INTEGRAL INEQUALITIES FOR SCHUR CONVEX FUNCTIONS ON SYMMETRIC AND CONVEX SETS IN LINEAR SPACES

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract

In this paper, we establish some integral inequalities for Schur convex functions defined on symmetric and convex sets from a Cartesion product of linear spaces. Some applications related to the Hermite-Hadamard inequal ity for convex functions defined on real intervals are also provided.

1. Introduction

For any $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, let $x_{[1]} \geq \ldots \geq x_{[n]}$ denote the components of x in decreasing order, and let $x_{\downarrow}=\left(x_{[1]}, \ldots, x_{[n]}\right)$ denote the decreasing rearrangement of x. For $x, y \in \mathbb{R}^{n}, x \prec y$ if, by definition,

$$
\left\{\begin{array}{l}
\sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]}, k=1, \ldots, n-1 ; \\
\sum_{i=1}^{n} x_{[i]}=\sum_{i=1}^{n} y_{[i]} .
\end{array}\right.
$$

When $x \prec y, x$ is said to be majorized by y (y majorizes x). This notation and terminology was introduced by Hardy, Littlewood and Pólya in 1934.

Functions that preserve the ordering of majorization are said to be Schur-convex. Perhaps "Schur-increasing" would be more appropriate, but the term "Schur-convex" is by now well entrenched in the literature, as mentioned in [8, p.80].

A real-valued function ϕ defined on a set $\mathcal{A} \subset \mathbb{R}^{n}$ is said to be Schur-convex on \mathcal{A} if

$$
\begin{equation*}
x \prec y \text { on } \mathcal{A} \Rightarrow \phi(x) \leq \phi(y) . \tag{1.1}
\end{equation*}
$$

If, in addition, $\phi(x)<\phi(y)$ whenever $x \prec y$ but x is not a permutation of y, then ϕ is said to be strictly Schur-convex on \mathcal{A}. If $\mathcal{A}=\mathbb{R}^{n}$, then ϕ is simply said to be Schur-convex or strictly Schur-convex.

For fundamental properties of Schur convexity see the monograph [8] and the references therein. For some recent results, see [3]-[5] and [9]-[11].

The following result is known in the literature as Schur-Ostrowski theorem [8, p. 84]:

Theorem 1. Let $I \subset \mathbb{R}$ be an open interval and let $\phi: I^{n} \rightarrow \mathbb{R}$ be continuously differentiable. Necessary and sufficient conditions for ϕ to be Schur-convex on I^{n} are

$$
\begin{equation*}
\phi \text { is symmetric on } I^{n} \text {, } \tag{1.2}
\end{equation*}
$$

[^0]and for all $i \neq j$, with $i, j \in\{1, \ldots, n\}$,
\[

$$
\begin{equation*}
\left(z_{i}-z_{j}\right)\left[\frac{\partial \phi(z)}{\partial x_{i}}-\frac{\partial \phi(z)}{\partial x_{j}}\right] \geq 0 \text { for all } z \in I^{n} \tag{1.3}
\end{equation*}
$$

\]

where $\frac{\partial \phi}{\partial x_{k}}$ denotes the partial derivative of ϕ with respect to its k-th argument.
Let $\mathcal{A} \subset \mathbb{R}^{n}$ be a set with the following properties:
(i) \mathcal{A} is symmetric in the sense that $x \in \mathcal{A} \Rightarrow x \Pi \in \mathcal{A}$ for all permutations Π of the coordinates.
(ii) \mathcal{A} is convex and has a nonempty interior.

We have the following result, [8, p. 85].
Theorem 2. If ϕ is continuously differentiable on the interior of \mathcal{A} and continuous on \mathcal{A}, then necessary and sufficient conditions for ϕ to be Schur-convex on \mathcal{A} are

$$
\begin{equation*}
\phi \text { is symmetric on } \mathcal{A} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(z_{1}-z_{2}\right)\left[\frac{\partial \phi(z)}{\partial x_{1}}-\frac{\partial \phi(z)}{\partial x_{2}}\right] \geq 0 \text { for all } z \in \mathcal{A} \tag{1.5}
\end{equation*}
$$

Another interesting characterization of Schur convex functions ϕ on \mathcal{A} was obtained by C. Stępniak in [12]:
Theorem 3. Let ϕ be any function defined on a symmetric convex set \mathcal{A} in \mathbb{R}^{n}. Then the function ϕ is Schur convex on \mathcal{A} if and only if

$$
\begin{equation*}
\phi\left(x_{1}, \ldots, x_{i}, \ldots, x_{j}, \ldots, x_{n}\right)=\phi\left(x_{1}, \ldots, x_{j}, \ldots, x_{i}, \ldots, x_{n}\right) \tag{1.6}
\end{equation*}
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{A}$ and $1 \leq i<j \leq n$ and

$$
\begin{equation*}
\phi\left(\lambda x_{1}+(1-\lambda) x_{2}, \lambda x_{2}+(1-\lambda) x_{1}, x_{3}, \ldots, x_{n}\right) \leq \phi\left(x_{1}, \ldots, x_{n}\right) \tag{1.7}
\end{equation*}
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{A}$ and for all $\lambda \in(0,1)$,
It is well known that any symmetric convex function defined on a symmetric convex set \mathcal{A} is Schur convex, [8, p. 97]. If the function $\phi: \mathcal{A} \rightarrow \mathbb{R}$ is symmetric and quasi-convex, namely

$$
\phi(\alpha u+(1-\alpha) v) \leq \max \{\phi(u), \phi(v)\}
$$

for all $\alpha \in[0,1]$ and $u, v \in \mathcal{A}$, a symmetric convex set, then ϕ is Schur convex on \mathcal{A} [8, p. 98].

Motivated by the above results, in this paper we establish some integral inequalities for Schur convex functions defined on symmetric and convex sets from a Cartesian product of linear spaces. Some applications related to the Hermite-Hadamard inequality for convex functions defined on real intervals are also provided.

2. Main Results

Let X be a linear space and $G \subset X^{2}:=X \times X$ a convex set. We say that G is symmetric if $(x, y) \in G$ implies that $(y, x) \in G$. If $D \subset X$ is a convex subset of X, then the Cartesian product $G:=D^{2}:=D \times D$ is convex and symmetric in X^{2}.

Motivated by the characterization result of Stepniak above, we say that a function $f: G \rightarrow \mathbb{R}$ will be called Schur convex on the convex and symmetric set $G \subset X^{2}$ if

$$
\begin{equation*}
f(t(x, y)+(1-t)(y, x)) \leq f(x, y) \tag{2.1}
\end{equation*}
$$

for all $(x, y) \in G$ and for all $t \in[0,1]$.
If $G=D^{2}$ then we recapture the general concept of Schur convexity introduced by Burai and Makó in 2016, [1].

We say that the function $f: G \rightarrow \mathbb{R}$ is symmetric on G if $f(x, y)=f(y, x)$ for all $(x, y) \in G$. If the function f is symmetric on G and the inequality holds for a given $t \in(0,1)$ and for all $(x, y) \in G$, then we say that f is t-Schur convex on G.

The following fact follows from the definition of Schur convex functions:

Proposition 1. If $f: G \rightarrow \mathbb{R}$ is Schur convex on the convex and symmetric set $G \subset X^{2}$, then f is symmetric on G.

Proof. If $(x, y) \in G$, then by (2.1) we get for $t=0$ that $f(y, x) \leq f(x, y)$. If we replace x with y then we also get $f(x, y) \leq f(y, x)$ which shows that $f(x, y)=$ $f(y, x)$ for all $(x, y) \in G$.

For $(x, y) \in G$, as in [1], let us define the following auxiliary function $\varphi_{(x, y)}$: $[0,1] \rightarrow R$ by

$$
\begin{equation*}
\varphi_{f,(x, y)}(t)=f(t(x, y)+(1-t)(y, x))=f(t x+(1-t) y, t y+(1-t) x) . \tag{2.2}
\end{equation*}
$$

The properties of this function are as follows:
Lemma 1. Let $G \subset X^{2}$ be a convex and symmetric set and $f: G \rightarrow \mathbb{R}$ a symmetric function on G. Then f is Schur convex on G if and only if for all arbitrarily fixed $(x, y) \in G$ the function $\varphi_{f,(x, y)}$ is monotone decreasing on $[0,1 / 2)$, monotone increasing on $(1 / 2,1]$, and $\varphi_{f,(x, y)}$ has a global minimum at $1 / 2$.

Proof. We give a similar prove to the one from [1].
Assume that f is Schur convex on G. Then for all $(u, v) \in G$ and $t \in[0,1]$ we have

$$
\begin{equation*}
f(t(u, v)+(1-t)(v, u)) \leq f(u, v) . \tag{2.3}
\end{equation*}
$$

Let $(x, y) \in G$ and for $0 \leq r<s<\frac{1}{2}$ and put $u=r x+(1-r) y, v=r y+(1-r) x$ and $t=\frac{s-r}{1-2 r}$. Then $(u, v)=r(x, y)+(1-r)(y, x) \in G$ since G is symmetric and convex. By (2.3) we have

$$
\begin{align*}
\varphi_{f,(x, y)}(r) & =f(r(x, y)+(1-r)(y, x))=f(u, v) \tag{2.4}\\
& \geq f\left(\frac{s-r}{1-2 r}(u, v)+\left(1-\frac{s-r}{1-2 r}\right)(v, u)\right)=: B .
\end{align*}
$$

Observe that

$$
\begin{aligned}
& \frac{s-r}{1-2 r}(u, v)+\left(1-\frac{s-r}{1-2 r}\right)(v, u) \\
& =\frac{s-r}{1-2 r}[r(x, y)+(1-r)(y, x)] \\
& +\left(\frac{1-r-s}{1-2 r}\right)[r(y, x)+(1-r)(x, y)] \\
& =\left[\left(\frac{s-r}{1-2 r}\right) r+\left(\frac{1-r-s}{1-2 r}\right)(1-r)\right](x, y) \\
& +\left[\frac{s-r}{1-2 r}(1-r)+\left(\frac{1-r-s}{1-2 r}\right) r\right](y, x) \\
& =\left(\frac{1-s-2 r+2 r s}{1-2 r}\right)(x, y)+\left(\frac{s-2 r s}{1-2 r}\right)(y, x) \\
& =(1-s)(x, y)+s(y, x) .
\end{aligned}
$$

Then

$$
B=f((1-s)(x, y)+s(y, x))=\varphi_{f,(x, y)}(s)
$$

and by (2.4) we get that $\varphi_{f,(x, y)}(r) \geq \varphi_{f,(x, y)}(s)$ for $0 \leq r<s<\frac{1}{2}$, which shows that the function $\varphi_{f,(x, y)}$ is monotone decreasing on $[0,1 / 2)$.

Observe that, by the symmetry of f on G, we have

$$
\begin{aligned}
\varphi_{f,(x, y)}(1-t) & =f((1-t)(x, y)+t(y, x)) \\
& =f((1-t) x+t y,(1-t) y+t x) \\
& =f((1-t) y+t x,(1-t) x+t y) \\
& =f(t(x, y)+(1-t)(y, x))=\varphi_{f,(x, y)}(t)
\end{aligned}
$$

for all $t \in[0,1]$.
This shows that the function $\varphi_{f,(x, y)}$ is also monotone increasing on $(1 / 2,1]$.
From (2.3) we get for $t=\frac{1}{2}$ that

$$
\begin{equation*}
f\left(\frac{u+v}{2}, \frac{u+v}{2}\right) \leq f(u, v) \tag{2.5}
\end{equation*}
$$

for all $(u, v) \in G$. If $(x, y) \in G$ and we take $u=t x+(1-t) y, v=t y+(1-t) x$, $t \in[0,1]$ then $(u, v)=t(x, y)+(1-t)(y, x) \in G, \frac{u+v}{2}=\frac{x+y}{2}$ and by (2.5) we get $\varphi_{f,(x, y)}(1 / 2) \leq \varphi_{f,(x, y)}(t)$ for all $t \in[0,1]$, showing that $\varphi_{f,(x, y)}$ has a global minimum at $1 / 2$.

Now, for fixed $(x, y) \in G$, assume that the function $\varphi_{f,(x, y)}$ is monotone decreasing on $[0,1 / 2)$, monotone increasing on $(1 / 2,1]$, and has a global minimum at $1 / 2$.

Then for $t \in[0,1 / 2)$ we have

$$
f(t(x, y)+(1-t)(y, x))=\varphi_{f,(x, y)}(t) \leq \varphi_{f,(x, y)}(0)=f(y, x)=f(x, y)
$$

and for $t \in(1 / 2,1]$ we have

$$
f(t(x, y)+(1-t)(y, x))=\varphi_{f,(x, y)}(t) \leq \varphi_{f,(x, y)}(1)=f(x, y)
$$

Therefore, for all $t \in[0,1]$ we have $\varphi_{f,(x, y)}(t) \leq f(x, y)$, which shows that f is Schur convex on G.

We have the following weighted integral inequality:
Theorem 4. Assume that the function $f: G \rightarrow \mathbb{R}$ is Schur convex on the convex and symmetric set $G \subset X^{2}$. Then for any Lebesgue integrable function $p:[0,1] \rightarrow$ $[0, \infty)$ we have

$$
\begin{align*}
f\left(\frac{x+y}{2}, \frac{x+y}{2}\right) \int_{0}^{1} p(t) d t & \leq \int_{0}^{1} f(t(x, y)+(1-t)(y, x)) p(t) d t \tag{2.6}\\
& \leq f(x, y) \int_{0}^{1} p(t) d t
\end{align*}
$$

for all $(x, y) \in G$.
In particular, we have

$$
\begin{equation*}
f\left(\frac{x+y}{2}, \frac{x+y}{2}\right) \leq \int_{0}^{1} f(t(x, y)+(1-t)(y, x)) d t \leq f(x, y) \tag{2.7}
\end{equation*}
$$

for all $(x, y) \in G$.
Proof. Using Lemma 1 we have

$$
f\left(\frac{x+y}{2}, \frac{x+y}{2}\right) \leq f(t(x, y)+(1-t)(y, x)) \leq f(x, y)
$$

for all $(x, y) \in G$ and $t \in[0,1]$.
If we multiply this inequality by $p(t) \geq 0$ and integrate on $[0,1]$ we deduce the desired result (2.6).

If some monotonicity information is available for the function p we also have:
Theorem 5. Assume that the function $f: G \rightarrow \mathbb{R}$ is Schur convex on the convex and symmetric set $G \subset X^{2}$. If $p:[0,1] \rightarrow \mathbb{R}$ is symmetric towards $1 / 2$, namely $p(1-t)=p(t)$ for all $t \in[0,1]$ and monotonic decreasing (increasing) on $[0,1 / 2]$, then

$$
\begin{align*}
& \int_{0}^{1} f(t(x, y)+(1-t)(y, x)) p(t) d t \tag{2.8}\\
& \geq(\leq) \int_{0}^{1} p(t) d t \int_{0}^{1} f(t(x, y)+(1-t)(y, x)) d t
\end{align*}
$$

Proof. Let $(x, y) \in G$. Since the functions $\varphi_{f,(x, y)}$ and p are symmetric on $[0,1]$, then

$$
\int_{0}^{1} f(t(x, y)+(1-t)(y, x)) p(t) d t=2 \int_{0}^{1 / 2} f(t(x, y)+(1-t)(y, x)) p(t) d t
$$

Assume that the functions $\varphi_{f,(x, y)}$ and p are both decreasing on $[0,1 / 2]$, then by Čebyšev's inequality for synchronous functions $h, g:[a, b] \rightarrow \mathbb{R}$

$$
\frac{1}{b-a} \int_{a}^{b} h(t) g(t) d t \geq \frac{1}{b-a} \int_{a}^{b} h(t) d t \frac{1}{b-a} \int_{a}^{b} g(t) d t
$$

we have

$$
\begin{align*}
& 2 \int_{0}^{1 / 2} f(t(x, y)+(1-t)(y, x)) p(t) d t \tag{2.9}\\
& \geq 2 \int_{0}^{1 / 2} f(t(x, y)+(1-t)(y, x)) d t \cdot 2 \int_{0}^{1 / 2} p(t) d t
\end{align*}
$$

and since, by symmetry,

$$
2 \int_{0}^{1 / 2} f(t(x, y)+(1-t)(y, x)) d t=\int_{0}^{1} f(t(x, y)+(1-t)(y, x)) d t
$$

and

$$
2 \int_{0}^{1 / 2} p(t) d t=\int_{0}^{1} p(t) d t
$$

hence by (2.9) we get the desired result (2.8).
The following Cebyšev's type inequality holds for two Schur convex functions:
Corollary 1. Assume that the functions $f, g: G \rightarrow \mathbb{R}$ are Schur convex on the convex and symmetric set $G \subset X^{2}$. Then we have

$$
\begin{align*}
& \int_{0}^{1} f(t(x, y)+(1-t)(y, x)) g(t(x, y)+(1-t)(y, x)) d t \tag{2.10}\\
& \geq \int_{0}^{1} g(t(x, y)+(1-t)(y, x)) d t \int_{0}^{1} f(t(x, y)+(1-t)(y, x)) d t
\end{align*}
$$

for all $(x, y) \in G$.
If one of the functions is Schur convex and the other Schur concave, then the sign of inequality reverses in (2.10).

We can prove the following refinement of (2.6):
Corollary 2. Assume that the function $f: G \rightarrow \mathbb{R}$ is Schur convex on the convex and symmetric set $G \subset X^{2}$ and $p:[0,1] \rightarrow[0, \infty)$ is symmetric towards $1 / 2$ and positive.
(i) If p is decreasing on $[0,1 / 2]$, then

$$
\begin{align*}
f\left(\frac{x+y}{2}, \frac{x+y}{2}\right) & \leq \int_{0}^{1} f(t(x, y)+(1-t)(y, x)) d t \tag{2.11}\\
& \leq \frac{1}{\int_{0}^{1} p(t) d t} \int_{0}^{1} f(t(x, y)+(1-t)(y, x)) p(t) d t \\
& \leq f(x, y)
\end{align*}
$$

for all $(x, y) \in G$.
(ii) If p is increasing on $[0,1 / 2]$, then

$$
\begin{align*}
& \qquad \begin{aligned}
& f\left(\frac{x+y}{2}, \frac{x+y}{2}\right) \leq \frac{1}{\int_{0}^{1} p(t) d t} \int_{0}^{1} f(t(x, y)+(1-t)(y, x)) p(t) d t \\
& \leq \int_{0}^{1} f(t(x, y)+(1-t)(y, x)) d t \\
& \leq f(x, y) \\
& \text { for all }(x, y) \in G .
\end{aligned} \tag{2.12}
\end{align*}
$$

Proof. (i). From (2.8) we get

$$
\frac{1}{\int_{0}^{1} p(t) d t} \int_{0}^{1} f(t(x, y)+(1-t)(y, x)) p(t) d t \geq \int_{0}^{1} f(t(x, y)+(1-t)(y, x)) d t
$$

and by (2.6) and (2.7) we get the desired result (2.11).
(ii). The proof goes in a similar way.

Remark 1. If we consider the weight $p(t)=\left|t-\frac{1}{2}\right|$, then $\int_{0}^{1} p(t) d t=\frac{1}{4}$ and by (2.11) we get

$$
\begin{align*}
f\left(\frac{x+y}{2}, \frac{x+y}{2}\right) & \leq \int_{0}^{1} f(t(x, y)+(1-t)(y, x)) d t \tag{2.13}\\
& \leq 4 \int_{0}^{1} f(t(x, y)+(1-t)(y, x))\left|t-\frac{1}{2}\right| d t \\
& \leq f(x, y)
\end{align*}
$$

for any function $f: G \rightarrow \mathbb{R}$ that is Schur convex on the convex and symmetric set $G \subset X^{2}$ and for all $(x, y) \in G$.

If we consider the weight $p(t)=t(1-t)$, then $\int_{0}^{1} p(t) d t=\frac{1}{6}$ and by (2.12) we get

$$
\begin{align*}
f\left(\frac{x+y}{2}, \frac{x+y}{2}\right) & \leq \int_{0}^{1} f(t(x, y)+(1-t)(y, x)) d t \tag{2.14}\\
& \leq 6 \int_{0}^{1} f(t(x, y)+(1-t)(y, x)) t(1-t) d t \\
& \leq f(x, y)
\end{align*}
$$

for any function $f: G \rightarrow \mathbb{R}$ that is Schur convex on the convex and symmetric set $G \subset X^{2}$ and for all $(x, y) \in G$.

We also have the following inequality for two functions:

Corollary 3. Assume that the functions $f, g: G \rightarrow \mathbb{R}$ are Schur convex on the convex and symmetric set $G \subset X^{2}$ and g is nonnegative, then

$$
\begin{align*}
& f\left(\frac{x+y}{2}, \frac{x+y}{2}\right) \tag{2.15}\\
& \leq \int_{0}^{1} f(t(x, y)+(1-t)(y, x)) d t \\
& \leq \frac{1}{\int_{0}^{1} g(t(x, y)+(1-t)(y, x)) d t} \\
& \times \int_{0}^{1} f(t(x, y)+(1-t)(y, x)) g(t(x, y)+(1-t)(y, x)) d t \\
& \leq f(x, y)
\end{align*}
$$

for all $(x, y) \in G$.

If g is Schur concave and nonnegative on G, then

$$
\begin{align*}
& f\left(\frac{x+y}{2}, \frac{x+y}{2}\right) \tag{2.16}\\
& \leq \frac{1}{\int_{0}^{1} g(t(x, y)+(1-t)(y, x)) d t} \\
& \times \int_{0}^{1} f(t(x, y)+(1-t)(y, x)) g(t(x, y)+(1-t)(y, x)) d t \\
& \leq \int_{0}^{1} f(t(x, y)+(1-t)(y, x)) d t \\
& \leq f(x, y)
\end{align*}
$$

for all $(x, y) \in G$.
Recall the famous Grüss' inequality that provides an upper bound for the distance between the integral mean of the product and the product of integral means, more precisely

$$
\begin{align*}
& \left|\frac{1}{b-a} \int_{a}^{b} h(t) k(t) d t-\frac{1}{b-a} \int_{a}^{b} h(t) d t \frac{1}{b-a} \int_{a}^{b} k(t) d t\right| \tag{2.17}\\
& \leq \frac{1}{4}(M-m)(N-n)
\end{align*}
$$

provided the functions h, k are measurable on $[a, b]$ and $-\infty<m \leq h(t) \leq M<\infty$, $-\infty<n \leq k(t) \leq N<\infty$, for almost every $t \in[a, b]$. The constant $\frac{1}{4}$ is best possible in (2.17).
Theorem 6. Assume that the function $f: G \rightarrow \mathbb{R}$ is Schur convex on the convex and symmetric set $G \subset X^{2}$. If $p:[0,1] \rightarrow \mathbb{R}$ is symmetric towards $1 / 2$, namely $p(1-t)=p(t)$ for all $t \in[0,1]$ and monotonic decreasing on $[0,1 / 2]$ then

$$
\begin{align*}
0 & \leq \int_{0}^{1} f(t(x, y)+(1-t)(y, x)) p(t) d t \tag{2.18}\\
& -\int_{0}^{1} p(t) d t \int_{0}^{1} f(t(x, y)+(1-t)(y, x)) d t \\
& \leq \frac{1}{4}\left[p(0)-p\left(\frac{1}{2}\right)\right]\left[f(x, y)-f\left(\frac{x+y}{2}, \frac{x+y}{2}\right)\right]
\end{align*}
$$

for all $(x, y) \in G$.
If p is monotonic increasing on $[0,1 / 2]$, then

$$
\begin{align*}
0 & \leq \int_{0}^{1} p(t) d t \int_{0}^{1} f(t(x, y)+(1-t)(y, x)) d t \tag{2.19}\\
& -\int_{0}^{1} f(t(x, y)+(1-t)(y, x)) p(t) d t \\
& \leq \frac{1}{4}\left[p\left(\frac{1}{2}\right)-p(0)\right]\left[f(x, y)-f\left(\frac{x+y}{2}, \frac{x+y}{2}\right)\right]
\end{align*}
$$

for all $(x, y) \in G$.
The proof follows by Gruss' inequality (2.17) written for $h(t)=p(t)$ and $k(t)=$ $f(t(x, y)+(1-t)(y, x)), t \in[0,1]$ and $(x, y) \in G$.

Corollary 4. Assume that both functions $f, g: G \rightarrow \mathbb{R}$ are Schur convex on the convex and symmetric set $G \subset X^{2}$. Then we have

$$
\begin{align*}
0 & \leq \int_{0}^{1} f(t(x, y)+(1-t)(y, x)) g(t(x, y)+(1-t)(y, x)) d t \tag{2.20}\\
& -\int_{0}^{1} g(t(x, y)+(1-t)(y, x)) d t \int_{0}^{1} f(t(x, y)+(1-t)(y, x)) d t \\
& \leq \frac{1}{4}\left[g(x, y)-g\left(\frac{x+y}{2}, \frac{x+y}{2}\right)\right]\left[f(x, y)-f\left(\frac{x+y}{2}, \frac{x+y}{2}\right)\right] .
\end{align*}
$$

If f is Schur convex and g is Schur concave, then

$$
\begin{align*}
0 & \leq \int_{0}^{1} g(t(x, y)+(1-t)(y, x)) d t \int_{0}^{1} f(t(x, y)+(1-t)(y, x)) d t \tag{2.21}\\
& -\int_{0}^{1} f(t(x, y)+(1-t)(y, x)) g(t(x, y)+(1-t)(y, x)) d t \\
& \leq \frac{1}{4}\left[g\left(\frac{x+y}{2}, \frac{x+y}{2}\right)-g(x, y)\right]\left[f(x, y)-f\left(\frac{x+y}{2}, \frac{x+y}{2}\right)\right]
\end{align*}
$$

3. Examples for Functions of Two Real Variables

We assume in this section that G is a convex and symmetric subset of the two dimensional space \mathbb{R}^{2} and $f: G \rightarrow \mathbb{R}$ is Schur convex on G. If $(a, b) \in G$ with $a<b$ and we put $u=(1-t) a+t b$, then $(1-t) b+t a=b+a-t b-(1-t) a=b+a-u$. We also assume that $w:[a, b] \rightarrow[0, \infty)$ is Lebesgue integrable on $[a, b]$ and symmetric on this interval, namely $w(b+a-u)=w(u)$ for all $u \in[a, b]$. Since $d u=(b-a) d t$ then by taking $p(t)=w((1-t) a+t b), t \in[0,1]$ we have by Theorem 4 that

$$
\begin{equation*}
f\left(\frac{a+b}{2}, \frac{a+b}{2}\right) \leq \frac{1}{\int_{a}^{b} w(u) d u} \int_{a}^{b} f(u, a+b-u) w(u) d u \leq f(a, b) \tag{3.1}
\end{equation*}
$$

In particular, we have

$$
\begin{equation*}
f\left(\frac{a+b}{2}, \frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{0}^{1} f(u, a+b-u) d u \leq f(a, b) \tag{3.2}
\end{equation*}
$$

If we take $w(u)=\left|u-\frac{a+b}{2}\right|, u \in[a, b]$ in (3.1), then we get

$$
\begin{equation*}
f\left(\frac{a+b}{2}, \frac{a+b}{2}\right) \leq \frac{4}{(b-a)^{2}} \int_{a}^{b} f(u, a+b-u)\left|u-\frac{a+b}{2}\right| d u \leq f(a, b) \tag{3.3}
\end{equation*}
$$

while for $w(u)=(u-a)(b-u), u \in[a, b]$ we get

$$
\begin{equation*}
f\left(\frac{a+b}{2}, \frac{a+b}{2}\right) \leq \frac{6}{(b-a)^{3}} \int_{a}^{b} f(u, a+b-u)(u-a)(b-u) d u \leq f(a, b) \tag{3.4}
\end{equation*}
$$

If we have two Schur convex functions $f, g: G \rightarrow \mathbb{R}$, then

$$
\begin{align*}
& \int_{a}^{b} f(u, a+b-u) g(u, a+b-u) d t \tag{3.5}\\
& \geq \int_{a}^{b} f(u, a+b-u) d u \int_{a}^{b} g(u, a+b-u) d u
\end{align*}
$$

If one function is Schur convex and the other is Schur concave, then the sign of inequality in (3.5) is reversed.

By utilising Corollary 2 we can improve the inequality (3.1) as follows:
Proposition 2. Assume that the function $f: G \rightarrow \mathbb{R}$ is Schur convex on the convex and symmetric set $G \subset \mathbb{R}^{2},(a, b) \in G$ with $a<b$ and $w:[a, b] \rightarrow[0, \infty)$ is Lebesgue integrable on $[a, b]$ and symmetric on $[a, b]$.
(i) If w is decreasing on $\left[a, \frac{a+b}{2}\right]$, then

$$
\begin{align*}
f\left(\frac{a+b}{2}, \frac{a+b}{2}\right) & \leq \frac{1}{b-a} \int_{a}^{b} f(u, a+b-u) d u \tag{3.6}\\
& \leq \frac{1}{\int_{a}^{b} w(u) d u} \int_{a}^{b} f(u, a+b-u) w(u) d u \\
& \leq f(a, b)
\end{align*}
$$

(ii) If w is increasing on $\left[a, \frac{a+b}{2}\right]$, then

$$
\begin{align*}
f\left(\frac{a+b}{2}, \frac{a+b}{2}\right) & \leq \frac{1}{\int_{a}^{b} w(u) d u} \int_{a}^{b} f(u, a+b-u) w(u) d u \tag{3.7}\\
& \leq \frac{1}{b-a} \int_{a}^{b} f(u, a+b-u) d u \\
& \leq f(a, b)
\end{align*}
$$

If we take $w(u)=\left|u-\frac{a+b}{2}\right|, u \in[a, b]$ in (3.6), then we get

$$
\begin{align*}
f\left(\frac{a+b}{2}, \frac{a+b}{2}\right) & \leq \frac{1}{b-a} \int_{a}^{b} f(u, a+b-u) d u \tag{3.8}\\
& \leq \frac{4}{(b-a)^{2}} \int_{a}^{b} f(u, a+b-u)\left|u-\frac{a+b}{2}\right| d u \\
& \leq f(a, b)
\end{align*}
$$

Also, if we choose $w(u)=(u-a)(b-u), u \in[a, b]$ in (3.7), then we obtain

$$
\begin{align*}
f\left(\frac{a+b}{2}, \frac{a+b}{2}\right) & \leq \frac{6}{(b-a)^{3}} \int_{a}^{b} f(u, a+b-u)(u-a)(b-u) d u \tag{3.9}\\
& \leq \frac{1}{b-a} \int_{a}^{b} f(u, a+b-u) d u \\
& \leq f(a, b)
\end{align*}
$$

From Theorem 6 we also have:
Proposition 3. Assume that the function $f: G \rightarrow \mathbb{R}$ is Schur convex on the convex and symmetric set $G \subset \mathbb{R}^{2},(a, b) \in G$ with $a<b$ and $w:[a, b] \rightarrow[0, \infty)$ is Lebesgue integrable on $[a, b]$ and symmetric on $[a, b]$.
(i) If w is decreasing on $\left[a, \frac{a+b}{2}\right]$, then

$$
\begin{align*}
0 & \leq \int_{a}^{b} f(u, a+b-u) w(u) d u-\int_{a}^{b} w(u) d u \int_{a}^{b} f(u, a+b-u) d u \tag{3.10}\\
& \leq \frac{1}{4}\left[w(b)-w\left(\frac{a+b}{2}\right)\right]\left[f(a, b)-f\left(\frac{a+b}{2}, \frac{a+b}{2}\right)\right]
\end{align*}
$$

(ii) If w is increasing on $\left[a, \frac{a+b}{2}\right]$, then

$$
\begin{align*}
0 & \leq \int_{a}^{b} w(u) d u \int_{a}^{b} f(u, a+b-u) d u-\int_{a}^{b} f(u, a+b-u) w(u) d u \tag{3.11}\\
& \leq \frac{1}{4}\left[w\left(\frac{a+b}{2}\right)-w(b)\right]\left[f(a, b)-f\left(\frac{a+b}{2}, \frac{a+b}{2}\right)\right]
\end{align*}
$$

From this proposition we derive the following reverse inequalities of (3.5).
Corollary 5. Assume that the function $f, g: G \rightarrow \mathbb{R}$ are Schur convex on the convex and symmetric set $G \subset \mathbb{R}^{2},(a, b) \in G$ with $a<b$. Then

$$
\begin{align*}
0 & \leq \int_{a}^{b} f(u, a+b-u) g(u, a+b-u) d u \tag{3.12}\\
& -\int_{a}^{b} g(u, a+b-u) d u \int_{a}^{b} f(u, a+b-u) d u \\
& \leq \frac{1}{4}\left[g(a, b)-g\left(\frac{a+b}{2}, \frac{a+b}{2}\right)\right]\left[f(a, b)-f\left(\frac{a+b}{2}, \frac{a+b}{2}\right)\right] .
\end{align*}
$$

If $f: G \rightarrow \mathbb{R}$ is Schur convex and $f: G \rightarrow \mathbb{R}$ is Schur concave, then

$$
\begin{align*}
0 & \leq \int_{a}^{b} g(u, a+b-u) d u \int_{a}^{b} f(u, a+b-u) d u \tag{3.13}\\
& -\int_{a}^{b} f(u, a+b-u) g(u, a+b-u) d u \\
& \leq \frac{1}{4}\left[g\left(\frac{a+b}{2}, \frac{a+b}{2}\right)-g(a, b)\right]\left[f(a, b)-f\left(\frac{a+b}{2}, \frac{a+b}{2}\right)\right]
\end{align*}
$$

4. Some Applications for Hermite-Hadamard Inequality

We recall the celebrated Hermite-Hadamard inequality for continuous convex functions h defined on a real interval I, which state that

$$
\begin{equation*}
h\left(\frac{x+y}{2}\right) \leq \frac{1}{y-x} \int_{x}^{y} h(t) d t \leq \frac{h(x)+h(y)}{2} \tag{4.1}
\end{equation*}
$$

for all $x \neq y, x, y \in I$. For a monograph devoted to this inequality, see [6]. Many related results are also presented in the survey paper [4].

The following result concerning the Schur convexity of the integral mean was obtained by Elezović and Pečarić in [7]:

Theorem 7. Let h be a continuous function on I. Then

$$
H(x, y):=\left\{\begin{array}{l}
\frac{1}{y-x} \int_{x}^{y} h(t) d t, \text { for } x \neq y, x, y \in I ; \\
h(x), \text { for } y=x, x \in I,
\end{array}\right.
$$

is Schur convex (concave) on I^{2} if and only if h is convex (concave) on I.

Let h be a continuous function on I. We have for $t \in[0,1], t \neq 1 / 2$ that

$$
\begin{aligned}
& H(t(x, y)+(1-t)(y, x)) \\
& =H(t x+(1-t) y, t y+(1-t) x) \\
& =\left\{\begin{array}{l}
\frac{1}{t x+(1-t) y-t y-(1-t) x} \int_{t y+(1-t) x}^{t x+(1-t) y} h(s) d s, \text { for } x \neq y, x, y \in I \\
h(x), \text { for } y=x, x \in I
\end{array}\right. \\
& =\left\{\begin{array}{l}
\frac{1}{(1-2 t)(y-x)} \int_{t y+(1-t) x}^{t x+(1-t) y} h(s) d s, \text { for } x \neq y, x, y \in I \\
h(x), \text { for } y=x, x \in I
\end{array}\right.
\end{aligned}
$$

For $t=1 / 2$ we have

$$
H\left(\frac{x+y}{2}, \frac{x+y}{2}\right)=h\left(\frac{x+y}{2}\right)
$$

for $x, y \in I$.
Corollary 6. Assume that h is continuous convex on I. Then we have the following refinement of the first Hermite-Hadamard inequality

$$
\begin{align*}
h\left(\frac{x+y}{2}\right) & \leq \frac{1}{(1-2 t)(y-x)} \int_{t y+(1-t) x}^{t x+(1-t) y} h(s) d s \tag{4.2}\\
& \leq \frac{1}{y-x} \int_{x}^{y} h(t) d t
\end{align*}
$$

for all $x \neq y, x, y \in I$ and $t \in[0,1], t \neq 1 / 2$.
Proof. Since h is continuous convex on I, hence by Theorem 7 we get that H is Schur convex on I^{2}. By utilising Lemma 1 we conclude that

$$
H\left(\frac{x+y}{2}, \frac{x+y}{2}\right) \leq H(t(x, y)+(1-t)(y, x)) \leq H(x, y)
$$

for $t \in[0,1]$, and the inequality (4.2) is obtained.
Assume that h is continuous on I. For $x \neq y, x, y \in I$, we consider the function $\psi_{h,(x, y)}:[0,1] \rightarrow \mathbb{R}$ defined by

$$
\psi_{h,(x, y)}(t):=\left\{\begin{array}{l}
\frac{1}{(1-2 t)(y-x)} \int_{t y+(1-t) x}^{t x+(1-t) y} h(s) d s \text { for } t \neq 1 / 2 \\
h\left(\frac{x+y}{2}\right) \text { for } t=1 / 2
\end{array}\right.
$$

Remark 2. Assume that h is continuous convex on I. For any Lebesgue integrable function $p:[0,1] \rightarrow[0, \infty)$ with $\int_{0}^{1} p(t) d t>0$ we have from Theorem 4 that

$$
\begin{align*}
h\left(\frac{x+y}{2}\right) & \leq \frac{1}{(y-x) \int_{0}^{1} p(t) d t} \int_{0}^{1} p(t) \psi_{h,(x, y)}(t) d t \tag{4.3}\\
& \leq \frac{1}{y-x} \int_{x}^{y} h(t) d t
\end{align*}
$$

and, in particular,

$$
\begin{equation*}
h\left(\frac{x+y}{2}\right) \leq \frac{1}{y-x} \int_{0}^{1} \psi_{h,(x, y)}(t) d t \leq \frac{1}{y-x} \int_{x}^{y} h(t) d t, \tag{4.4}
\end{equation*}
$$

for all $x \neq y, x, y \in I$.
We also have:
Corollary 7. Assume that h is continuous convex on I, then the function $\psi_{h,(x, y)}$ is monotone decreasing on $[0,1 / 2)$, monotone increasing on $(1 / 2,1]$, and $\psi_{h,(x, y)}$ has a global minimum at $1 / 2$.

The proof is obvious by Lemma 1.
If more assumptions are imposed on the weight p, then some better inequalities are obtained:

Corollary 8. Assume that h is continuous convex on I and $p:[0,1] \rightarrow[0, \infty)$ is symmetric towards $1 / 2$.
(i) If p is decreasing on $[0,1 / 2]$, then

$$
\begin{align*}
h\left(\frac{x+y}{2}\right) & \leq \frac{1}{y-x} \int_{0}^{1} \psi_{h,(x, y)}(t) d t \tag{4.5}\\
& \leq \frac{1}{(y-x) \int_{0}^{1} p(t) d t} \int_{0}^{1} p(t) \psi_{h,(x, y)}(t) d t \leq \frac{1}{y-x} \int_{x}^{y} h(t) d t
\end{align*}
$$

for all $x \neq y, x, y \in I$.
(ii) If p is increasing on $[0,1 / 2]$, then

$$
\begin{align*}
h\left(\frac{x+y}{2}\right) & \leq \frac{1}{(y-x) \int_{0}^{1} p(t) d t} \int_{0}^{1} p(t) \psi_{h,(x, y)}(t) d t \tag{4.6}\\
& \leq \frac{1}{y-x} \int_{0}^{1} \psi_{h,(x, y)}(t) d t \leq \frac{1}{y-x} \int_{x}^{y} h(t) d t
\end{align*}
$$

for all $x \neq y, x, y \in I$.
Remark 3. If we take $p(t)=\left|t-\frac{1}{2}\right|, t \in[0,1]$ in (4.5), then we get

$$
\begin{align*}
h\left(\frac{x+y}{2}\right) & \leq \frac{1}{y-x} \int_{0}^{1} \psi_{h,(x, y)}(t) d t \tag{4.7}\\
& \leq \frac{4}{y-x} \int_{0}^{1}\left|t-\frac{1}{2}\right| \psi_{h,(x, y)}(t) d t \leq \frac{1}{y-x} \int_{x}^{y} h(t) d t
\end{align*}
$$

and for $p(t)=t(1-t), t \in[0,1]$ in (4.6) we obtain

$$
\begin{align*}
h\left(\frac{x+y}{2}\right) & \leq \frac{6}{y-x} \int_{0}^{1} t(1-t) \psi_{h,(x, y)}(t) d t \tag{4.8}\\
& \leq \frac{1}{y-x} \int_{0}^{1} \psi_{h,(x, y)}(t) d t \leq \frac{1}{y-x} \int_{x}^{y} h(t) d t
\end{align*}
$$

Finally, we can state
Corollary 9. Assume that h is continuous convex on I and $p:[0,1] \rightarrow[0, \infty)$ is symmetric towards $1 / 2$. If p is monotonic decreasing on $[0,1 / 2]$ then

$$
\begin{align*}
0 & \leq \int_{0}^{1} \psi_{h,(x, y)}(t) p(t) d t-\int_{0}^{1} p(t) d t \int_{0}^{1} \psi_{h,(x, y)}(t) d t \tag{4.9}\\
& \leq \frac{1}{4}\left[p(1)-p\left(\frac{1}{2}\right)\right]\left[\frac{1}{y-x} \int_{x}^{y} h(t) d t-h\left(\frac{x+y}{2}\right)\right]
\end{align*}
$$

for all $x \neq y, x, y \in I$.

If we take in (4.9) $p(t)=\left|t-\frac{1}{2}\right|, t \in[0,1]$, then we obtain the inequality

$$
\begin{align*}
0 & \leq \int_{0}^{1} \psi_{h,(x, y)}(t)\left|t-\frac{1}{2}\right| d t-\frac{1}{4} \int_{0}^{1} \psi_{h,(x, y)}(t) d t \tag{4.10}\\
& \leq \frac{1}{8}\left[\frac{1}{y-x} \int_{x}^{y} h(t) d t-h\left(\frac{x+y}{2}\right)\right]
\end{align*}
$$

provided that h is continuous convex on I and $x \neq y, x, y \in I$.
In [2] Chu et al. obtained the following results:
Theorem 8. Suppose $h: I \rightarrow \mathbb{R}$ is a continuous function. Function

$$
M(x, y):=\left\{\begin{array}{l}
\frac{1}{y-x} \int_{x}^{y} h(t) d t-h\left(\frac{x+y}{2}\right), \quad(x, y) \in I^{2}, x \neq y \\
0, \quad(x, y) \in I^{2}, x=y
\end{array}\right.
$$

is Schur-convex (Schur-concave) on I^{2} if and only if h is convex (concave) on I. Furthermore, function

$$
T(x, y):=\left\{\begin{array}{l}
\frac{h(x)+h(y)}{2}-\frac{1}{y-x} \int_{x}^{y} h(t) d t, \quad(x, y) \in I^{2}, x \neq y \\
0,(x, y) \in I^{2}, x=y
\end{array}\right.
$$

is Schur-convex (Schur-concave) on I^{2} if and only if h is convex (concave) on I.
Observe that for $t \in[0,1], t \neq 1 / 2$ we have

$$
\begin{aligned}
& T(t(x, y)+(1-t)(y, x)) \\
& =T(t x+(1-t) y, t y+(1-t) x) \\
& =\left\{\begin{array}{l}
\frac{h(t x+(1-t) y)+h(t y+(1-t) x)}{2} \\
-\frac{1}{(1-2 t)(y-x)} \int_{t y+(1-t) x}^{t x+(1-t) y} h(s) d s, \quad(x, y) \in I^{2}, x \neq y \\
0, \quad(x, y) \in I^{2}, x=y
\end{array}\right.
\end{aligned}
$$

For $t=\frac{1}{2}$ we have

$$
T\left(\frac{x+y}{2}, \frac{x+y}{2}\right)=0, \quad(x, y) \in I^{2}
$$

We have:
Corollary 10. Assume that h is continuous convex on I. Then we have the following refinement of the second Hermite-Hadamard inequality

$$
\begin{align*}
0 & \leq \frac{h(t x+(1-t) y)+h(t y+(1-t) x)}{2} \tag{4.11}\\
& -\frac{1}{(1-2 t)(y-x)} \int_{t y+(1-t) x}^{t x+(1-t) y} h(s) d s \\
& \leq \frac{h(x)+h(y)}{2}-\frac{1}{y-x} \int_{x}^{y} h(t) d t
\end{align*}
$$

for all $x \neq y, x, y \in I$ and $t \in[0,1], t \neq 1 / 2$.

Proof. Since h is continuous convex on I, hence by Theorem 8 we get that H is Schur convex on I^{2}. By utilising Lemma 1 we conclude that

$$
T\left(\frac{x+y}{2}, \frac{x+y}{2}\right) \leq T(t(x, y)+(1-t)(y, x)) \leq T(x, y)
$$

for $t \in[0,1]$, and the inequality (4.11) is obtained.

With the notations above, we have for $x \neq y, x, y \in I$ and $t \in[0,1], t \neq 1 / 2$ let put

$$
\begin{align*}
\delta_{h,(x, y)}(t) & : \quad=T(t(x, y)+(1-t)(y, x)) \tag{4.12}\\
& =\frac{h(t x+(1-t) y)+h(t y+(1-t) x)}{2}-\psi_{h,(x, y)}(t)
\end{align*}
$$

and

$$
\delta_{h,(x, y)}\left(\frac{1}{2}\right):=0
$$

From Lemma 1 we have:
Corollary 11. Assume that h is continuous convex on I and $x \neq y, x, y \in I$. Then the function the function $\delta_{h,(x, y)}$ is nonnegative, monotone decreasing on $[0,1 / 2)$, monotone increasing on $(1 / 2,1]$, and $\delta_{h,(x, y)}$ has a global minimum at $1 / 2$.

We also have, by utilising Theorem 4:
Corollary 12. Assume that h is continuous convex on I and $x \neq y, x, y \in I$. Then for any Lebesgue integrable function $p:[0,1] \rightarrow[0, \infty)$ we have

$$
\begin{align*}
0 & \leq \int_{0}^{1} \frac{h(t x+(1-t) y)+h(t y+(1-t) x)}{2} p(t) d t \tag{4.13}\\
& -\int_{0}^{1} \psi_{h,(x, y)}(t) p(t) d t \\
& \leq\left[\frac{h(x)+h(y)}{2}-\frac{1}{y-x} \int_{x}^{y} h(t) d t\right] \int_{0}^{1} p(t) d t
\end{align*}
$$

In particular, we have the following refinement of the second Hermite-Hadamard inequality

$$
\begin{align*}
0 & \leq \frac{1}{y-x} \int_{x}^{y} h(t) d t-\int_{0}^{1} \psi_{h,(x, y)}(t) d t \tag{4.14}\\
& \leq \frac{h(x)+h(y)}{2}-\frac{1}{y-x} \int_{x}^{y} h(t) d t
\end{align*}
$$

If more conditions are assumed for the weight p, then we also have:
Corollary 13. Assume that h is continuous convex on I and $x \neq y, x, y \in I$ and $p:[0,1] \rightarrow[0, \infty)$ is symmetric towards $1 / 2$ and positive.
(i) If p is decreasing on $[0,1 / 2]$, then

$$
\begin{align*}
0 & \leq \frac{1}{y-x} \int_{x}^{y} h(t) d t-\int_{0}^{1} \psi_{h,(x, y)}(t) d t \tag{4.15}\\
& \leq \frac{1}{\int_{0}^{1} p(t) d t} \int_{0}^{1} h(t x+(1-t) y) p(t) d t \\
& -\frac{1}{\int_{0}^{1} p(t) d t} \int_{0}^{1} \psi_{h,(x, y)}(t) p(t) d t \\
& \leq \frac{h(x)+h(y)}{2}-\frac{1}{y-x} \int_{x}^{y} h(t) d t
\end{align*}
$$

for all $(x, y) \in G$.
(ii) If p is increasing on $[0,1 / 2]$, then

$$
\begin{align*}
0 & \leq \frac{1}{\int_{0}^{1} p(t) d t} \int_{0}^{1} h(t x+(1-t) y) p(t) d t \tag{4.16}\\
& -\frac{1}{\int_{0}^{1} p(t) d t} \int_{0}^{1} \psi_{h,(x, y)}(t) p(t) d t \\
& \leq \frac{1}{y-x} \int_{x}^{y} h(t) d t-\int_{0}^{1} \psi_{h,(x, y)}(t) d t \\
& \leq \frac{h(x)+h(y)}{2}-\frac{1}{y-x} \int_{x}^{y} h(t) d t
\end{align*}
$$

The proof follows by Corollary 2.
Corollary 14. Assume that h is continuous convex on I and $x \neq y, x, y \in I$ and $p:[0,1] \rightarrow[0, \infty)$ is symmetric towards $1 / 2$ and positive. If $p:[0,1] \rightarrow \mathbb{R}$ is symmetric towards $1 / 2$ and monotonic decreasing on $[0,1 / 2]$ then

$$
\begin{align*}
0 & \leq \int_{0}^{1} h(t x+(1-t) y) p(t) d t-\int_{0}^{1} \psi_{h,(x, y)}(t) p(t) d t \tag{4.17}\\
& -\int_{0}^{1} p(t) d t\left[\frac{1}{y-x} \int_{x}^{y} h(t) d t-\int_{0}^{1} \psi_{h,(x, y)}(t) d t\right] \\
& \leq \frac{1}{4}\left[p(1)-p\left(\frac{1}{2}\right)\right]\left[\frac{h(x)+h(y)}{2}-\frac{1}{y-x} \int_{x}^{y} h(t) d t\right]
\end{align*}
$$

If we take in (4.17) $p(t)=\left|t-\frac{1}{2}\right|, t \in[0,1]$, then we obtain the inequality

$$
\begin{align*}
0 & \leq \int_{0}^{1} h(t x+(1-t) y)\left|t-\frac{1}{2}\right| d t-\int_{0}^{1} \psi_{h,(x, y)}(t)\left|t-\frac{1}{2}\right| d t \tag{4.18}\\
& -\frac{1}{4}\left[\frac{1}{y-x} \int_{x}^{y} h(t) d t-\int_{0}^{1} \psi_{h,(x, y)}(t) d t\right] \\
& \leq \frac{1}{8}\left[\frac{h(x)+h(y)}{2}-\frac{1}{y-x} \int_{x}^{y} h(t) d t\right]
\end{align*}
$$

References

[1] P. Burai and J. Makó, On certain Schur-convex functions, Publ. Math. Debrecen, 89 (3) (2016), 307-319.
[2] Y. Chu, G. Wang, X. Zhang, Schur convexity and Hadamard's inequality, Math. Inequal. Appl. 13 (4) (2010) 725-731.
[3] V. Čuljak, A remark on Schur-convexity of the mean of a convex function. J. Math. Inequal. 9 (2015), No. 4, 1133-1142.
[4] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results. Aust. J. Math. Anal. Appl. 14 (2017), No. 1, Art. 1, 283 pp. [Online https://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P1.tex].
[5] S. S. Dragomir and K. Nikodem, Functions generating (m, M, Ψ)-Schur-convex sums. Aequationes Math. 93 (2019), No. 1, 79-90.
[6] S. S. Dragomir and C. E. M. Pearce, Selected Topics on HermiteHadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online https://rgmia.org/monographs/hermite_hadamard.html].
[7] N. Elezović and J. Pečarić, A note on Schur convex fuctions, Rocky Mountain J. Math. 30 (2000), No. 3, 853-956.
[8] A. W. Marshall, I. Olkin and B. C. Arnold, Inequalities: Theory of Majorization and Its Applications, Second Edition, Springer New York Dordrecht Heidelberg London, 2011.
[9] K. Nikodem, T. Rajba and S. Wąsowicz, Functions generating strongly Schur-convex sums. Inequalities and applications 2010, 175-182, Internat. Ser. Numer. Math., 161, Birkhäuser/Springer, Basel, 2012.
[10] J. Qi and W. Wang, Schur convex functions and the Bonnesen style isoperimetric inequalities for planar convex polygons. J. Math. Inequal. 12 (2018), no. 1, 23-29.
[11] H.-N. Shi and J. Zhang, Compositions involving Schur harmonically convex functions. J. Comput. Anal. Appl. 22 (2017), no. 5, 907-922.
[12] C. Stępniak, An effective characterization of Schur-convex functions with applications, Journal of Convex Analysis, 14 (2007), No. 1, 103-108.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428 , Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand,, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 26D15.
 Key words and phrases. Schur convex functions, Integral inequalities, Hermite-Hadamard inequality.

