
PRE-SCHUR CONVEX FUNCTIONS AND SOME INTEGRAL
INEQUALITIES ON DOMAINS FROM PLANE

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we introduce the concept of pre-Schur convex func-
tions de�ned on general domains from plane. Then, by making use of Green�s
identity for double integrals, we establish some integral inequalities for this
class of functions that naturally generalize the case of Schur convex functions.
Some exmples for rectangles and disks are also provided.

1. Introduction

For any x = (x1; :::; xn) 2 Rn, let x[1] � ::: � x[n] denote the components of x in
decreasing order, and let x# =

�
x[1]; :::; x[n]

�
denote the decreasing rearrangement

of x. For x; y 2 Rn, x � y if, by de�nition,8<:
Pk

i=1 x[i] �
Pk

i=1 y[i]; k = 1; :::; n� 1;Pn
i=1 x[i] =

Pn
i=1 y[i]:

When x � y, x is said to be majorized by y (y majorizes x). This notation and
terminology was introduced by Hardy, Littlewood and Pólya in 1934.
Functions that preserve the ordering of majorization are said to be Schur-convex.

Perhaps �Schur-increasing�would be more appropriate, but the term �Schur-convex�
is by now well entrenched in the literature, [4, p.80].
A real-valued function � de�ned on a set A � Rn is said to be Schur-convex on

A if

(1.1) x � y on A ) � (x) � � (y) :
If, in addition, � (x) < � (y) whenever x � y but x is not a permutation of y, then
� is said to be strictly Schur-convex on A. If A = Rn, then � is simply said to be
Schur-convex or strictly Schur-convex.
For fundamental properties of Schur convexity see the monograph [4] and the

references therein. For some recent results, see [1]-[3] and [5]-[7].
The following result is known in the literature as Schur-Ostrowski theorem [4,

p. 84]:

Theorem 1. Let I � R be an open interval and let � : In ! R be continuously
di¤erentiable. Necessary and su¢ cient conditions for � to be Schur-convex on In

are

(1.2) � is symmetric on In;
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and for all i 6= j, with i; j 2 f1; :::; ng ;

(1.3) (zi � zj)
�
@�(z)

@xi
� @�(z)

@xj

�
� 0 for all z 2 In;

where @�
@xk

denotes the partial derivative of � with respect to its k-th argument.

With the aid of (1.2), condition (1.3) can be replaced by the condition

(1.4) (z1 � z2)
�
@�(z)

@x1
� @�(z)

@x2

�
� 0 for all z 2 In:

This simpli�ed condition is sometimes more convenient to verify.
The above condition is not su¢ ciently general for all applications because the

domain of � may not be a Cartesian product.
Let A � Rn be a set with the following properties:
(i) A is symmetric in the sense that x 2 A ) x� 2 A for all permutations �;
(ii) A is convex and has a nonempty interior.
We have the following result, [4, p. 85].

Theorem 2. If � is continuously di¤erentiable on the interior of A and continuous
on A, then necessary and su¢ cient conditions for � to be Schur-convex on A are

(1.5) � is symmetric on A
and

(1.6) (z1 � z2)
�
@�(z)

@x1
� @�(z)

@x2

�
� 0 for all z 2 A:

It is well known that any symmetric convex function de�ned on a symmetric
convex set A is Schur convex, [4, p. 97]. If the function � : A ! R is symmetric
and quasi-convex, namely

� (�u+ (1� �) v) � max f� (u) ; � (v)g
for all � 2 [0; 1] and u; v 2 A, a symmetric convex set, then � is Schur convex on
A [4, p. 98].
In the recent paper [2] we obtained the following result for Schur convex functions

de�ned on symmetric convex domains of R2.

Theorem 3. Let D � R2 be symmetric, convex and has a nonempty interior. If
� is continuously di¤erentiable on the interior of D, continuous and Schur convex
on D and @D is a simple, closed counterclockwise curve in the xy-plane bounding
D, then

(1.7)
Z Z

D

� (x; y) dxdy � 1

2

I
@D

[(x� y)� (x; y) dx+ (x� y)� (x; y) dy] :

If � is Schur concave on D; then the sign of inequality reverses in (1.7).

In this paper we introduce the concept of pre-Schur convex functions de�ned on
general domains from plane. Then, by making use of Green�s identity for double
integrals, we establish some integral inequalities for this class of functions that nat-
urally generalize the case of Schur convex functions. Some examples for rectangles
and disks are also provided.
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2. Pre-Schur Convexity

For a function f : D ! C having continuous partial derivatives on the domain
D � R2 we de�ne �@f;D : D ! C as

�@f;D (x; y) := (x� y)
�
@f (x; y)

@x
� @f (x; y)

@y

�
:

We can introduce the following concept.

De�nition 1. Let D be a measurable subset of R2: A function f : D ! R having
continuous partial derivatives on D � R2 is called pre-Schur convex on D if

(2.1) �@f;D (x; y) � 0 for all (x; y) 2 D:

If the sign of inequality is reversed in (2.1) then we call it pre-Schur concave. This
is equivalent to the fact that �f is pre-Schur convex on D:

Obviously, Schur convex functions are pre-Schur convex as pointed out below.

Lemma 1. Let D � R2 be symmetric, convex and has a nonempty interior. If
� is continuously di¤erentiable on the interior of D, continuous on D and Schur
convex, then � is pre-Schur convex on D:

The proof is obvious by Schur-Ostrowski theorem applied for D � R2:
Now consider the function f (x; y) = x2 � y2; x; y > 0: Then

�@f;D (x; y) = (x� y)
�
@f (x; y)

@x
� @f (x; y)

@y

�
= 2

�
x2 � y2

�
:

Now, we observe that if we restrict this function to a domain

D �
�
(x; y) 2 R2 j x2 � y2 � 0; x; y > 0

	
;

then f is pre-Schur convex on such D but not Schur convex.
Let @D be a simple, closed counterclockwise curve in the xy-plane, bounding a

regionD. Let L andM be scalar functions de�ned at least on an open set containing
D. Assume L and M have continuous �rst partial derivatives. Then the following
equality is well known as the Green theorem (see https://en.wikipedia.org/wiki/
Green%27s_theorem)

(G)
Z Z

D

�
@M (x; y)

@x
� @L (x; y)

@y

�
dxdy =

I
@D

(L (x; y) dx+M (x; y) dy) :

By applying this equality for real and imaginary parts, we can also state it for
complex valued functions P and Q:
Moreover, if the curve @D is described by the function r (t) = (x (t) ; y (t)) ;

t 2 [a; b] ; with x, y di¤erentiable on (a; b) then we can calculate the path integral
asI
@D

(L (x; y) dx+M (x; y) dy) =

Z b

a

[L (x (t) ; y (t))x0 (t) +M (x (t) ; y (t)) y0 (t)] dt:

We need the following identity that was obtained in [2].
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Lemma 2. Let @D be a simple, closed counterclockwise curve in the xy-plane,
bounding a region D. Assume that the function f : D ! C has continuous partial
derivatives on the domain D: Then

(2.2)
1

2

I
@D

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy]�
Z Z

D

f (x; y) dxdy

=
1

2

Z Z
D

�@f;D (x; y) dxdy:

Proof. Consider the functions

M (x; y) := (x� y) f (x; y) and L (x; y) := (x� y) f (x; y)
for (x; y) 2 D:
We have

@

@x
[(x� y) f (x; y)] = f (x; y) + (x� y) @f (x; y)

@x
and

@

@y
[(y � x) f (x; y)] = f (x; y) + (y � x) @f (x; y)

@y

for (x; y) 2 D:
If we add these two equalities, then we get

(2.3)
@M (x; y)

@x
� @L (x; y)

@y
= 2f (x; y) + �@f;D (x; y)

for (x; y) 2 D:
If we integrate this equality on D; then we obtain

(2.4)
Z Z

D

�
@M (x; y)

@x
� @L (x; y)

@y

�
dxdy

= 2

Z Z
D

f (x; y) dxdy +

Z Z
D

�@f;D (x; y) dxdy:

From Green�s identity we also have

(2.5)
Z Z

D

�
@M (x; y)

@x
� @L (x; y)

@y

�
dxdy =

I
@D

(L (x; y) dx+M (x; y) dy)

=

I
@D

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy] :

By employing (2.4) and (2.5) we deduce the desired equality (2.2). �

Corollary 1. With the assumptions of Lemma 2 and if the curve @D is described
by the function r (t) = (x (t) ; y (t)) ; t 2 [a; b] ; with x, y di¤erentiable on (a; b) ;
then

(2.6)
1

2

Z b

a

(x (t)� y (t)) f (x (t) ; y (t)) (x0 (t) + y0 (t)) dt�
Z Z

D

f (x; y) dxdy

=
1

2

Z Z
D

�@f;D (x; y) dxdy:

The following generalization of Theorem 3 holds:
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Theorem 4. Let @D be a simple, closed counterclockwise curve in the xy-plane,
bounding a region D. Assume that the function f : D ! R is pre-Schur convex on
D; then

(2.7)
Z Z

D

f (x; y) dxdy � 1

2

I
@D

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy] :

It follows by the identity (2.2) and the de�nition of pre-Schur convex functions
(2.1).

Remark 1. With the assumptions of Theorem 4 and if the curve @D is described
by the function r (t) = (x (t) ; y (t)) ; t 2 [a; b] ; with x, y di¤erentiable on (a; b) ;
then

(2.8)
Z Z

D

f (x; y) dxdy � 1

2

Z b

a

(x (t)� y (t)) f (x (t) ; y (t)) (x0 (t) + y0 (t)) dt:

Corollary 2. Let D � R2 be symmetric, convex and has a nonempty interior. If
� is continuously di¤erentiable on the interior of D, continuous and Schur convex
on D, then the inequality (1.7) holds true. If � is Schur concave on D; then the
sign of inequality reverses in (1.7).

Let a < b and c < d: Put A = (a; c) ; B = (b; c) ; C = (b; d) ; D = (a; d) 2 R2
the vertices of the rectangle ABCD = [a; b]� [c; d] : Consider the counterclockwise
segments

AB :

8<: x = (1� t) a+ tb

y = c
; t 2 [0; 1]

BC :

8<: x = b

y = (1� t) c+ td
; t 2 [0; 1]

CD :

8<: x = (1� t) b+ ta

y = d
; t 2 [0; 1]

and

DA :

8<: x = a

y = (1� t) d+ tc
; t 2 [0; 1] :

Therefore @ (ABCD) = AB [BC [ CD [DA.
We have I

AB

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy]

= (b� a)
Z 1

0

((1� t) a+ tb� c) f ((1� t) a+ tb; c) dt

= (b� a)
Z 1

0

(t (b� a) + a� c) f ((1� t) a+ tb; c) dt;
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BC

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy]

= (d� c)
Z 1

0

(b� (1� t) c� td) f (b; (1� t) c+ td) dt

= (d� c)
Z 1

0

(b� c� t (d� c)) f (b; (1� t) c+ td) dt;

I
CD

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy]

= (a� b)
Z 1

0

((1� t) b+ ta� d) f ((1� t) b+ ta; d) dt

= (a� b)
Z 1

0

(t (a� b) + b� d) f ((1� t) b+ ta; d) dt

= (a� b)
Z 1

0

((1� t) (a� b) + b� d) f ((1� t) a+ tb; d) dt

= (b� a)
Z 1

0

(d� a� t (b� a)) f ((1� t) a+ tb; d) dt

and I
DA

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy]

= (c� d)
Z 1

0

(a� (1� t) d� tc) f (a; (1� t) d+ tc) dt

= (c� d)
Z 1

0

(a� td� (1� t) c) f (a; (1� t) c+ td) dt

= (d� c)
Z 1

0

(t (d� c) + c� a) f (a; (1� t) c+ td) dt:

Therefore I
@(ABCD)

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy]

= (b� a)
Z 1

0

(t (b� a) + a� c) f ((1� t) a+ tb; c) dt

+ (b� a)
Z 1

0

(d� a� t (b� a)) f ((1� t) a+ tb; d) dt

+ (d� c)
Z 1

0

(b� c� t (d� c)) f (b; (1� t) c+ td) dt

+ (d� c)
Z 1

0

(t (d� c) + c� a) f (a; (1� t) c+ td) dt
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and from (2.7) we get

(2.9)
Z b

a

Z d

c

f (x; y) dxdy

� 1

2
(b� a)

Z 1

0

(t (b� a) + a� c) f ((1� t) a+ tb; c) dt

+
1

2
(b� a)

Z 1

0

(d� a� t (b� a)) f ((1� t) a+ tb; d) dt

+
1

2
(d� c)

Z 1

0

(b� c� t (d� c)) f (b; (1� t) c+ td) dt

+
1

2
(d� c)

Z 1

0

(t (d� c) + c� a) f (a; (1� t) c+ td) dt;

provided that the function f : [a; b] � [c; d] ! R is pre-Schur convex on D =
[a; b]� [c; d] :
If D = [a; b]� [a; b] = [a; b]2 ; then from (2.9) we get

(2.10)
Z b

a

Z b

a

f (x; y) dxdy � 1

2
(b� a)2

Z 1

0

tf ((1� t) a+ tb; a) dt

+
1

2
(b� a)2

Z 1

0

(1� t) f ((1� t) a+ tb; b) dt

+
1

2
(b� a)2

Z 1

0

(1� t) f (b; (1� t) a+ tb) dt

+
1

2
(b� a)2

Z 1

0

tf (a; (1� t) a+ tb) dt;

provided that the function f : [a; b]2 ! R is pre-Schur convex on D = [a; b]
2
:

If we make the change of variable (1� t) a + tb = x; then dx = (b� a) dt;
t = x�a

b�a : Also for the change of variable (1� t) c+ td = y; we have dy = (d� c) dt
and t = y�c

d�c : From (2.9) we get

(2.11)
Z b

a

Z d

c

f (x; y) dxdy � 1

2

Z b

a

[(x� c) f (x; c) + (d� x) f (x; d)] dx

+
1

2

Z d

c

[(b� y) f (b; y) + (y � a) f (a; y)] dy;

provided that f : [a; b]� [c; d]! R is pre-Schur convex on D = [a; b]� [c; d] :
For c = a and d = b we get

(2.12)
Z b

a

Z b

a

f (x; y) dxdy � 1

2

Z b

a

[(x� a) f (x; a) + (b� x) f (x; b)] dx

+
1

2

Z b

a

[(b� y) f (b; y) + (y � a) f (a; y)] dy;

provided that the function f : [a; b]2 ! R is pre-Schur convex on D = [a; b]
2
:

Since the vast majority of examples of Schur convex functions are de�ned on the
Cartesian product of intervals, we can state the following result of interest:
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Corollary 3. If � is continuously di¤erentiable on the interior of D = [a; b]
2,

continuous on D and Schur convex, then

(2.13)
1

(b� a)2
Z b

a

Z b

a

� (x; y) dxdy �
Z 1

0

t� ((1� t) a+ tb; a) dt

+

Z 1

0

(1� t)� ((1� t) a+ tb; b) dt

or, equivalently,

(2.14)
Z b

a

Z b

a

� (x; y) dxdy �
Z b

a

(x� a)� (x; a) dx+
Z b

a

(b� x)� (x; b) dx:

Proof. From (2.10) we get

(2.15)
1

(b� a)2
Z b

a

Z b

a

� (x; y) dxdy

�
Z 1

0

t

�
� ((1� t) a+ tb; a) + � (a; (1� t) a+ tb)

2

�
dt

+

Z 1

0

(1� t)
�
� ((1� t) a+ tb; b) + � (b; (1� t) a+ tb)

2

�
dt:

Since � is symmetric on D = [a; b]
2, hence

� ((1� t) a+ tb; a) = � (a; (1� t) a+ tb)
and

� ((1� t) a+ tb; b) = � (b; (1� t) a+ tb)
for all t 2 [0; 1] and by (2.15) we get (2.13). �

3. Lower and Upper Pre-Schur Convexity

Start with the following extensions of pre-Schur convex functions:

De�nition 2. Let D be a measurable subset of R2 and a function f : D ! R
having continuous partial derivatives on D � R2:

(i) For m 2 R, f is called m-lower pre-Schur convex on D if

(3.1) m (x� y)2 � �@f;D (x; y) for all (x; y) 2 D:
(ii) For M 2 R, f is called M -upper pre-Schur convex on D if

(3.2) �@f;D (x; y) �M (x� y)2 for all (x; y) 2 D:
(iii) For m; M 2 R with m < M , f is called (m;M)-pre-Schur convex on D if

(3.3) m (x� y)2 � �@f;D (x; y) �M (x� y)2 for all (x; y) 2 D:

We have the following simple result:

Proposition 1. Let D be a measurable subset of R2 and a function f : D ! R
having continuous partial derivatives on D � R2:

(i) For m 2 R, f is m-lower pre-Schur convex on D i¤ fm : D ! R;
fm (x; y) := f (x; y)� 1

2m
�
x2 + y2

�
is pre-Schur convex on D:

(ii) For M 2 R, f is M -upper pre-Schur convex on D i¤ fM : D ! R;
fM (x; y) :=

1
2M

�
x2 + y2

�
� f (x; y) is pre-Schur convex on D:
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(iii) For m; M 2 R with m < M , f is (m;M)-pre-Schur convex on D i¤ fm
and fM are pre-Schur convex on D:

Proof. (i). Observe that

�@fm;D (x; y) = (x� y)
�
@fm (x; y)

@x
� @fm (x; y)

@y

�
= (x� y)

�
@f (x; y)

@x
�mx� @f (x; y)

@y
+my

�
= (x� y)

�
@f (x; y)

@x
� @f (x; y)

@y
�m (x� y)

�
= �@f;D (x; y)�m (x� y)2 ;

for all (x; y) 2 D; which proves the statement.
The statements (ii) and (iii) follow in a similar way. �

We have:

Theorem 5. Let @D be a simple, closed counterclockwise curve in the xy-plane,
bounding a region D.

(i) Assume that the function f : D ! R is m-lower pre-Schur convex, then

1

2
m

Z Z
D

(x� y)2 dxdy(3.4)

� 1

2

I
@D

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy]�
Z Z

D

f (x; y) dxdy:

(ii) Assume that the function f : D ! R is M -upper pre-Schur convex, then

1

2

I
@D

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy]�
Z Z

D

f (x; y) dxdy(3.5)

� 1

2
M

Z Z
D

(x� y)2 dxdy:

(iii) Assume that the function f : D ! R is (m;M)-pre-Schur convex, then

1

2
m

Z Z
D

(x� y)2 dxdy(3.6)

� 1

2

I
@D

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy]�
Z Z

D

f (x; y) dxdy

� 1

2
M

Z Z
D

(x� y)2 dxdy:

Proof. (i) Since fm (x; y) := f (x; y)� 1
2m
�
x2 + y2

�
is pre-Schur convex on D; then

by (2.7) we getZ Z
D

fm (x; y) dxdy �
1

2

I
@D

[(x� y) fm (x; y) dx+ (x� y) fm (x; y) dy] ;
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namely Z Z
D

�
f (x; y)� 1

2
m
�
x2 + y2

��
dxdy(3.7)

� 1

2

I
@D

�
(x� y)

�
f (x; y)� 1

2
m
�
x2 + y2

��
dx

+(x� y)
�
f (x; y)� 1

2
m
�
x2 + y2

��
dy

�
:

Since Z Z
D

�
f (x; y)� 1

2
m
�
x2 + y2

��
dxdy =

Z Z
D

f (x; y) dxdy

� 1
2
m

Z Z
D

�
x2 + y2

�
dxdy

and

1

2

I
@D

�
(x� y)

�
f (x; y)� 1

2
m
�
x2 + y2

��
dx

+(x� y)
�
f (x; y)� 1

2
m
�
x2 + y2

��
dy

�
=
1

2

I
@D

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy]

� 1
4
m

I
@D

��
x2 + y2

�
dx+

�
x2 + y2

�
dy
�
:

hence (3.7) we then get

(3.8)
1

2
m

8<:12
I
@D

�
(x� y)

�
x2 + y2

�
dx+ (x� y)

�
x2 + y2

�
dy
�

�
Z Z

D

�
x2 + y2

�
dxdy

�
� 1

2

I
@D

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy]�
Z Z

D

f (x; y) dxdy:

Further, if we use the identity (2.2) for the function g (x; y) = x2 + y2 we get

1

2

I
@D

�
(x� y)

�
x2 + y2

�
dx+ (x� y)

�
x2 + y2

�
dy
�
�
Z Z

D

�
x2 + y2

�
dxdy

=
1

2

Z Z
D

2 (x� y)2 dxdy =
Z Z

D

(x� y)2 dxdy;

which together with (3.8) gives the desired result (3.4).
The statements (ii) and (iii) follow in a similar way and we omit the details. �
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Corollary 4. Assume that the function f : [a; b]� [c; d]! R is (m;M)-pre-Schur
convex, then

(3.9)
(b� c)4 � (a� c)4 � (d� b)4 + (d� a)4

24
m

� 1

2

Z b

a

[(x� c) f (x; c) + (d� x) f (x; d)] dx

+
1

2

Z d

c

[(b� y) f (b; y) + (y � a) f (a; y)] dy

�
Z b

a

Z d

c

f (x; y) dxdy � (b� c)4 � (a� c)4 � (d� b)4 + (d� a)4

24
M:

In particular, if [c; d] = [a; b] ; then

(3.10)
1

12
m (b� a)4

� 1

2

Z b

a

[(x� a) f (x; a) + (b� x) f (x; b)] dx

+
1

2

Z b

a

[(b� y) f (b; y) + (y � a) f (a; y)] dy

�
Z b

a

Z b

a

f (x; y) dxdy � 1

12
M (b� a)4 :

Proof. From (3.6) we have

(3.11)
1

2
m

Z b

a

Z d

c

(x� y)2 dxdy

� 1

2

I
@(ABCD)

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy]�
Z b

a

Z d

c

f (x; y) dxdy

� 1

2
M

Z b

a

Z d

c

(x� y)2 dxdy:

Since Z b

a

Z d

c

(x� y)2 dxdy =
Z b

a

"
(d� x)3 + (x� c)3

3

#
dx

=
(b� c)4 � (a� c)4 � (d� b)4 + (d� a)4

12
;

hence by (3.11) we get (3.9). �

4. Related Results on Symmetric Domains

We have:
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Lemma 3. If f : D ! C is di¤erentiable on the convex domain D, then for all
(x; y) ; (u; v) 2 D we have the equality

(4.1) f (u; v) = f (x; y) + (u� x) @f
@x
(x; y) + (v � y) @f

@y
(x; y)

+ (u� x)
Z 1

0

�
@f

@x
[t (u; v) + (1� t) (x; y)]� @f

@x
(x; y)

�
dt

+ (v � y)
Z 1

0

�
@f

@y
[t (u; v) + (1� t) (x; y)]� @f

@y
(x; y)

�
dt:

Proof. By Taylor�s multivariate theorem with integral remainder, we have

(4.2) f (u; v) = f (x; y) + (u� x)
Z 1

0

@f

@x
[t (u; v) + (1� t) (x; y)] dt

+ (v � y)
Z 1

0

@f

@y
[t (u; v) + (1� t) (x; y)] dt

for all (x; y) ; (u; v) 2 D.
Since

(u� x)
Z 1

0

�
@f

@x
[t (u; v) + (1� t) (x; y)]� @f

@x
(x; y)

�
dt

= (u� x)
Z 1

0

@f

@x
[t (u; v) + (1� t) (x; y)] dt� (u� x) @f

@x
(x; y)

and

(v � y)
Z 1

0

�
@f

@y
[t (u; v) + (1� t) (x; y)]� @f

@y
(x; y)

�
dt

= (v � y)
Z 1

0

@f

@y
[t (u; v) + (1� t) (x; y)] dt� (v � y) @f

@y
(x; y) ;

hence by (4.2) we get the desired result (4.1). �

Corollary 5. With the assumptions of Lemma 3 and if D is symmetric, then for
all (x; y) 2 D we have

(4.3) f (y; x) = f (x; y) + (y � x)
�
@f

@x
(x; y)� @f

@y
(x; y)

�
+ (y � x)

Z 1

0

�
@f

@x
[t (y; x) + (1� t) (x; y)]� @f

@x
(x; y)

�
dt

� (y � x)
Z 1

0

�
@f

@y
[t (y; x) + (1� t) (x; y)]� @f

@y
(x; y)

�
dt

or, equivalently,

(4.4) �@f;D (x; y) = f (x; y)� f (y; x)

+ (y � x)
Z 1

0

�
@f

@x
[t (y; x) + (1� t) (x; y)]� @f

@x
(x; y)

�
dt

� (y � x)
Z 1

0

�
@f

@y
[t (y; x) + (1� t) (x; y)]� @f

@y
(x; y)

�
dt:



PRE-SCHUR CONVEX FUNCTIONS 13

We also have:

Corollary 6. With the assumptions of Lemma 3 and if D is symmetric, then

(4.5)
Z Z

D

�@f;D (x; y) dxdy

=

Z Z
D

(y � x)
�Z 1

0

�
@f

@x
(ty + (1� t)x; tx+ (1� t) y)� @f

@x
(x; y)

�
dt

�
dxdy

�
Z Z

D

(y � x)
�Z 1

0

�
@f

@y
(ty + (1� t)x; tx+ (1� t) y)� @f

@y
(x; y)

�
dt

�
dxdy:

The identity (4.5) follows by integrating (4.4) on D and observing thatZ Z
D

f (x; y) dxdy =

Z Z
D

f (y; x) dxdy

since D is symmetric.
We assume that the partial derivatives @f

@x ;
@f
@y satisfy the Lipschitz type condi-

tions

(4.6)

����@f@x (x; y)� @f@x (u; v)
���� � L1 jx� uj+K1 jy � vj

and

(4.7)

����@f@y (x; y)� @f@y (u; v)
���� � L2 jx� uj+K2 jy � vj

for any (x; y) ; (u; v) 2 D; where L1; K1; L2 and K2 are given positive constants.

Theorem 6. If f : D ! C is di¤erentiable on the convex symmetric domain D
and the partial derivatives @f

@x ;
@f
@y satisfy the Lipschitz type conditions (4.6) and

(4.7), then

(4.8)

����Z Z
D

�@f;D (x; y) dxdy

���� � 1

2
(L1 +K1 + L2 +K2)

Z Z
D

(y � x)2 dxdy:

Proof. From the representation (4.5) we get

(4.9)

����Z Z
D

�@f;D (x; y) dxdy

����
�
����Z Z

D

(y � x)
�Z 1

0

�
@f

@x
(ty + (1� t)x; tx+ (1� t) y)� @f

@x
(x; y)

�
dt

�
dxdy

����
+

����Z Z
D

(y � x)
�Z 1

0

�
@f

@y
(ty + (1� t)x; tx+ (1� t) y)� @f

@y
(x; y)

�
dt

�
dxdy

����
�
Z Z

D

����(y � x)�Z 1

0

�
@f

@x
(ty + (1� t)x; tx+ (1� t) y)� @f

@x
(x; y)

�
dt

����� dxdy
+

Z Z
D

����(y � x)�Z 1

0

�
@f

@y
(ty + (1� t)x; tx+ (1� t) y)� @f

@y
(x; y)

�
dt

����� dxdy
�
Z Z

D

jy � xj
�Z 1

0

����@f@x (ty + (1� t)x; tx+ (1� t) y)� @f@x (x; y)
���� dt� dxdy

+

Z Z
D

jy � xj
�Z 1

0

����@f@y (ty + (1� t)x; tx+ (1� t) y)� @f@y (x; y)
���� dt� dxdy =:M:
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Since the partial derivatives @f
@x ;

@f
@y satisfy the Lipschitz type conditions (4.6) and

(4.7), henceZ 1

0

����@f@x (ty + (1� t)x; tx+ (1� t) y)� @f@x (x; y)
���� dt

�
Z 1

0

(L1 jty + (1� t)x� xj+K1 jtx+ (1� t) y � yj) dt

= L1 jy � xj
Z 1

0

tdt+K1 jy � xj
Z 1

0

tdt =
1

2
(L1 +K1) jy � xj

and, similarly, Z 1

0

����@f@y (ty + (1� t)x; tx+ (1� t) y)� @f@y (x; y)
���� dt

� 1

2
(L2 +K2) jy � xj :

Therefore

M � 1

2
(L1 +K1)

Z Z
D

(y � x)2 dxdy + 1
2
(L2 +K2)

Z Z
D

(y � x)2 dxdy

=
1

2
(L1 +K1 + L2 +K2)

Z Z
D

(y � x)2 dxdy

and by (4.9) we get the desired result (4.8). �
Corollary 7. Assume that f : D ! R is twice di¤erentiable on the convex sym-
metric domain D and the second partial derivatives @2f

@x2 ;
@2f
@y2 and

@2f
@x@y are bounded

on D: Put@2f@x2

D;1

:= sup
(x;y)2D

����@2f@x2 (x; y)
���� ; @2f@y2


D;1

:= sup
(x;y)2D

����@2f@y2 (x; y)
����

and  @2f@x@y


D;1

:= sup
(x;y)2D

���� @2f@x@y
(x; y)

���� ;
then ����Z Z

D

�@f;D (x; y) dxdy

����(4.10)

� 1

2

 @2f@x2

D;1

+ 2

 @2f@x@y


D;1

+

@2f@y2

D;1

!Z Z
D

(y � x)2 dxdy:

We have the following reverse inequality for pre-Schur convex functions:

Corollary 8. Assume that f : D ! R is twice di¤erentiable on the convex sym-
metric domain D and the second partial derivatives @2f

@x2 ;
@2f
@y2 and

@2f
@x@y are bounded

on D: If f is also pre-Schur convex on D then

0 � 1

2

I
@D

[(x� y) f (x; y) dx+ (x� y) f (x; y) dy]�
Z Z

D

f (x; y) dxdy(4.11)

� 1

4

 @2f@x2

D;1

+ 2

 @2f@x@y


D;1

+

@2f@y2

D;1

!Z Z
D

(y � x)2 dxdy:
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The proof follows by the identity (2.2) and the inequality (4.10) applied for the
pre-Schur convex function f:

Remark 2. Assume that f : [a; b]2 ! R is twice di¤erentiable and the second
partial derivatives @2f

@x2 ;
@2f
@y2 and

@2f
@x@y are bounded on [a; b]

2
: If f is also pre-Schur

convex on [a; b]2 then

(4.12) 0 � 1

2

Z b

a

[(x� a) f (x; a) + (b� x) f (x; b)] dx

+
1

2

Z b

a

[(b� y) f (b; y) + (y � a) f (a; y)] dy �
Z b

a

Z b

a

f (x; y) dxdy

� 1

24

 @2f@x2

[a;b]2;1

+ 2

 @2f@x@y


[a;b]2;1

+

@2f@y2

[a;b]2;1

!
(b� a)4 :

5. Examples for Disks

We consider the closed disk D (O;R) centered in O (0; 0) and of radius R > 0:
This is parametrized by8<: x = r cos �

y = r sin �
; r 2 [0; R] ; � 2 [0; 2�]

and the circle C (O;R) is parametrized by8<: x = R cos �

y = R sin �
; � 2 [0; 2�] :

Observe that, if � : D (O;R)! R, thenI
C(O;R)

[(x� y)� (x; y) dx+ (x� y)� (x; y) dy]

= �
Z 2�

0

R (R cos � �R sin �) sin �� (R cos � + a;R sin � + b) d�

+

Z 2�

0

R (R cos � �R sin �) cos �� (R cos � + a;R sin � + b) d�

= R2
Z 2�

0

� (R cos � + a;R sin � + b) (cos � � sin �)2 d�:

Also, we haveZ Z
D(O;R)

� (x; y) dxdy =

Z R

0

Z 2�

0

� (r cos �; r sin �) rdrd�
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and Z Z
D(O;R)

(x� y)2 dxdy =
Z R

0

Z 2�

0

(R cos � �R sin �)2 rdrd�

=
1

2
R4
Z 2�

0

(cos � � sin �)2 d�

=
1

2
R4
Z 2�

0

(1� 2 sin � cos �) d� = �R4:

Using Theorem 8 we can state the following result:

Proposition 2. Assume that f : D (O;R)! R is twice di¤erentiable on the convex
symmetric domain D (O;R) and the second partial derivatives @2f

@x2 ;
@2f
@y2 and

@2f
@x@y

are bounded on D (O;R) : If f is also pre-Schur convex on D (O;R) ; then

(5.1) 0 � 1

2
R2
Z 2�

0

� (R cos �;R sin �) (cos � � sin �)2 d�

�
Z R

0

Z 2�

0

� (r cos �; r sin �) rdrd�

� 1

4
�R4

 @2f@x2

D(O;R);1

+ 2

 @2f@x@y


D(O;R);1

+

@2f@y2

D(O;R);1

!
:
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