a)^{2} \int_{0}^{1}(1-t)[f(b,(1-t) a+t b)+f((1-t) a+t b, b)] d t .
\end{gathered}
$$

Since the vast majority of examples of Schur convex functions are defined on the Cartesian product of intervals, we can state the following result of interest:

Corollary 3. If $\phi$ is continuously differentiable on the interior of $D=[a, b]^{2}$, continuous on $D$ and Schur convex, then

$$
\begin{align*}
\frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} \phi(x, y) d x d y \leq \int_{0}^{1} t \phi & ((1-t) a+t b, a) d t  \tag{2.9}\\
& +\int_{0}^{1}(1-t) \phi((1-t) a+t b, b) d t
\end{align*}
$$

Proof. From (2.6) we get

$$
\begin{align*}
& \frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} \phi(x, y) d x d y  \tag{2.10}\\
& \leq \int_{0}^{1} t\left[\frac{\phi((1-t) a+t b, a)+\phi(a,(1-t) a+t b)}{2}\right] d t \\
& \\
& \quad+\int_{0}^{1}(1-t)\left[\frac{\phi((1-t) a+t b, b)+\phi(b,(1-t) a+t b)}{2}\right] d t
\end{align*}
$$

Since $\phi$ is symmetric on $D=[a, b]^{2}$, hence

$$
\phi((1-t) a+t b, a)=\phi(a,(1-t) a+t b)
$$

and

$$
\phi((1-t) a+t b, b)=\phi(b,(1-t) a+t b)
$$

for all $t \in[0,1]$ and by (2.10) we get (2.9).
Remark 2. By making the change of variable $x=(1-t) a+t b, t \in[0,1]$, then $d x=(b-a) d t, t=\frac{x-a}{b-a}$ and by (2.9) we get

$$
\begin{align*}
& \frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} \phi(x, y) d x d y  \tag{2.11}\\
& \leq \frac{1}{b-a} \int_{a}^{b} \frac{x-a}{b-a} \phi(x, a) d x+\frac{1}{b-a} \int_{a}^{b} \frac{b-x}{b-a} \phi(x, b) d x,
\end{align*}
$$

or, equivalently,

$$
\begin{equation*}
\int_{a}^{b} \int_{a}^{b} \phi(x, y) d x d y \leq \int_{a}^{b}(x-a) \phi(x, a) d x+\int_{a}^{b}(b-x) \phi(x, b) d x . \tag{2.12}
\end{equation*}
$$

## 3. Lower and Upper Schur Convexity

Start with the following extensions of Schur convex functions:
Definition 1. Let $D$ be symmetric, convex and has a nonempty interior in $\mathbb{R}^{2}$ and a symmetric function $f: D \rightarrow \mathbb{R}$ having continuous partial derivatives on $D \subset \mathbb{R}^{2}$.
(i) For $m \in \mathbb{R}, f$ is called $m$-lower Schur convex on $D$ if

$$
\begin{equation*}
m(x-y)^{2} \leq \Lambda_{\partial f, D}(x, y) \text { for all }(x, y) \in D \tag{3.1}
\end{equation*}
$$

(ii) For $M \in \mathbb{R}, f$ is called $M$-upper Schur convex on $D$ if

$$
\begin{equation*}
\Lambda_{\partial f, D}(x, y) \leq M(x-y)^{2} \text { for all }(x, y) \in D \tag{3.2}
\end{equation*}
$$

(iii) For $m, M \in \mathbb{R}$ with $m<M, f$ is called $(m, M)$-Schur convex on $D$ if

$$
\begin{equation*}
m(x-y)^{2} \leq \Lambda_{\partial f, D}(x, y) \leq M(x-y)^{2} \text { for all }(x, y) \in D \tag{3.3}
\end{equation*}
$$

We have the following simple but useful result :
Proposition 1. Let $D$ be symmetric, convex and has a nonempty interior in $\mathbb{R}^{2}$ and a symmetric function $f: D \rightarrow \mathbb{R}$ having continuous partial derivatives on $D \subset \mathbb{R}^{2}$.
(i) For $m \in \mathbb{R}$, $f$ is $m$-lower Schur convex on $D$ iff $f_{m}: D \rightarrow \mathbb{R}$,

$$
f_{m}(x, y):=f(x, y)-\frac{1}{2} m\left(x^{2}+y^{2}\right)
$$

is Schur convex on D.
(ii) For $M \in \mathbb{R}, f$ is $M$-upper Schur convex on $D$ iff $f_{M}: D \rightarrow \mathbb{R}$,

$$
f_{M}(x, y):=\frac{1}{2} M\left(x^{2}+y^{2}\right)-f(x, y)
$$

is Schur convex on $D$.
(iii) For $m, M \in \mathbb{R}$ with $m<M$, $f$ is $(m, M)$-Schur convex on $D$ iff $f_{m}$ and $f_{M}$ are Schur convex on $D$.

Proof. (i). Observe that

$$
\begin{aligned}
\Lambda_{\partial f_{m}, D}(x, y) & =(x-y)\left(\frac{\partial f_{m}(x, y)}{\partial x}-\frac{\partial f_{m}(x, y)}{\partial y}\right) \\
& =(x-y)\left(\frac{\partial f(x, y)}{\partial x}-m x-\frac{\partial f(x, y)}{\partial y}+m y\right) \\
& =(x-y)\left(\frac{\partial f(x, y)}{\partial x}-\frac{\partial f(x, y)}{\partial y}-m(x-y)\right) \\
& =\Lambda_{\partial f, D}(x, y)-m(x-y)^{2}
\end{aligned}
$$

for all $(x, y) \in D$, which proves the statement.
The statements (ii) and (iii) follow in a similar way.

We have:
Theorem 4. Let $\partial D$ be a simple, closed counterclockwise curve in the xy-plane, bounding a domain $D \subset \mathbb{R}^{2}$ that is symmetric, convex and has a nonempty interior.
(i) Assume that the function $f: D \rightarrow \mathbb{R}$ is m-lower Schur convex, then

$$
\begin{align*}
& \frac{1}{2} m \iint_{D}(x-y)^{2} d x d y  \tag{3.4}\\
& \leq \frac{1}{2} \oint_{\partial D}[(x-y) f(x, y) d x+(x-y) f(x, y) d y]-\iint_{D} f(x, y) d x d y
\end{align*}
$$

(ii) Assume that the function $f: D \rightarrow \mathbb{R}$ is $M$-upper Schur convex, then

$$
\begin{align*}
& \frac{1}{2} \oint_{\partial D}[(x-y) f(x, y) d x+(x-y) f(x, y) d y]-\iint_{D} f(x, y) d x d y  \tag{3.5}\\
& \leq \frac{1}{2} M \iint_{D}(x-y)^{2} d x d y
\end{align*}
$$

(iii) Assume that the function $f: D \rightarrow \mathbb{R}$ is $(m, M)$-Schur convex, then

$$
\begin{align*}
& \frac{1}{2} m \iint_{D}(x-y)^{2} d x d y  \tag{3.6}\\
& \leq \frac{1}{2} \oint_{\partial D}[(x-y) f(x, y) d x+(x-y) f(x, y) d y]-\iint_{D} f(x, y) d x d y \\
& \leq \frac{1}{2} M \iint_{D}(x-y)^{2} d x d y
\end{align*}
$$

Proof. (i) Since $f_{m}(x, y):=f(x, y)-\frac{1}{2} m\left(x^{2}+y^{2}\right)$ is Schur convex on $D$, then by (2.6) we get

$$
\iint_{D} f_{m}(x, y) d x d y \leq \frac{1}{2} \oint_{\partial D}\left[(x-y) f_{m}(x, y) d x+(x-y) f_{m}(x, y) d y\right]
$$

namely

$$
\begin{align*}
& \iint_{D}\left[f(x, y)-\frac{1}{2} m\left(x^{2}+y^{2}\right)\right] d x d y  \tag{3.7}\\
& \leq \frac{1}{2} \oint_{\partial D}\left\{(x-y)\left[f(x, y)-\frac{1}{2} m\left(x^{2}+y^{2}\right)\right] d x\right. \\
& \left.+(x-y)\left[f(x, y)-\frac{1}{2} m\left(x^{2}+y^{2}\right)\right] d y\right\}
\end{align*}
$$

Since

$$
\begin{aligned}
\iint_{D}\left[f(x, y)-\frac{1}{2} m\left(x^{2}+y^{2}\right)\right] d x d y & =\iint_{D} f(x, y) d x d y \\
& -\frac{1}{2} m \iint_{D}\left(x^{2}+y^{2}\right) d x d y
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{1}{2} \oint_{\partial D}\left\{(x-y)\left[f(x, y)-\frac{1}{2} m\left(x^{2}+y^{2}\right)\right] d x\right. \\
& \left.+(x-y)\left[f(x, y)-\frac{1}{2} m\left(x^{2}+y^{2}\right)\right] d y\right\} \\
& =\frac{1}{2} \oint_{\partial D}[(x-y) f(x, y) d x+(x-y) f(x, y) d y] \\
& -\frac{1}{4} m \oint_{\partial D}\left[\left(x^{2}+y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y\right],
\end{aligned}
$$

hence, by (3.7), we get

$$
\begin{align*}
& \frac{1}{2} m\left\{\frac{1}{2} \oint_{\partial D}\left[(x-y)\left(x^{2}+y^{2}\right) d x+(x-y)\left(x^{2}+y^{2}\right) d y\right]\right.  \tag{3.8}\\
& \left.\quad-\iint_{D}\left(x^{2}+y^{2}\right) d x d y\right\} \\
& \quad \leq \frac{1}{2} \oint_{\partial D}[(x-y) f(x, y) d x+(x-y) f(x, y) d y]-\iint_{D} f(x, y) d x d y
\end{align*}
$$

Further, if we use the identity (2.1) for the function $g(x, y)=x^{2}+y^{2}$ we get

$$
\begin{aligned}
\frac{1}{2} \oint_{\partial D}\left[(x-y)\left(x^{2}+y^{2}\right) d x+\right. & \left.(x-y)\left(x^{2}+y^{2}\right) d y\right]-\iint_{D}\left(x^{2}+y^{2}\right) d x d y \\
& =\frac{1}{2} \iint_{D} 2(x-y)^{2} d x d y=\iint_{D}(x-y)^{2} d x d y
\end{aligned}
$$

which together with (3.8) gives the desired result (3.4).
The statements (ii) and (iii) follow in a similar way and we omit the details.

If $f$ is symmetric on $D$ we have

$$
\begin{aligned}
\Lambda_{\partial f, D}(x, y) & =(x-y)\left(\frac{\partial f(x, y)}{\partial x}-\frac{\partial f(x, y)}{\partial y}\right) \\
& =(x-y)\left(\frac{\partial f(x, y)}{\partial x}-\frac{\partial f(y, x)}{\partial x}\right)
\end{aligned}
$$

for all $(x, y) \in D$.
If

$$
\begin{equation*}
0<k \leq\left|\frac{\frac{\partial f(x, y)}{\partial x}-\frac{\partial f(y, x)}{\partial x}}{x-y}\right| \leq K<\infty \text { for all }(x, y) \in D \text { with } x \neq y \tag{3.9}
\end{equation*}
$$

then

$$
0 \leq k(x-y)^{2} \leq \Lambda_{\partial f, D}(x, y) \leq K(x-y)^{2} \text { for all }(x, y) \in D
$$

By making use of Theorem 4 we can state the following result:
Corollary 4. Let $\partial D$ be a simple, closed counterclockwise curve in the xy-plane, bounding a domain $D \subset \mathbb{R}^{2}$ that is symmetric, convex and has a nonempty interior. If $f$ is continuously differentiable on the interior of $D$, continuous and symmetric on $D$ and the partial derivative $\frac{\partial f}{\partial x}$ satisfies the condition (3.9), then we have the inequalities

$$
\begin{align*}
0 & \leq \frac{1}{2} k \iint_{D}(x-y)^{2} d x d y  \tag{3.10}\\
& \leq \frac{1}{2} \oint_{\partial D}[(x-y) f(x, y) d x+(x-y) f(x, y) d y]-\iint_{D} f(x, y) d x d y \\
& \leq \frac{1}{2} K \iint_{D}(x-y)^{2} d x d y
\end{align*}
$$

Remark 3. If $D=[a, b]^{2}$ and since

$$
\int_{a}^{b} \int_{a}^{b}(x-y)^{2} d x d y=\int_{a}^{b} \frac{(b-x)^{3}+(x-a)^{3}}{3} d x=\frac{1}{6}(b-a)^{4}
$$

hence by (3.10) we get

$$
\begin{align*}
0 & \leq \frac{1}{12} k(b-a)^{4}  \tag{3.11}\\
& \leq \int_{a}^{b}(x-a) f(x, a) d x+\int_{a}^{b}(b-x) f(x, b) d x-\int_{a}^{b} \int_{a}^{b} f(x, y) d x d y \\
& \leq \frac{1}{12} K(b-a)^{4}
\end{align*}
$$

provided that $f$ is continuously differentiable on the interior of $[a, b]^{2}$, continuous and symmetric on $[a, b]^{2}$ and the partial derivative $\frac{\partial f}{\partial x}$ satisfies the condition (3.9).

## 4. Examples for Disks

We consider the closed disk $D(O, R)$ centered in $O(0,0)$ and of radius $R>0$. This is parametrized by

$$
\left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta
\end{array}, r \in[0, R], \theta \in[0,2 \pi]\right.
$$

and the circle $\mathcal{C}(O, R)$ is parametrized by

$$
\left\{\begin{array}{l}
x=R \cos \theta \\
y=R \sin \theta
\end{array}, \theta \in[0,2 \pi]\right.
$$

Observe that, if $\phi: D(O, R) \rightarrow \mathbb{R}$, then

$$
\begin{aligned}
& \oint_{\mathcal{C}(O, R)}[(x-y) \phi(x, y) d x+(x-y) \phi(x, y) d y] \\
= & -\int_{0}^{2 \pi} R(R \cos \theta-R \sin \theta) \sin \theta \phi(R \cos \theta, R \sin \theta) d \theta \\
+ & \int_{0}^{2 \pi} R(R \cos \theta-R \sin \theta) \cos \theta \phi(R \cos \theta, R \sin \theta) d \theta \\
= & R^{2} \int_{0}^{2 \pi} \phi(R \cos \theta, R \sin \theta)(\cos \theta-\sin \theta)^{2} d \theta
\end{aligned}
$$

Also, we have

$$
\iint_{D(O, R)} \phi(x, y) d x d y=\int_{0}^{R} \int_{0}^{2 \pi} \phi(r \cos \theta, r \sin \theta) r d r d \theta
$$

Using Theorem 3 we can state the following result:
Proposition 2. If $\phi$ is continuously differentiable on the interior of $D(O, R)$, continuous and Schur convex on $D(O, R)$, then

$$
\begin{align*}
& \int_{0}^{R} \int_{0}^{2 \pi} \phi(r \cos \theta, r \sin \theta) r d r d \theta  \tag{4.1}\\
& \leq \frac{1}{2} R^{2} \int_{0}^{2 \pi} \phi(R \cos \theta, R \sin \theta)(\cos \theta-\sin \theta)^{2} d \theta
\end{align*}
$$

Now, observe that

$$
\begin{aligned}
\iint_{D(O, R)}(x-y)^{2} d x d y & =\int_{0}^{R} \int_{0}^{2 \pi}(R \cos \theta-R \sin \theta)^{2} r d r d \theta \\
& =\frac{1}{2} R^{4} \int_{0}^{2 \pi}(\cos \theta-\sin \theta)^{2} d \theta \\
& =\frac{1}{2} R^{4} \int_{0}^{2 \pi}(1-2 \sin \theta \cos \theta) d \theta=\pi R^{4}
\end{aligned}
$$

We also have, by Corollary 4, that:
Proposition 3. If $\phi$ is continuously differentiable on the interior of $D(O, R)$, continuous and Schur convex on $D(O, R)$ and the derivative $\frac{\partial f}{\partial x}$ satisfies the condition (3.9) on $D(O, R)$, then

$$
\begin{align*}
\frac{1}{2} \pi k R^{4} \leq \frac{1}{2} R^{2} \int_{0}^{2 \pi} \phi(R \cos \theta & , R \sin \theta)(\cos \theta-\sin \theta)^{2} d \theta  \tag{4.2}\\
& -\int_{0}^{R} \int_{0}^{2 \pi} \phi(r \cos \theta, r \sin \theta) r d r d \theta \leq \frac{1}{2} \pi K R^{4}
\end{align*}
$$

## References

[1] V. Čuljak, A remark on Schur-convexity of the mean of a convex function. J. Math. Inequal. 9 (2015), no. 4, 1133-1142.
[2] S. S. Dragomir and K. Nikodem, Functions generating ( $m, M, \Psi$ )-Schur-convex sums. Aequationes Math. 93 (2019), no. 1, 79-90.
[3] A. W. Marshall, I. Olkin and B. C. Arnold, Inequalities: Theory of Majorization and Its Applications, Second Edition, Springer New York Dordrecht Heidelberg London, 2011.
[4] K. Nikodem, T. Rajba and S. Wąsowicz, Functions generating strongly Schur-convex sums. Inequalities and applications 2010, 175-182, Internat. Ser. Numer. Math., 161, Birkhäuser/Springer, Basel, 2012.
[5] J. Qi and W. Wang, Schur convex functions and the Bonnesen style isoperimetric inequalities for planar convex polygons. J. Math. Inequal. 12 (2018), no. 1, 23-29.
[6] H.-N. Shi and J. Zhang, Compositions involving Schur harmonically convex functions. J. Comput. Anal. Appl. 22 (2017), no. 5, 907-922.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428 , Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the WitwaterSrand, , Private Bag 3, Johannesburg 2050, South Africa


[^0]:    1991 Mathematics Subject Classification. 26D15.
    Key words and phrases. Schur convex functions, Double integral inequalities.

