
INEQUALITIES FOR DOUBLE INTEGRALS OF SCHUR
CONVEX FUNCTIONS ON SYMMETRIC AND CONVEX

DOMAINS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper, by making use of Green�s identity for double inte-
grals, we establish some integral inequalities for Schur convex functions de�ned
on domains D � R2 that are symmetric, convex and have nonempty interiors.
Examples for squares and disks are also provided.

1. Introduction

For any x = (x1; :::; xn) 2 Rn, let x[1] � ::: � x[n] denote the components of x in
decreasing order, and let x# =

�
x[1]; :::; x[n]

�
denote the decreasing rearrangement

of x. For x; y 2 Rn, x � y if, by de�nition,8<:
Pk

i=1 x[i] �
Pk

i=1 y[i]; k = 1; :::; n� 1;Pn
i=1 x[i] =

Pn
i=1 y[i]:

When x � y, x is said to be majorized by y (y majorizes x). This notation and
terminology was introduced by Hardy, Littlewood and Pólya in 1934.
Functions that preserve the ordering of majorization are said to be Schur-convex.

Perhaps �Schur-increasing�would be more appropriate, but the term �Schur-convex�
is by now well entrenched in the literature, [3, p.80].
A real-valued function � de�ned on a set A � Rn is said to be Schur-convex on

A if

(1.1) x � y on A ) � (x) � � (y) :
If, in addition, � (x) < � (y) whenever x � y but x is not a permutation of y, then
� is said to be strictly Schur-convex on A. If A = Rn, then � is simply said to be
Schur-convex or strictly Schur-convex.
For fundamental properties of Schur convexity see the monograph [3] and the

references therein. For some recent results, see [1]-[2] and [4]-[6].
The following result is known in the literature as Schur-Ostrowski theorem [3, p.

84]:

Theorem 1. Let I � R be an open interval and let � : In ! R be continuously
di¤erentiable. Necessary and su¢ cient conditions for � to be Schur-convex on In

are

(1.2) � is symmetric on In;
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and for all i 6= j, with i; j 2 f1; :::; ng ;

(1.3) (zi � zj)
�
@�(z)

@xi
� @�(z)

@xj

�
� 0 for all z 2 In;

where @�
@xk

denotes the partial derivative of � with respect to its k-th argument.

With the aid of (1.2), condition (1.3) can be replaced by the condition

(1.4) (z1 � z2)
�
@�(z)

@x1
� @�(z)

@x2

�
� 0 for all z 2 In:

This simpli�ed condition is sometimes more convenient to verify.
The above condition is not su¢ ciently general for all applications because the

domain of � may not be a Cartesian product.
Let A � Rn be a set with the following properties:
(i) A is symmetric in the sense that x 2 A ) x� 2 A for all permutations � of

the coordinates.
(ii) A is convex and has a nonempty interior.
We have the following result, [3, p. 85].

Theorem 2. If � is continuously di¤erentiable on the interior of A and continuous
on A, then necessary and su¢ cient conditions for � to be Schur-convex on A are

(1.5) � is symmetric on A

and

(1.6) (z1 � z2)
�
@�(z)

@x1
� @�(z)

@x2

�
� 0 for all z 2 A:

It is well known that any symmetric convex function de�ned on a symmetric
convex set A is Schur convex, [3, p. 97]. If the function � : A ! R is symmetric
and quasi-convex, namely

� (�u+ (1� �) v) � max f� (u) ; � (v)g

for all � 2 [0; 1] and u; v 2 A, a symmetric convex set, then � is Schur convex on
A [3, p. 98].
In this paper we establish some integral inequalities for Schur convex functions

de�ned on domains D � R2 that are symmetric, convex and have nonempty inte-
riors. Examples for squares and disks are also provided.

2. Main Results

For a function f : D ! C having partial derivatives on the domain D � R2 we
de�ne �@f;D : D ! C as

�@f;D (x; y) := (x� y)
�
@f (x; y)

@x
� @f (x; y)

@y

�
:

Let @D be a simple, closed counterclockwise curve in the xy-plane, bounding a
regionD. Let L andM be scalar functions de�ned at least on an open set containing
D. Assume L and M have continuous �rst partial derivatives. Then the following
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equality is well known as the Green theorem (see https://en.wikipedia.org/wiki/
Green%27s_theorem)

(G)
Z Z

D

�
@M (x; y)

@x
� @L (x; y)

@y

�
dxdy =

I
@D

(L (x; y) dx+M (x; y) dy) :

By applying this equality for real and imaginary parts, we can also state it for
complex valued functions P and Q:
Moreover, if the curve @D is described by the function r (t) = (x (t) ; y (t)) ;

t 2 [a; b] ; with x, y di¤erentiable on (a; b) then we can calculate the path integral
asI
@D

(L (x; y) dx+M (x; y) dy) =

Z b

a

[L (x (t) ; y (t))x0 (t) +M (x (t) ; y (t)) y0 (t)] dt:

We have the following identity of interest:

Lemma 1. Let @D be a simple, closed counterclockwise curve in the xy-plane,
bounding a region D. Assume that the function f : D ! C has continuous partial
derivatives on the domain D: Then

(2.1)
1

2

I
@D

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy]�
Z Z

D

f (x; y) dxdy

=
1

2

Z Z
D

�@f;D (x; y) dxdy:

Proof. Consider the functions

M (x; y) := (x� y) f (x; y) and L (x; y) := (x� y) f (x; y)

for (x; y) 2 D:
We have

@

@x
[(x� y) f (x; y)] = f (x; y) + (x� y) @f (x; y)

@x

and
@

@y
[(y � x) f (x; y)] = f (x; y) + (y � x) @f (x; y)

@y

for (x; y) 2 D:
If we add these two equalities, then we get

(2.2)
@M (x; y)

@x
� @L (x; y)

@y
= 2f (x; y) + �@f;D (x; y)

for (x; y) 2 D:
If we integrate this equality on D; then we obtain

(2.3)
Z Z

D

�
@M (x; y)

@x
� @L (x; y)

@y

�
dxdy

= 2

Z Z
D

f (x; y) dxdy +

Z Z
D

�@f;D (x; y) dxdy:
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From Green�s identity we also have

(2.4)
Z Z

D

�
@M (x; y)

@x
� @L (x; y)

@y

�
dxdy =

I
@D

(L (x; y) dx+M (x; y) dy)

=

I
@D

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy] :

By employing (2.3) and (2.4) we deduce the desired equality (2.1). �

Corollary 1. With the assumptions of Lemma 1 and if the curve @D is described
by the function r (t) = (x (t) ; y (t)) ; t 2 [a; b] ; with x, y di¤erentiable on (a; b) ;
then

(2.5)
1

2

Z b

a

(x (t)� y (t)) f (x (t) ; y (t)) (x0 (t) + y0 (t)) dt�
Z Z

D

f (x; y) dxdy

=
1

2

Z Z
D

�@f;D (x; y) dxdy:

We have the following result for Schur convex functions de�ned on symmetric
convex domains of R2.

Theorem 3. Let D � R2 be symmetric, convex and has a nonempty interior. If
� is continuously di¤erentiable on the interior of D, continuous and Schur convex
on D and @D is a simple, closed counterclockwise curve in the xy-plane bounding
D, then

(2.6)
Z Z

D

� (x; y) dxdy � 1

2

I
@D

[(x� y)� (x; y) dx+ (x� y)� (x; y) dy] :

If � is Schur concave on D; then the sign of inequality reverses in (2.6).

The proof follows by Lemma 1 and Theorem 1.

Corollary 2. Let D � R2 be symmetric, convex and has a nonempty interior. If �
is continuously di¤erentiable on the interior of D, continuous and convex or quasi-
convex on D and @D is a simple, closed counterclockwise curve in the xy-plane
bounding D, then the inequality (2.6) is valid.

Remark 1. With the assumptions of Theorem 3 and if the curve @D is described
by the function r (t) = (x (t) ; y (t)) ; t 2 [a; b] ; with x, y di¤erentiable on (a; b) ;
then

(2.7)
Z Z

D

� (x; y) dxdy � 1

2

Z b

a

(x (t)� y (t))� (x (t) ; y (t)) (x0 (t) + y0 (t)) dt:
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Let a < b: Put A = (a; a) ; B = (b; a) ; C = (b; b) ; D = (a; b) 2 R2 the vertices
of the square ABCD = [a; b]

2
: Consider the counterclockwise segments

AB :

8<: x = (1� t) a+ tb

y = a
; t 2 [0; 1]

BC :

8<: x = b

y = (1� t) a+ tb
; t 2 [0; 1]

CD :

8<: x = (1� t) b+ ta

y = b
; t 2 [0; 1]

and

DA :

8<: x = a

y = (1� t) b+ ta
; t 2 [0; 1] :

Therefore @ (ABCD) = AB [BC [ CD [DA.
For any function f de�ned on ABCD; we haveI

AB

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy]

= (b� a)
Z 1

0

((1� t) a+ tb� a) f ((1� t) a+ tb; a) dt

= (b� a)2
Z 1

0

tf ((1� t) a+ tb; a) dt;

I
BC

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy]

= (b� a)
Z 1

0

(b� (1� t) a� tb) f (b; (1� t) a+ tb) dt

= (b� a)2
Z 1

0

(1� t) f (b; (1� t) a+ tb) dt;

I
CD

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy]

= (a� b)
Z 1

0

((1� t) b+ ta� b) f ((1� t) b+ ta; b) dt

= (a� b)2
Z 1

0

tf ((1� t) b+ ta; b) dt

= (a� b)2
Z 1

0

(1� t) f ((1� t) a+ tb; b) dt (by change of variable).
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and I
DA

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy]

= (a� b)
Z 1

0

(a� (1� t) b� ta) f (a; (1� t) b+ ta) dt

= (a� b)2
Z 1

0

(1� t) f (a; (1� t) b+ ta) dt

= (a� b)2
Z 1

0

tf (a; (1� t) a+ tb) dt (by change of variable).

Therefore

(2.8)
I

@(ABCD)

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy]

= (b� a)2
Z 1

0

tf ((1� t) a+ tb; a) dt+ (b� a)2
Z 1

0

(1� t) f (b; (1� t) a+ tb) dt

+ (b� a)2
Z 1

0

(1� t) f ((1� t) a+ tb; b) dt+ (b� a)2
Z 1

0

tf (a; (1� t) a+ tb) dt

= (b� a)2
Z 1

0

t [f ((1� t) a+ tb; a) + f (a; (1� t) a+ tb)] dt

+ (b� a)2
Z 1

0

(1� t) [f (b; (1� t) a+ tb) + f ((1� t) a+ tb; b)] dt:

Since the vast majority of examples of Schur convex functions are de�ned on the
Cartesian product of intervals, we can state the following result of interest:

Corollary 3. If � is continuously di¤erentiable on the interior of D = [a; b]
2,

continuous on D and Schur convex, then

(2.9)
1

(b� a)2
Z b

a

Z b

a

� (x; y) dxdy �
Z 1

0

t� ((1� t) a+ tb; a) dt

+

Z 1

0

(1� t)� ((1� t) a+ tb; b) dt:

Proof. From (2.6) we get

(2.10)
1

(b� a)2
Z b

a

Z b

a

� (x; y) dxdy

�
Z 1

0

t

�
� ((1� t) a+ tb; a) + � (a; (1� t) a+ tb)

2

�
dt

+

Z 1

0

(1� t)
�
� ((1� t) a+ tb; b) + � (b; (1� t) a+ tb)

2

�
dt:

Since � is symmetric on D = [a; b]
2, hence

� ((1� t) a+ tb; a) = � (a; (1� t) a+ tb)
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and

� ((1� t) a+ tb; b) = � (b; (1� t) a+ tb)
for all t 2 [0; 1] and by (2.10) we get (2.9). �

Remark 2. By making the change of variable x = (1� t) a + tb; t 2 [0; 1] ; then
dx = (b� a) dt; t = x�a

b�a and by (2.9) we get

1

(b� a)2
Z b

a

Z b

a

� (x; y) dxdy(2.11)

� 1

b� a

Z b

a

x� a
b� a � (x; a) dx+

1

b� a

Z b

a

b� x
b� a� (x; b) dx;

or, equivalently,

(2.12)
Z b

a

Z b

a

� (x; y) dxdy �
Z b

a

(x� a)� (x; a) dx+
Z b

a

(b� x)� (x; b) dx:

3. Lower and Upper Schur Convexity

Start with the following extensions of Schur convex functions:

De�nition 1. Let D be symmetric, convex and has a nonempty interior in R2 and
a symmetric function f : D ! R having continuous partial derivatives on D � R2:

(i) For m 2 R, f is called m-lower Schur convex on D if

(3.1) m (x� y)2 � �@f;D (x; y) for all (x; y) 2 D:

(ii) For M 2 R, f is called M -upper Schur convex on D if

(3.2) �@f;D (x; y) �M (x� y)2 for all (x; y) 2 D:

(iii) For m; M 2 R with m < M , f is called (m;M)-Schur convex on D if

(3.3) m (x� y)2 � �@f;D (x; y) �M (x� y)2 for all (x; y) 2 D:

We have the following simple but useful result :

Proposition 1. Let D be symmetric, convex and has a nonempty interior in R2
and a symmetric function f : D ! R having continuous partial derivatives on
D � R2:

(i) For m 2 R, f is m-lower Schur convex on D i¤ fm : D ! R;

fm (x; y) := f (x; y)�
1

2
m
�
x2 + y2

�
is Schur convex on D:

(ii) For M 2 R, f is M -upper Schur convex on D i¤ fM : D ! R;

fM (x; y) :=
1

2
M
�
x2 + y2

�
� f (x; y)

is Schur convex on D:
(iii) For m; M 2 R with m < M , f is (m;M)-Schur convex on D i¤ fm and

fM are Schur convex on D:
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Proof. (i). Observe that

�@fm;D (x; y) = (x� y)
�
@fm (x; y)

@x
� @fm (x; y)

@y

�
= (x� y)

�
@f (x; y)

@x
�mx� @f (x; y)

@y
+my

�
= (x� y)

�
@f (x; y)

@x
� @f (x; y)

@y
�m (x� y)

�
= �@f;D (x; y)�m (x� y)2 ;

for all (x; y) 2 D; which proves the statement.
The statements (ii) and (iii) follow in a similar way. �

We have:

Theorem 4. Let @D be a simple, closed counterclockwise curve in the xy-plane,
bounding a domain D � R2 that is symmetric, convex and has a nonempty interior.

(i) Assume that the function f : D ! R is m-lower Schur convex, then

1

2
m

Z Z
D

(x� y)2 dxdy(3.4)

� 1

2

I
@D

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy]�
Z Z

D

f (x; y) dxdy:

(ii) Assume that the function f : D ! R is M -upper Schur convex, then

1

2

I
@D

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy]�
Z Z

D

f (x; y) dxdy(3.5)

� 1

2
M

Z Z
D

(x� y)2 dxdy:

(iii) Assume that the function f : D ! R is (m;M)-Schur convex, then

1

2
m

Z Z
D

(x� y)2 dxdy(3.6)

� 1

2

I
@D

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy]�
Z Z

D

f (x; y) dxdy

� 1

2
M

Z Z
D

(x� y)2 dxdy:

Proof. (i) Since fm (x; y) := f (x; y)� 1
2m

�
x2 + y2

�
is Schur convex on D; then by

(2.6) we getZ Z
D

fm (x; y) dxdy �
1

2

I
@D

[(x� y) fm (x; y) dx+ (x� y) fm (x; y) dy] ;
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namely Z Z
D

�
f (x; y)� 1

2
m
�
x2 + y2

��
dxdy(3.7)

� 1

2

I
@D

�
(x� y)

�
f (x; y)� 1

2
m
�
x2 + y2

��
dx

+(x� y)
�
f (x; y)� 1

2
m
�
x2 + y2

��
dy

�
:

Since Z Z
D

�
f (x; y)� 1

2
m
�
x2 + y2

��
dxdy =

Z Z
D

f (x; y) dxdy

� 1
2
m

Z Z
D

�
x2 + y2

�
dxdy

and

1

2

I
@D

�
(x� y)

�
f (x; y)� 1

2
m
�
x2 + y2

��
dx

+(x� y)
�
f (x; y)� 1

2
m
�
x2 + y2

��
dy

�
=
1

2

I
@D

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy]

� 1
4
m

I
@D

��
x2 + y2

�
dx+

�
x2 + y2

�
dy
�
;

hence, by (3.7), we get

(3.8)
1

2
m

8<:12
I
@D

�
(x� y)

�
x2 + y2

�
dx+ (x� y)

�
x2 + y2

�
dy
�

�
Z Z

D

�
x2 + y2

�
dxdy

�
� 1

2

I
@D

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy]�
Z Z

D

f (x; y) dxdy:

Further, if we use the identity (2.1) for the function g (x; y) = x2 + y2 we get

1

2

I
@D

�
(x� y)

�
x2 + y2

�
dx+ (x� y)

�
x2 + y2

�
dy
�
�
Z Z

D

�
x2 + y2

�
dxdy

=
1

2

Z Z
D

2 (x� y)2 dxdy =
Z Z

D

(x� y)2 dxdy;

which together with (3.8) gives the desired result (3.4).
The statements (ii) and (iii) follow in a similar way and we omit the details. �
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If f is symmetric on D we have

�@f;D (x; y) = (x� y)
�
@f (x; y)

@x
� @f (x; y)

@y

�
= (x� y)

�
@f (x; y)

@x
� @f (y; x)

@x

�
for all (x; y) 2 D:
If

(3.9) 0 < k �
�����
@f(x;y)
@x � @f(y;x)

@x

x� y

����� � K <1 for all (x; y) 2 D with x 6= y;

then
0 � k (x� y)2 � �@f;D (x; y) � K (x� y)2 for all (x; y) 2 D:

By making use of Theorem 4 we can state the following result:

Corollary 4. Let @D be a simple, closed counterclockwise curve in the xy-plane,
bounding a domain D � R2 that is symmetric, convex and has a nonempty interior.
If f is continuously di¤erentiable on the interior of D, continuous and symmetric
on D and the partial derivative @f

@x satis�es the condition (3.9), then we have the
inequalities

0 � 1

2
k

Z Z
D

(x� y)2 dxdy(3.10)

� 1

2

I
@D

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy]�
Z Z

D

f (x; y) dxdy

� 1

2
K

Z Z
D

(x� y)2 dxdy:

Remark 3. If D = [a; b]
2 and sinceZ b

a

Z b

a

(x� y)2 dxdy =
Z b

a

(b� x)3 + (x� a)3

3
dx =

1

6
(b� a)4

hence by (3.10) we get

0 � 1

12
k (b� a)4(3.11)

�
Z b

a

(x� a) f (x; a) dx+
Z b

a

(b� x) f (x; b) dx�
Z b

a

Z b

a

f (x; y) dxdy

� 1

12
K (b� a)4 ;

provided that f is continuously di¤erentiable on the interior of [a; b]2, continuous
and symmetric on [a; b]2 and the partial derivative @f

@x satis�es the condition (3.9).

4. Examples for Disks

We consider the closed disk D (O;R) centered in O (0; 0) and of radius R > 0:
This is parametrized by8<: x = r cos �

y = r sin �
; r 2 [0; R] ; � 2 [0; 2�]
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and the circle C (O;R) is parametrized by8<: x = R cos �

y = R sin �
; � 2 [0; 2�] :

Observe that, if � : D (O;R)! R, thenI
C(O;R)

[(x� y)� (x; y) dx+ (x� y)� (x; y) dy]

= �
Z 2�

0

R (R cos � �R sin �) sin �� (R cos �;R sin �) d�

+

Z 2�

0

R (R cos � �R sin �) cos �� (R cos �;R sin �) d�

= R2
Z 2�

0

� (R cos �;R sin �) (cos � � sin �)2 d�:

Also, we haveZ Z
D(O;R)

� (x; y) dxdy =

Z R

0

Z 2�

0

� (r cos �; r sin �) rdrd�:

Using Theorem 3 we can state the following result:

Proposition 2. If � is continuously di¤erentiable on the interior of D (O;R),
continuous and Schur convex on D (O;R), thenZ R

0

Z 2�

0

� (r cos �; r sin �) rdrd�(4.1)

� 1

2
R2
Z 2�

0

� (R cos �;R sin �) (cos � � sin �)2 d�:

Now, observe thatZ Z
D(O;R)

(x� y)2 dxdy =

Z R

0

Z 2�

0

(R cos � �R sin �)2 rdrd�

=
1

2
R4
Z 2�

0

(cos � � sin �)2 d�

=
1

2
R4
Z 2�

0

(1� 2 sin � cos �) d� = �R4:

We also have, by Corollary 4, that:

Proposition 3. If � is continuously di¤erentiable on the interior of D (O;R), con-
tinuous and Schur convex on D (O;R) and the derivative @f

@x satis�es the condition
(3.9) on D (O;R) ; then

(4.2)
1

2
�kR4 � 1

2
R2
Z 2�

0

� (R cos �;R sin �) (cos � � sin �)2 d�

�
Z R

0

Z 2�

0

� (r cos �; r sin �) rdrd� � 1

2
�KR4:
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