
INTEGRAL INEQUALITIES FOR SCHUR CONVEX FUNCTIONS
ON SYMMETRIC AND CONVEX SETS IN LINEAR SPACES

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper, we establish some integral inequalities for Schur con-
vex functions de�ned on symmetric and convex sets from a Cartesion product
of linear spaces. Some applications related to the Hermite-Hadamard inequal-
ity for convex functions de�ned on real intervals are also provided.

1. Introduction

For any x = (x1; :::; xn) 2 Rn, let x[1] � ::: � x[n] denote the components of x in
decreasing order, and let x# =

�
x[1]; :::; x[n]

�
denote the decreasing rearrangement

of x. For x; y 2 Rn, x � y if, by de�nition,8<:
Pk

i=1 x[i] �
Pk

i=1 y[i]; k = 1; :::; n� 1;Pn
i=1 x[i] =

Pn
i=1 y[i]:

When x � y, x is said to be majorized by y (y majorizes x). This notation and
terminology was introduced by Hardy, Littlewood and Pólya in 1934.
Functions that preserve the ordering of majorization are said to be Schur-convex.

Perhaps �Schur-increasing�would be more appropriate, but the term �Schur-convex�
is by now well entrenched in the literature, as mentioned in [8, p.80].
A real-valued function � de�ned on a set A � Rn is said to be Schur-convex on

A if

(1.1) x � y on A ) � (x) � � (y) :

If, in addition, � (x) < � (y) whenever x � y but x is not a permutation of y, then
� is said to be strictly Schur-convex on A. If A = Rn, then � is simply said to be
Schur-convex or strictly Schur-convex.
For fundamental properties of Schur convexity see the monograph [8] and the

references therein. For some recent results, see [3]-[5] and [9]-[11].
The following result is known in the literature as Schur-Ostrowski theorem [8, p.

84]:

Theorem 1. Let I � R be an open interval and let � : In ! R be continuously
di¤erentiable. Necessary and su¢ cient conditions for � to be Schur-convex on In

are

(1.2) � is symmetric on In;
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and for all i 6= j, with i; j 2 f1; :::; ng ;

(1.3) (zi � zj)
�
@�(z)

@xi
� @�(z)

@xj

�
� 0 for all z 2 In;

where @�
@xk

denotes the partial derivative of � with respect to its k-th argument.

Let A � Rn be a set with the following properties:
(i) A is symmetric in the sense that x 2 A ) x� 2 A for all permutations � of

the coordinates.
(ii) A is convex and has a nonempty interior.
We have the following result, [8, p. 85].

Theorem 2. If � is continuously di¤erentiable on the interior of A and continuous
on A, then necessary and su¢ cient conditions for � to be Schur-convex on A are

(1.4) � is symmetric on A
and

(1.5) (z1 � z2)
�
@�(z)

@x1
� @�(z)

@x2

�
� 0 for all z 2 A:

Another interesting characterization of Schur convex functions � on A was ob-
tained by C. St¾epniak in [12]:

Theorem 3. Let � be any function de�ned on a symmetric convex set A in Rn.
Then the function � is Schur convex on A if and only if

(1.6) � (x1; :::; xi; :::; xj ; :::; xn) = � (x1; :::; xj ; :::; xi; :::; xn)

for all (x1; :::; xn) 2 A and 1 � i < j � n and

(1.7) � (�x1 + (1� �)x2; �x2 + (1� �)x1; x3; :::; xn) � � (x1; :::; xn)

for all (x1; :::; xn) 2 A and for all � 2 (0; 1) ;

It is well known that any symmetric convex function de�ned on a symmetric
convex set A is Schur convex, [8, p. 97]. If the function � : A ! R is symmetric
and quasi-convex, namely

� (�u+ (1� �) v) � max f� (u) ; � (v)g
for all � 2 [0; 1] and u; v 2 A, a symmetric convex set, then � is Schur convex on
A [8, p. 98].
Motivated by the above results, in this paper we establish some integral inequal-

ities for Schur convex functions de�ned on symmetric and convex sets from a Carte-
sian product of linear spaces. Some applications related to the Hermite-Hadamard
inequality for convex functions de�ned on real intervals are also provided.

2. Main Results

Let X be a linear space and G � X2 := X �X a convex set. We say that G is
symmetric if (x; y) 2 G implies that (y; x) 2 G: If D � X is a convex subset of X;
then the Cartesian product G := D2 := D �D is convex and symmetric in X2:
Motivated by the characterization result of St¾epniak above, we say that a func-

tion f : G ! R will be called Schur convex on the convex and symmetric set
G � X2 if

(2.1) f (t (x; y) + (1� t) (y; x)) � f (x; y)
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for all (x; y) 2 G and for all t 2 [0; 1] :
If G = D2 then we recapture the general concept of Schur convexity introduced

by Burai and Makó in 2016, [1].
We say that the function f : G ! R is symmetric on G if f (x; y) = f (y; x) for

all (x; y) 2 G. If the function f is symmetric on G and the inequality holds for a
given t 2 (0; 1) and for all (x; y) 2 G; then we say that f is t-Schur convex on G:
The following fact follows from the de�nition of Schur convex functions:

Proposition 1. If f : G ! R is Schur convex on the convex and symmetric set
G � X2; then f is symmetric on G:

Proof. If (x; y) 2 G; then by (2.1) we get for t = 0 that f (y; x) � f (x; y) : If we
replace x with y then we also get f (x; y) � f (y; x) which shows that f (x; y) =
f (y; x) for all (x; y) 2 G: �

For (x; y) 2 G; as in [1], let us de�ne the following auxiliary function '(x;y) :
[0; 1]! R by

(2.2) 'f;(x;y) (t) = f (t (x; y) + (1� t) (y; x)) = f (tx+ (1� t) y; ty + (1� t)x) :

The properties of this function are as follows:

Lemma 1. Let G � X2 be a convex and symmetric set and f : G! R a symmet-
ric function on G: Then f is Schur convex on G if and only if for all arbitrarily
�xed (x; y) 2 G the function 'f;(x;y) is monotone decreasing on [0; 1=2), monotone
increasing on (1=2; 1], and 'f;(x;y) has a global minimum at 1=2 .

Proof. We give a similar prove to the one from [1].
Assume that f is Schur convex on G. Then for all (u; v) 2 G and t 2 [0; 1] we

have

(2.3) f (t (u; v) + (1� t) (v; u)) � f (u; v) :

Let (x; y) 2 G and for 0 � r < s < 1
2 and put u = rx+(1� r) y; v = ry+(1� r)x

and t = s�r
1�2r : Then (u; v) = r (x; y) + (1� r) (y; x) 2 G since G is symmetric and

convex. By (2.3) we have

'f;(x;y) (r) = f (r (x; y) + (1� r) (y; x)) = f (u; v)(2.4)

� f

�
s� r
1� 2r (u; v) +

�
1� s� r

1� 2r

�
(v; u)

�
=: B:
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Observe that
s� r
1� 2r (u; v) +

�
1� s� r

1� 2r

�
(v; u)

=
s� r
1� 2r [r (x; y) + (1� r) (y; x)]

+

�
1� r � s
1� 2r

�
[r (y; x) + (1� r) (x; y)]

=

��
s� r
1� 2r

�
r +

�
1� r � s
1� 2r

�
(1� r)

�
(x; y)

+

�
s� r
1� 2r (1� r) +

�
1� r � s
1� 2r

�
r

�
(y; x)

=

�
1� s� 2r + 2rs

1� 2r

�
(x; y) +

�
s� 2rs
1� 2r

�
(y; x)

= (1� s) (x; y) + s (y; x) :
Then

B = f ((1� s) (x; y) + s (y; x)) = 'f;(x;y) (s)

and by (2.4) we get that 'f;(x;y) (r) � 'f;(x;y) (s) for 0 � r < s < 1
2 ; which shows

that the function 'f;(x;y) is monotone decreasing on [0; 1=2):
Observe that, by the symmetry of f on G; we have

'f;(x;y) (1� t) = f ((1� t) (x; y) + t (y; x))
= f ((1� t)x+ ty; (1� t) y + tx)
= f ((1� t) y + tx; (1� t)x+ ty)
= f (t (x; y) + (1� t) (y; x)) = 'f;(x;y) (t)

for all t 2 [0; 1] :
This shows that the function 'f;(x;y) is also monotone increasing on (1=2; 1].
From (2.3) we get for t = 1

2 that

(2.5) f

�
u+ v

2
;
u+ v

2

�
� f (u; v)

for all (u; v) 2 G: If (x; y) 2 G and we take u = tx + (1� t) y; v = ty + (1� t)x;
t 2 [0; 1] then (u; v) = t (x; y) + (1� t) (y; x) 2 G; u+v

2 = x+y
2 and by (2.5) we

get 'f;(x;y) (1=2) � 'f;(x;y) (t) for all t 2 [0; 1] ; showing that 'f;(x;y) has a global
minimum at 1=2:
Now, for �xed (x; y) 2 G; assume that the function 'f;(x;y) is monotone de-

creasing on [0; 1=2), monotone increasing on (1=2; 1], and has a global minimum at
1=2.
Then for t 2 [0; 1=2) we have
f (t (x; y) + (1� t) (y; x)) = 'f;(x;y) (t) � 'f;(x;y) (0) = f (y; x) = f (x; y)

and for t 2 (1=2; 1] we have
f (t (x; y) + (1� t) (y; x)) = 'f;(x;y) (t) � 'f;(x;y) (1) = f (x; y) :

Therefore, for all t 2 [0; 1] we have 'f;(x;y) (t) � f (x; y) ; which shows that f is
Schur convex on G: �
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We have the following weighted integral inequality:

Theorem 4. Assume that the function f : G ! R is Schur convex on the convex
and symmetric set G � X2. Then for any Lebesgue integrable function p : [0; 1]!
[0;1) we have

f

�
x+ y

2
;
x+ y

2

�Z 1

0

p (t) dt �
Z 1

0

f (t (x; y) + (1� t) (y; x)) p (t) dt(2.6)

� f (x; y)

Z 1

0

p (t) dt

for all (x; y) 2 G:
In particular, we have

(2.7) f

�
x+ y

2
;
x+ y

2

�
�
Z 1

0

f (t (x; y) + (1� t) (y; x)) dt � f (x; y)

for all (x; y) 2 G:
Proof. Using Lemma 1 we have

f

�
x+ y

2
;
x+ y

2

�
� f (t (x; y) + (1� t) (y; x)) � f (x; y)

for all (x; y) 2 G and t 2 [0; 1] :
If we multiply this inequality by p (t) � 0 and integrate on [0; 1] we deduce the

desired result (2.6). �
If some monotonicity information is available for the function p we also have:

Theorem 5. Assume that the function f : G ! R is Schur convex on the convex
and symmetric set G � X2. If p : [0; 1] ! R is symmetric towards 1=2, namely
p (1� t) = p (t) for all t 2 [0; 1] and monotonic decreasing (increasing) on [0; 1=2] ;
then Z 1

0

f (t (x; y) + (1� t) (y; x)) p (t) dt(2.8)

� (�)
Z 1

0

p (t) dt

Z 1

0

f (t (x; y) + (1� t) (y; x)) dt:

Proof. Let (x; y) 2 G. Since the functions 'f;(x;y) and p are symmetric on [0; 1] ;
thenZ 1

0

f (t (x; y) + (1� t) (y; x)) p (t) dt = 2
Z 1=2

0

f (t (x; y) + (1� t) (y; x)) p (t) dt:

Assume that the functions 'f;(x;y) and p are both decreasing on [0; 1=2] ; then
by µCeby�ev�s inequality for synchronous functions h; g : [a; b]! R

1

b� a

Z b

a

h (t) g (t) dt � 1

b� a

Z b

a

h (t) dt
1

b� a

Z b

a

g (t) dt;

we have

2

Z 1=2

0

f (t (x; y) + (1� t) (y; x)) p (t) dt(2.9)

� 2
Z 1=2

0

f (t (x; y) + (1� t) (y; x)) dt � 2
Z 1=2

0

p (t) dt



6 S. S. DRAGOMIR

and since, by symmetry,

2

Z 1=2

0

f (t (x; y) + (1� t) (y; x)) dt =
Z 1

0

f (t (x; y) + (1� t) (y; x)) dt

and

2

Z 1=2

0

p (t) dt =

Z 1

0

p (t) dt

hence by (2.9) we get the desired result (2.8). �

The following µCeby�ev�s type inequality holds for two Schur convex functions:

Corollary 1. Assume that the functions f; g : G ! R are Schur convex on the
convex and symmetric set G � X2. Then we haveZ 1

0

f (t (x; y) + (1� t) (y; x)) g (t (x; y) + (1� t) (y; x)) dt(2.10)

�
Z 1

0

g (t (x; y) + (1� t) (y; x)) dt
Z 1

0

f (t (x; y) + (1� t) (y; x)) dt

for all (x; y) 2 G:
If one of the functions is Schur convex and the other Schur concave, then the

sign of inequality reverses in (2.10).

We can prove the following re�nement of (2.6):

Corollary 2. Assume that the function f : G! R is Schur convex on the convex
and symmetric set G � X2 and p : [0; 1] ! [0;1) is symmetric towards 1=2 and
positive.

(i) If p is decreasing on [0; 1=2] ; then

f

�
x+ y

2
;
x+ y

2

�
�
Z 1

0

f (t (x; y) + (1� t) (y; x)) dt(2.11)

� 1R 1
0
p (t) dt

Z 1

0

f (t (x; y) + (1� t) (y; x)) p (t) dt

� f (x; y)

for all (x; y) 2 G:
(ii) If p is increasing on [0; 1=2] ; then

f

�
x+ y

2
;
x+ y

2

�
� 1R 1

0
p (t) dt

Z 1

0

f (t (x; y) + (1� t) (y; x)) p (t) dt(2.12)

�
Z 1

0

f (t (x; y) + (1� t) (y; x)) dt

� f (x; y)

for all (x; y) 2 G:
Proof. (i). From (2.8) we get

1R 1
0
p (t) dt

Z 1

0

f (t (x; y) + (1� t) (y; x)) p (t) dt �
Z 1

0

f (t (x; y) + (1� t) (y; x)) dt

and by (2.6) and (2.7) we get the desired result (2.11).
(ii). The proof goes in a similar way. �
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Remark 1. If we consider the weight p (t) =
��t� 1

2

�� ; then R 1
0
p (t) dt = 1

4 and by
(2.11) we get

f

�
x+ y

2
;
x+ y

2

�
�
Z 1

0

f (t (x; y) + (1� t) (y; x)) dt(2.13)

� 4
Z 1

0

f (t (x; y) + (1� t) (y; x))
����t� 12

���� dt
� f (x; y)

for any function f : G! R that is Schur convex on the convex and symmetric set
G � X2 and for all (x; y) 2 G:
If we consider the weight p (t) = t (1� t) ; then

R 1
0
p (t) dt = 1

6 and by (2.12) we
get

f

�
x+ y

2
;
x+ y

2

�
�
Z 1

0

f (t (x; y) + (1� t) (y; x)) dt(2.14)

� 6
Z 1

0

f (t (x; y) + (1� t) (y; x)) t (1� t) dt

� f (x; y)

for any function f : G! R that is Schur convex on the convex and symmetric set
G � X2 and for all (x; y) 2 G:

We also have the following inequality for two functions:

Corollary 3. Assume that the functions f; g : G ! R are Schur convex on the
convex and symmetric set G � X2 and g is nonnegative, then

f

�
x+ y

2
;
x+ y

2

�
(2.15)

�
Z 1

0

f (t (x; y) + (1� t) (y; x)) dt

� 1R 1
0
g (t (x; y) + (1� t) (y; x)) dt

�
Z 1

0

f (t (x; y) + (1� t) (y; x)) g (t (x; y) + (1� t) (y; x)) dt

� f (x; y)

for all (x; y) 2 G:
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If g is Schur concave and nonnegative on G; then

f

�
x+ y

2
;
x+ y

2

�
(2.16)

� 1R 1
0
g (t (x; y) + (1� t) (y; x)) dt

�
Z 1

0

f (t (x; y) + (1� t) (y; x)) g (t (x; y) + (1� t) (y; x)) dt

�
Z 1

0

f (t (x; y) + (1� t) (y; x)) dt

� f (x; y)

for all (x; y) 2 G:

Recall the famous Grüss� inequality that provides an upper bound for the dis-
tance between the integral mean of the product and the product of integral means,
more precisely����� 1

b� a

Z b

a

h (t) k (t) dt� 1

b� a

Z b

a

h (t) dt
1

b� a

Z b

a

k (t) dt

�����(2.17)

� 1

4
(M �m) (N � n)

provided the functions h; k are measurable on [a; b] and �1 < m � h (t) �M <1;
�1 < n � k (t) � N < 1; for almost every t 2 [a; b] : The constant 1

4 is best
possible in (2.17).

Theorem 6. Assume that the function f : G ! R is Schur convex on the convex
and symmetric set G � X2. If p : [0; 1] ! R is symmetric towards 1=2, namely
p (1� t) = p (t) for all t 2 [0; 1] and monotonic decreasing on [0; 1=2] then

0 �
Z 1

0

f (t (x; y) + (1� t) (y; x)) p (t) dt(2.18)

�
Z 1

0

p (t) dt

Z 1

0

f (t (x; y) + (1� t) (y; x)) dt

� 1

4

�
p (0)� p

�
1

2

���
f (x; y)� f

�
x+ y

2
;
x+ y

2

��
for all (x; y) 2 G:
If p is monotonic increasing on [0; 1=2] ; then

0 �
Z 1

0

p (t) dt

Z 1

0

f (t (x; y) + (1� t) (y; x)) dt(2.19)

�
Z 1

0

f (t (x; y) + (1� t) (y; x)) p (t) dt

� 1

4

�
p

�
1

2

�
� p (0)

� �
f (x; y)� f

�
x+ y

2
;
x+ y

2

��
for all (x; y) 2 G:

The proof follows by Gruss�inequality (2.17) written for h (t) = p (t) and k (t) =
f (t (x; y) + (1� t) (y; x)) ; t 2 [0; 1] and (x; y) 2 G:
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Corollary 4. Assume that both functions f; g : G ! R are Schur convex on the
convex and symmetric set G � X2. Then we have

0 �
Z 1

0

f (t (x; y) + (1� t) (y; x)) g (t (x; y) + (1� t) (y; x)) dt(2.20)

�
Z 1

0

g (t (x; y) + (1� t) (y; x)) dt
Z 1

0

f (t (x; y) + (1� t) (y; x)) dt

� 1

4

�
g (x; y)� g

�
x+ y

2
;
x+ y

2

���
f (x; y)� f

�
x+ y

2
;
x+ y

2

��
:

If f is Schur convex and g is Schur concave, then

0 �
Z 1

0

g (t (x; y) + (1� t) (y; x)) dt
Z 1

0

f (t (x; y) + (1� t) (y; x)) dt(2.21)

�
Z 1

0

f (t (x; y) + (1� t) (y; x)) g (t (x; y) + (1� t) (y; x)) dt

� 1

4

�
g

�
x+ y

2
;
x+ y

2

�
� g (x; y)

� �
f (x; y)� f

�
x+ y

2
;
x+ y

2

��
:

3. Examples for Functions of Two Real Variables

We assume in this section that G is a convex and symmetric subset of the two
dimensional space R2 and f : G! R is Schur convex on G: If (a; b) 2 G with a < b
and we put u = (1� t) a+tb; then (1� t) b+ta = b+a�tb�(1� t) a = b+a�u:We
also assume that w : [a; b]! [0;1) is Lebesgue integrable on [a; b] and symmetric
on this interval, namely w (b+ a� u) = w (u) for all u 2 [a; b] : Since du = (b� a) dt
then by taking p (t) = w ((1� t) a+ tb) ; t 2 [0; 1] we have by Theorem 4 that

(3.1) f

�
a+ b

2
;
a+ b

2

�
� 1R b

a
w (u) du

Z b

a

f (u; a+ b� u)w (u) du � f (a; b) :

In particular, we have

(3.2) f

�
a+ b

2
;
a+ b

2

�
� 1

b� a

Z 1

0

f (u; a+ b� u) du � f (a; b) :

If we take w (u) =
��u� a+b

2

�� ; u 2 [a; b] in (3.1), then we get
(3.3) f

�
a+ b

2
;
a+ b

2

�
� 4

(b� a)2
Z b

a

f (u; a+ b� u)
����u� a+ b

2

���� du � f (a; b)

while for w (u) = (u� a) (b� u) ; u 2 [a; b] we get
(3.4)

f

�
a+ b

2
;
a+ b

2

�
� 6

(b� a)3
Z b

a

f (u; a+ b� u) (u� a) (b� u) du � f (a; b) :

If we have two Schur convex functions f; g : G! R, thenZ b

a

f (u; a+ b� u) g (u; a+ b� u) dt(3.5)

�
Z b

a

f (u; a+ b� u) du
Z b

a

g (u; a+ b� u) du:
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If one function is Schur convex and the other is Schur concave, then the sign of
inequality in (3.5) is reversed.
By utilising Corollary 2 we can improve the inequality (3.1) as follows:

Proposition 2. Assume that the function f : G! R is Schur convex on the convex
and symmetric set G � R2; (a; b) 2 G with a < b and w : [a; b]! [0;1) is Lebesgue
integrable on [a; b] and symmetric on [a; b] :

(i) If w is decreasing on
�
a; a+b2

�
; then

f

�
a+ b

2
;
a+ b

2

�
� 1

b� a

Z b

a

f (u; a+ b� u) du(3.6)

� 1R b
a
w (u) du

Z b

a

f (u; a+ b� u)w (u) du

� f (a; b) :

(ii) If w is increasing on
�
a; a+b2

�
; then

f

�
a+ b

2
;
a+ b

2

�
� 1R b

a
w (u) du

Z b

a

f (u; a+ b� u)w (u) du(3.7)

� 1

b� a

Z b

a

f (u; a+ b� u) du

� f (a; b) :

If we take w (u) =
��u� a+b

2

�� ; u 2 [a; b] in (3.6), then we get
f

�
a+ b

2
;
a+ b

2

�
� 1

b� a

Z b

a

f (u; a+ b� u) du(3.8)

� 4

(b� a)2
Z b

a

f (u; a+ b� u)
����u� a+ b

2

���� du
� f (a; b) :

Also, if we choose w (u) = (u� a) (b� u) ; u 2 [a; b] in (3.7), then we obtain

f

�
a+ b

2
;
a+ b

2

�
� 6

(b� a)3
Z b

a

f (u; a+ b� u) (u� a) (b� u) du(3.9)

� 1

b� a

Z b

a

f (u; a+ b� u) du

� f (a; b) :

From Theorem 6 we also have:

Proposition 3. Assume that the function f : G! R is Schur convex on the convex
and symmetric set G � R2; (a; b) 2 G with a < b and w : [a; b]! [0;1) is Lebesgue
integrable on [a; b] and symmetric on [a; b] :

(i) If w is decreasing on
�
a; a+b2

�
; then

0 �
Z b

a

f (u; a+ b� u)w (u) du�
Z b

a

w (u) du

Z b

a

f (u; a+ b� u) du(3.10)

� 1

4

�
w (b)� w

�
a+ b

2

���
f (a; b)� f

�
a+ b

2
;
a+ b

2

��
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(ii) If w is increasing on
�
a; a+b2

�
; then

0 �
Z b

a

w (u) du

Z b

a

f (u; a+ b� u) du�
Z b

a

f (u; a+ b� u)w (u) du(3.11)

� 1

4

�
w

�
a+ b

2

�
� w (b)

� �
f (a; b)� f

�
a+ b

2
;
a+ b

2

��
:

From this proposition we derive the following reverse inequalities of (3.5).

Corollary 5. Assume that the function f; g : G ! R are Schur convex on the
convex and symmetric set G � R2; (a; b) 2 G with a < b: Then

0 �
Z b

a

f (u; a+ b� u) g (u; a+ b� u) du(3.12)

�
Z b

a

g (u; a+ b� u) du
Z b

a

f (u; a+ b� u) du

� 1

4

�
g (a; b)� g

�
a+ b

2
;
a+ b

2

���
f (a; b)� f

�
a+ b

2
;
a+ b

2

��
:

If f : G! R is Schur convex and f : G! R is Schur concave, then

0 �
Z b

a

g (u; a+ b� u) du
Z b

a

f (u; a+ b� u) du(3.13)

�
Z b

a

f (u; a+ b� u) g (u; a+ b� u) du

� 1

4

�
g

�
a+ b

2
;
a+ b

2

�
� g (a; b)

� �
f (a; b)� f

�
a+ b

2
;
a+ b

2

��
:

4. Some Applications for Hermite-Hadamard Inequality

We recall the celebrated Hermite-Hadamard inequality for continuous convex
functions h de�ned on a real interval I; which state that

(4.1) h

�
x+ y

2

�
� 1

y � x

Z y

x

h (t) dt � h (x) + h (y)

2

for all x 6= y; x; y 2 I: For a monograph devoted to this inequality, see [6]. Many
related results are also presented in the survey paper [4].
The following result concerning the Schur convexity of the integral mean was

obtained by Elezovíc and Peµcaríc in [7]:

Theorem 7. Let h be a continuous function on I: Then

H (x; y) :=

8<:
1

y�x
R y
x
h (t) dt, for x 6= y; x; y 2 I;

h (x) ; for y = x; x 2 I;

is Schur convex (concave) on I2 if and only if h is convex (concave) on I:
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Let h be a continuous function on I: We have for t 2 [0; 1] ; t 6= 1=2 that
H (t (x; y) + (1� t) (y; x))
= H (tx+ (1� t) y; ty + (1� t)x)

=

8><>:
1

tx+(1�t)y�ty�(1�t)x
R tx+(1�t)y
ty+(1�t)x h (s) ds, for x 6= y; x; y 2 I;

h (x) ; for y = x; x 2 I;

=

8><>:
1

(1�2t)(y�x)
R tx+(1�t)y
ty+(1�t)x h (s) ds, for x 6= y; x; y 2 I;

h (x) ; for y = x; x 2 I:
For t = 1=2 we have

H

�
x+ y

2
;
x+ y

2

�
= h

�
x+ y

2

�
for x; y 2 I:
Corollary 6. Assume that h is continuous convex on I: Then we have the following
re�nement of the �rst Hermite-Hadamard inequality

h

�
x+ y

2

�
� 1

(1� 2t) (y � x)

Z tx+(1�t)y

ty+(1�t)x
h (s) ds(4.2)

� 1

y � x

Z y

x

h (t) dt,

for all x 6= y; x; y 2 I and t 2 [0; 1] ; t 6= 1=2:
Proof. Since h is continuous convex on I; hence by Theorem 7 we get that H is
Schur convex on I2: By utilising Lemma 1 we conclude that

H

�
x+ y

2
;
x+ y

2

�
� H (t (x; y) + (1� t) (y; x)) � H (x; y)

for t 2 [0; 1] ; and the inequality (4.2) is obtained. �
Assume that h is continuous on I: For x 6= y; x; y 2 I, we consider the function

 h;(x;y) : [0; 1]! R de�ned by

 h;(x;y) (t) :=

8><>:
1

(1�2t)(y�x)
R tx+(1�t)y
ty+(1�t)x h (s) ds for t 6= 1=2;

h
�
x+y
2

�
for t = 1=2:

Remark 2. Assume that h is continuous convex on I: For any Lebesgue integrable
function p : [0; 1]! [0;1) with

R 1
0
p (t) dt > 0 we have from Theorem 4 that

h

�
x+ y

2

�
� 1

(y � x)
R 1
0
p (t) dt

Z 1

0

p (t) h;(x;y) (t) dt(4.3)

� 1

y � x

Z y

x

h (t) dt,

and, in particular,

(4.4) h

�
x+ y

2

�
� 1

y � x

Z 1

0

 h;(x;y) (t) dt �
1

y � x

Z y

x

h (t) dt,
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for all x 6= y; x; y 2 I:
We also have:

Corollary 7. Assume that h is continuous convex on I; then the function  h;(x;y)
is monotone decreasing on [0; 1=2), monotone increasing on (1=2; 1], and  h;(x;y)
has a global minimum at 1=2:

The proof is obvious by Lemma 1.
If more assumptions are imposed on the weight p; then some better inequalities

are obtained:

Corollary 8. Assume that h is continuous convex on I and p : [0; 1] ! [0;1) is
symmetric towards 1=2.

(i) If p is decreasing on [0; 1=2] ; then

h

�
x+ y

2

�
� 1

y � x

Z 1

0

 h;(x;y) (t) dt(4.5)

� 1

(y � x)
R 1
0
p (t) dt

Z 1

0

p (t) h;(x;y) (t) dt �
1

y � x

Z y

x

h (t) dt

for all x 6= y; x; y 2 I:
(ii) If p is increasing on [0; 1=2] ; then

h

�
x+ y

2

�
� 1

(y � x)
R 1
0
p (t) dt

Z 1

0

p (t) h;(x;y) (t) dt(4.6)

� 1

y � x

Z 1

0

 h;(x;y) (t) dt �
1

y � x

Z y

x

h (t) dt

for all x 6= y; x; y 2 I:
Remark 3. If we take p (t) =

��t� 1
2

�� ; t 2 [0; 1] in (4.5), then we get
h

�
x+ y

2

�
� 1

y � x

Z 1

0

 h;(x;y) (t) dt(4.7)

� 4

y � x

Z 1

0

����t� 12
���� h;(x;y) (t) dt � 1

y � x

Z y

x

h (t) dt

and for p (t) = t (1� t) ; t 2 [0; 1] in (4.6) we obtain

h

�
x+ y

2

�
� 6

y � x

Z 1

0

t (1� t) h;(x;y) (t) dt(4.8)

� 1

y � x

Z 1

0

 h;(x;y) (t) dt �
1

y � x

Z y

x

h (t) dt:

Finally, we can state

Corollary 9. Assume that h is continuous convex on I and p : [0; 1] ! [0;1) is
symmetric towards 1=2. If p is monotonic decreasing on [0; 1=2] then

0 �
Z 1

0

 h;(x;y) (t) p (t) dt�
Z 1

0

p (t) dt

Z 1

0

 h;(x;y) (t) dt(4.9)

� 1

4

�
p (1)� p

�
1

2

���
1

y � x

Z y

x

h (t) dt� h
�
x+ y

2

��
for all x 6= y; x; y 2 I:
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If we take in (4.9) p (t) =
��t� 1

2

�� ; t 2 [0; 1], then we obtain the inequality
0 �

Z 1

0

 h;(x;y) (t)

����t� 12
���� dt� 14

Z 1

0

 h;(x;y) (t) dt(4.10)

� 1

8

�
1

y � x

Z y

x

h (t) dt� h
�
x+ y

2

��
provided that h is continuous convex on I and x 6= y; x; y 2 I:
In [2] Chu et al. obtained the following results:

Theorem 8. Suppose h : I ! R is a continuous function. Function

M (x; y) :=

8<:
1

y�x
R y
x
h (t) dt� h

�
x+y
2

�
; (x; y) 2 I2; x 6= y

0; (x; y) 2 I2; x = y

is Schur-convex (Schur-concave) on I2 if and only if h is convex (concave) on I.
Furthermore, function

T (x; y) :=

8<:
h(x)+h(y)

2 � 1
y�x

R y
x
h (t) dt; (x; y) 2 I2; x 6= y

0; (x; y) 2 I2; x = y

is Schur-convex (Schur-concave) on I2 if and only if h is convex (concave) on I.

Observe that for t 2 [0; 1] ; t 6= 1=2 we have

T (t (x; y) + (1� t) (y; x))
= T (tx+ (1� t) y; ty + (1� t)x)

=

8>>><>>>:
h(tx+(1�t)y)+h(ty+(1�t)x)

2

� 1
(1�2t)(y�x)

R tx+(1�t)y
ty+(1�t)x h (s) ds; (x; y) 2 I

2; x 6= y

0; (x; y) 2 I2; x = y:

For t = 1
2 we have

T

�
x+ y

2
;
x+ y

2

�
= 0; (x; y) 2 I2:

We have:

Corollary 10. Assume that h is continuous convex on I: Then we have the fol-
lowing re�nement of the second Hermite-Hadamard inequality

0 � h (tx+ (1� t) y) + h (ty + (1� t)x)
2

(4.11)

� 1

(1� 2t) (y � x)

Z tx+(1�t)y

ty+(1�t)x
h (s) ds

� h (x) + h (y)

2
� 1

y � x

Z y

x

h (t) dt;

for all x 6= y; x; y 2 I and t 2 [0; 1] ; t 6= 1=2:
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Proof. Since h is continuous convex on I; hence by Theorem 8 we get that H is
Schur convex on I2: By utilising Lemma 1 we conclude that

T

�
x+ y

2
;
x+ y

2

�
� T (t (x; y) + (1� t) (y; x)) � T (x; y)

for t 2 [0; 1] ; and the inequality (4.11) is obtained. �

With the notations above, we have for x 6= y; x; y 2 I and t 2 [0; 1] ; t 6= 1=2 let
put

�h;(x;y) (t) : = T (t (x; y) + (1� t) (y; x))(4.12)

=
h (tx+ (1� t) y) + h (ty + (1� t)x)

2
�  h;(x;y) (t)

and

�h;(x;y)

�
1

2

�
:= 0

From Lemma 1 we have:

Corollary 11. Assume that h is continuous convex on I and x 6= y; x; y 2 I: Then
the function the function �h;(x;y) is nonnegative, monotone decreasing on [0; 1=2),
monotone increasing on (1=2; 1], and �h;(x;y) has a global minimum at 1=2 .

We also have, by utilising Theorem 4:

Corollary 12. Assume that h is continuous convex on I and x 6= y; x; y 2 I: Then
for any Lebesgue integrable function p : [0; 1]! [0;1) we have

0 �
Z 1

0

h (tx+ (1� t) y) + h (ty + (1� t)x)
2

p (t) dt(4.13)

�
Z 1

0

 h;(x;y) (t) p (t) dt

�
�
h (x) + h (y)

2
� 1

y � x

Z y

x

h (t) dt

� Z 1

0

p (t) dt:

In particular, we have the following re�nement of the second Hermite-Hadamard
inequality

0 � 1

y � x

Z y

x

h (t) dt�
Z 1

0

 h;(x;y) (t) dt(4.14)

� h (x) + h (y)

2
� 1

y � x

Z y

x

h (t) dt:

If more conditions are assumed for the weight p; then we also have:

Corollary 13. Assume that h is continuous convex on I and x 6= y; x; y 2 I and
p : [0; 1]! [0;1) is symmetric towards 1=2 and positive.
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(i) If p is decreasing on [0; 1=2] ; then

0 � 1

y � x

Z y

x

h (t) dt�
Z 1

0

 h;(x;y) (t) dt(4.15)

� 1R 1
0
p (t) dt

Z 1

0

h (tx+ (1� t) y) p (t) dt

� 1R 1
0
p (t) dt

Z 1

0

 h;(x;y) (t) p (t) dt

� h (x) + h (y)

2
� 1

y � x

Z y

x

h (t) dt

for all (x; y) 2 G:
(ii) If p is increasing on [0; 1=2] ; then

0 � 1R 1
0
p (t) dt

Z 1

0

h (tx+ (1� t) y) p (t) dt(4.16)

� 1R 1
0
p (t) dt

Z 1

0

 h;(x;y) (t) p (t) dt

� 1

y � x

Z y

x

h (t) dt�
Z 1

0

 h;(x;y) (t) dt

� h (x) + h (y)

2
� 1

y � x

Z y

x

h (t) dt:

The proof follows by Corollary 2.

Corollary 14. Assume that h is continuous convex on I and x 6= y; x; y 2 I
and p : [0; 1] ! [0;1) is symmetric towards 1=2 and positive. If p : [0; 1] ! R is
symmetric towards 1=2 and monotonic decreasing on [0; 1=2] then

0 �
Z 1

0

h (tx+ (1� t) y) p (t) dt�
Z 1

0

 h;(x;y) (t) p (t) dt(4.17)

�
Z 1

0

p (t) dt

�
1

y � x

Z y

x

h (t) dt�
Z 1

0

 h;(x;y) (t) dt

�
� 1

4

�
p (1)� p

�
1

2

���
h (x) + h (y)

2
� 1

y � x

Z y

x

h (t) dt

�
:

If we take in (4.17) p (t) =
��t� 1

2

�� ; t 2 [0; 1], then we obtain the inequality
0 �

Z 1

0

h (tx+ (1� t) y)
����t� 12

���� dt� Z 1

0

 h;(x;y) (t)

����t� 12
���� dt(4.18)

� 1
4

�
1

y � x

Z y

x

h (t) dt�
Z 1

0

 h;(x;y) (t) dt

�
� 1

8

�
h (x) + h (y)

2
� 1

y � x

Z y

x

h (t) dt

�
:
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