INTEGRAL INEQUALITIES FOR SCHUR CONVEX FUNCTIONS
ON SYMMETRIC AND CONVEX SETS IN LINEAR SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper, we establish some integral inequalities for Schur con-
vex functions defined on symmetric and convex sets from a Cartesion product
of linear spaces. Some applications related to the Hermite-Hadamard inequal-
ity for convex functions defined on real intervals are also provided.

1. INTRODUCTION

For any z = (21, ...,,) € R", let x1) > ... > x},) denote the components of x in
decreasing order, and let x| = (xm, ...,I[n]) denote the decreasing rearrangement
of z. For x, y € R™, x < y if, by definition,

S zp) < S yap k=1,...,n—1;

2oim1 Tl = 2im1 Yl

When z < y, = is said to be majorized by y (y majorizes x). This notation and
terminology was introduced by Hardy, Littlewood and Pélya in 1934.

Functions that preserve the ordering of majorization are said to be Schur-convex.
Perhaps “Schur-increasing” would be more appropriate, but the term “Schur-convex”
is by now well entrenched in the literature, as mentioned in [8, p.80].

A real-valued function ¢ defined on a set A C R"™ is said to be Schur-convex on
A if
(1.1) z<yon A= ¢(z) <o(y).

If, in addition, ¢ () < ¢ (y) whenever & < y but z is not a permutation of y, then
¢ is said to be strictly Schur-conver on A. If A =R"™, then ¢ is simply said to be
Schur-convex or strictly Schur-convex.

For fundamental properties of Schur convexity see the monograph [8] and the
references therein. For some recent results, see [3]-[5] and [9]-[11].

The following result is known in the literature as Schur-Ostrowski theorem [8, p.
84]:

Theorem 1. Let I C R be an open interval and let ¢ : I — R be continuously
differentiable. Necessary and sufficient conditions for ¢ to be Schur-convexr on I™
are

(1.2) ¢ is symmetric on I",
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2 S.S. DRAGOMIR

and for all i # j, with i, j € {1,...,n},

(1.3) (2 — zj) [8§iz) — aga(cz)} >0 forall z € I™,
i j

where a‘% denotes the partial derivative of ¢ with respect to its k-th argument.

Let A C R™ be a set with the following properties:

(i) Ais symmetric in the sense that x € A = zII € A for all permutations II of
the coordinates.

(ii) A is convex and has a nonempty interior.

We have the following result, [8, p. 85].

Theorem 2. If ¢ is continuously differentiable on the interior of A and continuous
on A, then necessary and sufficient conditions for ¢ to be Schur-convex on A are

(1.4) ¢ is symmetric on A

9¢(z) _ 9¢(2)

and

(15) (2’1 - 22) l: 81'1 81'2

Another interesting characterization of Schur convex functions ¢ on A was ob-
tained by C. Stepniak in [12]:

]zﬂforallzeA.

Theorem 3. Let ¢ be any function defined on a symmetric convex set A in R™.
Then the function ¢ is Schur conver on A if and only if

(1.6) O(X1s ey Tiy oy Ty oy T) = G (X1, ey Ty oy Ty oy L)
forall (x1,...,2n) €A and 1 <i<j<n and

(1.7) dpAx1+ (1 =Nax2, Axa+ (1 =N 21,23, ..., 20) < P (21, ..., Tn)
for all (z1,...,xz,) € A and for all A € (0,1),

It is well known that any symmetric convex function defined on a symmetric
convex set A is Schur convex, [8, p. 97]. If the function ¢ : 4 — R is symmetric
and quasi-convex, namely

¢ (au+ (1 —a)v) <max{¢(u),d(v)}
for all @ € [0,1] and u, v € A, a symmetric convex set, then ¢ is Schur convex on
A [8, p. 98].

Motivated by the above results, in this paper we establish some integral inequal-

ities for Schur convex functions defined on symmetric and convex sets from a Carte-

sian product of linear spaces. Some applications related to the Hermite-Hadamard
inequality for convex functions defined on real intervals are also provided.

2. MAIN RESULTS

Let X be a linear space and G C X? := X x X a convex set. We say that G is
symmetric if (z,y) € G implies that (y,z) € G. If D C X is a convex subset of X,
then the Cartesian product G := D? := D x D is convex and symmetric in X?2.

Motivated by the characterization result of Stepniak above, we say that a func-
tion f : G — R will be called Schur convex on the convex and symmetric set
GcCX?if

(2.1) f(@y)+ (1 =1)(y,2)) < f(2,y)
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for all (z,y) € G and for all ¢ € [0,1].

If G = D? then we recapture the general concept of Schur convexity introduced
by Burai and Maké in 2016, [1].

We say that the function f : G — R is symmetric on G if f (z,y) = f (y, ) for
all (z,y) € G. If the function f is symmetric on G and the inequality holds for a
given ¢ € (0,1) and for all (x,y) € G, then we say that f is ¢-Schur convex on G.

The following fact follows from the definition of Schur convex functions:

Proposition 1. If f : G — R is Schur convex on the conver and symmetric set
G C X2, then f is symmetric on G.

Proof. If (x,y) € G, then by (2.1) we get for t = 0 that f (y,z) < f(x,y). If we
replace x with y then we also get f(z,y) < f(y,z) which shows that f (z,y) =
f(y,z) for all (z,y) € G. O

For (z,y) € G, as in [1], let us define the following auxiliary function ¢, ) :
[0,1] — R by

(22) @y ) = f(E(z,9) + (L= 1) (y,2)) = f(tz+ (L =)y, by + (1 - 1) 2).

The properties of this function are as follows:

Lemma 1. Let G C X? be a convex and symmetric set and f : G — R a symmet-
ric function on G. Then [ is Schur convex on G if and only if for all arbitrarily
fived (z,y) € G the function ¢y (, ,y is monotone decreasing on [0,1/2), monotone
increasing on (1/2,1], and ¢y (. has a global minimum at 1/2 .

Proof. We give a similar prove to the one from [1].
Assume that f is Schur convex on G. Then for all (u,v) € G and ¢ € [0,1] we
have

(2.3) F @ (u,v)+ (1 —=1) (v,u) < f(u,v).

Let (z,y) € Gandfor 0<r<s<jandputu=rz+(l-r)y,v=ry+(1—-r)z
and t = =-. Then (u,v) = r (z,y) + (1 —7) (y,z) € G since G is symmetric and
convex. By (2.3) we have

(2.4) Py (1) = [ (r(@9) + (1 =7) (y,2)) = [ (u,0)

f
f (15_27; (u,v) + (1 - 13_27;) (v,u)) — B.

v
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Observe that

. (1——) I (y,2) + (1= 7) (2,9)]
_ [(18_—27;) "t (f_?‘”) (1 —r)] (z,9)
+ {18—27; (1-7) (U) r} (y, )

1

< Los 2 27"8) e+ (sl—_ 2;:) )
=1 =s)(z,y)+syz).

Then
and by (2.4) we get that v, ) (1) > @y (54 ( ) for 0 <r < s <1, which shows

that the function ¢y (, ) is monotone decreasing on [0, 1/2).
Observe that, by the symmetry of f on G, we have

((1—t)m+ty,(1—t)y+tm)
=f(1-t)y+te,(1—1t)x+ty)
f(@y)+ 1 =1)(4:2) = @5 0y ()

for all t € [0,1].
This shows that the function ¢y (, ) is also monotone increasing on (1,2, 1].
From (2.3) we get for ¢ = 1 that

(2.5) f<u+v u+v

v ) < f (u,)

for all (u,v) € G. If (z,y) € G and we take u =tz + (1 —t)y, v =ty + (1 —t)x
€ [0,1] then (u,v) = t(z,y) + (1 —t) (y,2) € G, “F2 = ZX and by (2.5) we

get ©f (w.y) (1/2) < 9p (4 () for all t € [0, 1], showmg that ¢ (, .y has a global

minimum at 1/2.

Now, for fixed (z,y) € G, assume that the function ¢y, ) is monotone de-
creasing on [0,1/2), monotone increasing on (1/2,1], and has a global minimum at
1/2.

Then for ¢ € [0,1/2) we have

f(@y)+ 1 =1)(Y2) = sy &) <Py (0) = f(y.2) = f(z,9)
and for t € (1/2,1] we have

Therefore, for all ¢ € [0,1] we have ¢y, .y (t) < f(2,y), which shows that f is
Schur convex on G. (]
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We have the following weighted integral inequality:

Theorem 4. Assume that the function f : G — R is Schur convex on the convex
and symmetric set G C X2. Then for any Lebesgue integrable function p : [0,1] —
[0,00) we have

T T 1 1
2o (LY [ewas [ e a- 0w @

1
Sf(wyy)/o p(t)dt

for all (z,y) € G.
In particular, we have

1
en (L) < [ 10+ 00 @) < [ @)

2 K
for all (z,y) € G.

Proof. Using Lemma 1 we have

f(“y “y) < F (@) + (- 1) @) < f (2.9)

2 72
for all (z,y) € G and t € [0,1].

If we multiply this inequality by p (¢) > 0 and integrate on [0, 1] we deduce the
desired result (2.6). O

If some monotonicity information is available for the function p we also have:

Theorem 5. Assume that the function f : G — R is Schur convex on the convex
and symmetric set G C X2, If p : [0,1] — R is symmetric towards 1/2, namely
p(1—t) =p(t) for all t € [0,1] and monotonic decreasing (increasing) on [0,1/2],
then

1
(2.8) / £ (t(@y) + (- ) (y.2)) p (8) dt
z<s>/0 p(t)dt/o £t () + (1 1) (g, 2)) dt.

Proof. Let (z,y) € G. Since the functions ¢; , .y and p are symmetric on [0, 1],
then
1/2

/0 ft(zy)+ (1 =1)(y,2)p(t)di =2 ft(ey)+ (1 =1)(y,2)) p(¢) di.

0
Assume that the functions ¢, ) and p are both decreasing on [0,1/2], then

by Cebysev’s inequality for synchronous functions h, g : [a,b] — R

b b b
bia/a h(t)g(t)dtzbia/a h(t)dtbia/a g () dt,

1/2

(2.9) 2 ; f(zy)+ (1 —1)(y,2))p(t)dt

we have

1/2

1/2
> 9 f(t(x,y)+(1*t)(y,x))dt-2/ p(t) dt
0 0



6 S.S. DRAGOMIR
and since, by symmetry,

1/2

1
2 f@ww+a—w@w»w=Af@@w+u—wm@Mt

0
1/2
2/ p(8)dt :/ p(t)dt
0 0
hence by (2.9) we get the desired result (2.8). O

and

The following Cebysev’s type inequality holds for two Schur convex functions:

Corollary 1. Assume that the functions f, g : G — R are Schur convex on the
convez and symmetric set G C X2. Then we have

(2.10) /.f )+ (=) (,2)) g (¢t () + (1 — 1) (y, ) e
z/gauw+u—w@, ﬁ/f (2,9) + (1= 1) (y,)) dt

0
for all (z,y) € G.
If one of the functions is Schur convex and the other Schur concave, then the
sign of inequality reverses in (2.10).

We can prove the following refinement of (2.6):

Corollary 2. Assume that the function f: G — R is Schur convex on the convex
and symmetric set G C X2 and p : [0,1] — [0,00) is symmetric towards 1/2 and
positive.

(i) If p is decreasing on [0,1/2], then

(2.11) f<x+ym+y)§ [ fa@an 00w

2 7 2

for all (z,y) € G.
(ii) If p is increasing on [0,1/2], then

rT+y r+vy
(2.12) f( R )<f0 dt/ (@ y) +(1L—1)(y,2))p(t)dt

/1f (2.9) + (1 — 1) (y,2)) dt

< f(z,9)
for all (z,y) € G.
Proof (i). From (2.8) we get

i ﬁ/"f (z,9) (l—ﬂ@,Dp@ﬁﬁZAtﬂH%yﬂﬂl—ﬂ@wDﬁ
0
)

and by (2.6) and (2.7) we get the desired result (2.11).
(ii). The proof goes in a similar way. a
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Remark 1. If we consider the weight p(t) = |t — 5|, then folp(t) dt = % and by

(2.11) we get

e (LI < [ e oo

s40fu@wru1—w@w»k—ﬂﬁ
< f(z,y)

for any function f: G — R that is Schur convexr on the convex and symmetric set
G C X? and for all (x,y) € G.

If we consider the weight p (t) =t (1 —1t), then folp (t)dt = & and by (2.12) we
get

e (T < [ e a- 0@

1
<6 ; f(@y) + (1 —1t)(y,2)t(1—1t)dt
< f(z,y)

for any function f: G — R that is Schur convexr on the convex and symmetric set
G C X? and for all (x,y) € G.

We also have the following inequality for two functions:

Corollary 3. Assume that the functions f, g : G — R are Schur convex on the
convez and symmetric set G C X? and g is nonnegative, then

(2.15) f<x—;—yx—2|—y>
1
SA‘HH%ywwlfﬂ@wDﬁ
< .
fo (1_t> (y> ))dt
/.f (2,9) + (1= 1) (5,2)) g (¢t () + (1 — 1) (3, 2))
< f(z,y)

for all (z,y) € G.
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If g is Schur concave and nonnegative on G, then

r+y r+y
(2.16) f<2, 2)

1
_]}) + (1 =1)(y,2))dt

></ f(zy)+ 0 =1)(y,2) g (z,y)+ (1 —1)(y,2))dt

/f (2.9) + (1 — 1) (y,2)) dt

< f(z,y)
for all (z,y) € G.

Recall the famous Griiss’ inequality that provides an upper bound for the dis-
tance between the integral mean of the product and the product of integral means,

more precisely
—a/h dt——/h dt—/k t)dt

gZ(M—m)(N—n)

(2.17)

provided the functions h, k are measurable on [a,b] and —oo < m < h(t) < M < oo,
—o00 < n < k(t) <N < oo, for almost every ¢ € [a,b]. The constant 1 is best
possible in (2.17).

Theorem 6. Assume that the function f : G — R is Schur convexr on the convex
and symmetric set G C X?. If p: [0,1] — R is symmetric towards 1/2, namely
p(1—1t)=p(t) for all t € [0,1] and monotonic decreasing on [0,1/2] then

1
(2.18) 0§/f@@@+ﬂ*ﬂm@mwﬁ
wméf@@w+u—m%mw

o0 -0 ()] e 1 (22, 752)]
for all (z,y) € G.

If p is monotonic increasing on [0,1/2], then

1 1
(2.19) OSAp@ﬁAf@mm+ﬂ—M%wﬁ

INA |
e S— S
i
b

_/O ft(z,y)+ (1 —1t)(y,x)p(t)dt
1 1
<

<1 p(3) »0)] [rew -7 (51550
for all (z,y) € G.

The proof follows by Gruss’ inequality (2.17) written for h (t) = p (¢) and k (t) =
f@(zy)+ (1 =1 (y,2)), t€]0,1] and (z,y) € G.




INTEGRAL INEQUALITIES FOR SCHUR CONVEX FUNCTIONS 9

Corollary 4. Assume that both functions f, g : G — R are Schur convex on the
convex and symmetric set G C X2. Then we have

(2.20) OSAtﬂﬂﬁyﬂﬁl—ﬂ@wDQUWW%ﬂl—ﬂ@wDﬁ

—/wmw+wwmmﬁ/ﬂmm+wwmwm
0 0

<1 lo@n-o (L) [ren - (52252

If f is Schur convex and g is Schur concave, then

(2.21) o</2a@w+a—ww, ﬁ/f (2,) + (1= 1) (y,2)) dt
/.f (2,9) + (1= ) (4,2)) 9 (t (@) + (1 — 1) (y,)) dt
<1l () s [rem - (5525

3. EXAMPLES FOR FUNCTIONS OF TWO REAL VARIABLES

We assume in this section that G is a convex and symmetric subset of the two
dimensional space R? and f : G — R is Schur convex on G. If (a,b) € G with a < b
and we put u = (1 — ) a+tb, then (1 — t) b+ta = b+a—tb—(1 —t)a = b+a—u. We
also assume that w : [a,b] — [0, 00) is Lebesgue integrable on [a,b] and symmetric
on this interval, namely w (b + a — u) = w (u) for all u € [a, ] . Since du = (b — a) dt
then by taking p (t) = w ((1 —t)a +tb), t € [0,1] we have by Theorem 4 that

a+b a+b 1 b
(3.1) f( 55 )Sfabw(u)du/af(u,a—i—b—u)w(u)dugf(a,b).

In particular, we have

b b
(3.2) f(“; ,"; )_b_a/ Flu,at+b—u)du<f(ab).
If we take w (u) = |u — 2tb| 'y € [a,b] in (3.1), then we get
a+b a+b 4 b a+b
ORI E )s(b_wgltﬂwa+b—u> S < f ()

while for w (u) = (u—a) (b—u), u € [a,b] we get
(3.4)

a a b
f( ;Lb’ ;b)g(bﬁa)g/a Fluyat+b—u)(u—a)b—u)du< f(a,b).

If we have two Schur convex functions f, g : G — R, then

b
(3.5) /f(u,a—l—b—u)g(u,a—l—b—u)dt

b b
2/ f(u,aerfu)du/ g(u,a+b—u)du.



10 S.S. DRAGOMIR

If one function is Schur convex and the other is Schur concave, then the sign of
inequality in (3.5) is reversed.
By utilising Corollary 2 we can improve the inequality (3.1) as follows:

Proposition 2. Assume that the function f : G — R is Schur convex on the convex
and symmetric set G C R?, (a,b) € G witha < b and w : [a,b] — [0,00) is Lebesgue
integrable on [a,b] and symmetric on [a,b] .

(i) If w is decreasing on [a, %‘H’] , then

b
(3.6) f(“‘;b,“‘;b>< 1a fluatb—u)du

(i) If w is increasing on [a, %b] , then

a+b a+bd 1 b
(3.7) f< 5 3 )Sf;w(u)du af(u,a—i—b—u)w(u)du
b
<ﬁ ’ flu,a+b—u)du
< f(a,b)

If we take w (u) = |u — %], u € [a,b] in (3.6), then we get

a+b a+bd 1 b
(3.8) f( )gb_a/a fu,a+b—u)du

2 7 2
4 b
oo ], S

< f(a,0).
Also, if we choose w (u) = (u —a) (b—u), u € [a,b] in (3.7), then we obtain
b
(3.9) f<a—2i—b7a—21—b) < (b—6a)3/a flu,a+b—u)(u—a)(b—u)du

1 b
< —
_b—a/af(u’CH—b u) du

< f(a,b).

From Theorem 6 we also have:

a+b

Proposition 3. Assume that the function f : G — R is Schur convex on the convex
and symmetric set G C R?, (a,b) € G witha < b and w : [a,b] — [0,00) is Lebesgue
integrable on [a,b] and symmetric on [a,b] .

(i) If w is decreasing on [a, “F2], then

b
(3.10) 0</ flu,a+b—u)w du—/ w ( du/ fu,a+b—u)du

| O E)
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(i) If w is increasing on [a, %*b] , then

b b b
(3.11) Og/w(u)du/ f(u,a+b—u)du—/ fu,a+b—u)w(u)du

o) o s (52251).

From this proposition we derive the following reverse inequalities of (3.5).

Corollary 5. Assume that the function f, g : G — R are Schur convex on the
convex and symmetric set G C R?, (a,b) € G with a < b. Then

b
(3.12) 0§/ fu,a+b—u)g(u,a+b—u)du
ab b
—/g(u,a+b—u)du/ fu,a+b—u)du

Si[g(a,w_g(a;—b’a;—b)} {f(%b)_f(a;-b,a;b)]

If f: G — R is Schur convex and f: G — R is Schur concave, then

b b
(3.13) Og/g(u,a—l—b—u)du/ flu,a+b—u)du

—/abf(u,a+b—u)g(u,a+b—u)du
<1 o (05 —sen] [ran - (50 550)]

4. SOME APPLICATIONS FOR HERMITE-HADAMARD INEQUALITY

We recall the celebrated Hermite-Hadamard inequality for continuous convex
functions h defined on a real interval I, which state that

(4.1) h(x+y>< ! /:h(t)dt<h(”3)+h(y>

y—x

2 2

for all z # y, x, y € I. For a monograph devoted to this inequality, see [6]. Many
related results are also presented in the survey paper [4].

The following result concerning the Schur convexity of the integral mean was
obtained by Elezovi¢ and Pecari¢ in [7]:

Theorem 7. Let h be a continuous function on I. Then

ﬁfjh(t)dt,form;éy, x, y € I;
H(z,y) =
h(z), fory==z, x €1,

is Schur convex (concave) on I? if and only if h is convex (concave) on I.
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Let h be a continuous function on I. We have for ¢ € [0,1], ¢ # 1/2 that
:H(tm+(1—t)y,ty+(l—t)x)

te+(1—t)y
te+(1—t)y ty (1-t)x fy+(1 t)x h

s)ds, for x £y, x, y € I;

h(z), fory=a, €1,

te+(1—1t)y h

a—2t)(y—=z) 2t Yy—z) fty—&-(l t)x )dS, fOI‘.’L‘#y, z, yEI;

h(z), fory=a, v €l.
For t = 1/2 we have

H<x+y7x+y> h(m+y)
2 2 2

Corollary 6. Assume that h is continuous convex on I. Then we have the following
refinement of the first Hermite-Hadamard inequality

te+(1—t)y
(4.2) h (‘”y) < ! / h(s)ds
2 (1-2t)(y— =) ty+(1—t)z

L yh d
— (t)dt,

forallz £y, xz,yel andt € 0,1], t #1/2.

for z, y € I.

IN

Proof. Since h is continuous convex on I, hence by Theorem 7 we get that H is
Schur convex on I2. By utilising Lemma 1 we conclude that

H(“y 9”?’) < H(t(e,y) + (1) (y.2)) < H (a,y)

2 b
for t € [0,1], and the inequality (4.2) is obtained. O

Assume that h is continuous on I. For x # y, x, y € I, we consider the function
V(2  [0,1] — R defined by

te+(1—t
(1- 2t Y y— z)fyx-‘,-((l t))xyh( )dS fOTt#1/27

djh,(.r,y) (t) =
h(£5Y) for t =1/2.

Remark 2. Assume that h is contmuous convez on I. For any Lebesgue integrable
function p : [0,1] — [0, 00) with fo t)dt > 0 we have from Theorem / that

T+y 1 !
) n(2 )g(y_x) oy POV O

1 Yy
< [hwa,
y—x Jg
and, in particular,

1
(4.4) h(“”“;y)s ! /0 U oy () < — /yh@)dt,

y—z y—=
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forallx £y, x,y € I.
We also have:

Corollary 7. Assume that h is continuous convex on I, then the function ¢y, (, .

is monotone decreasing on [0,1/2), monotone increasing on (1/2,1], and ¥y, ¢, .
has a global minimum at 1/2.

The proof is obvious by Lemma 1.
If more assumptions are imposed on the weight p, then some better inequalities
are obtained:

Corollary 8. Assume that h is continuous convex on I and p : [0,1] — [0,00) is
symmetric towards 1/2.

(i) If p is decreasing on [0,1/2], then

(4.5) h(”“’;y)s _x/wh o (¢

y_x‘[ptdL/ PO vy s 2 [Tn)a

forallx £y, x, y €I
(ii) If p is increasing on [0,1/2], then

z+y 1 1

1 ' d ! yh d
< <
_y—fc/owh’(x’y)(t) t_y—:v/m (t) dt

forall x # vy, x, ye[
Remark 3. If we take p(t) = [t — |, t €[0,1] in (4.5), then we get

(4.7) h (x ;F y) <o /0 U () (8)

4 (1 1Y
_Z <
— Q‘wh’(w,y)(t)dty_x/w h(t)dt
and forp(t) =t(1—1t), t €[0,1] in (4.6) we obtain
T

t
(4.8) h( "2”’)< : /Olt(l—t)wh’(xﬁy)(t)dt

y—fE
1 Yy
h(t) dt.
y_xé (t)

1 1
t)dt <
y—a /0 wh,(z,y) ( ) =
Corollary 9. Assume that h is continuous conver on I and p : [0,1] — [0,00) is
symmetric towards 1/2. If p is monotonic decreasing on [0,1/2] then

(19) ogéﬂuwwm@ / ﬁ/me>
(] Froa(22)

forallx £y, x, y € I.

IA

<

Finally, we can state
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If we take in (4.9) p (t) = [t — 1|, t €[0,1], then we obtain the inequality
1 I
(4.10) 0< qph ey O]t = 5|t =3 e (t) dt

e /h@dth(xé“”)}

provided that h is continuous convex on I and =z # y, z, y € I.
n [2] Chu et al. obtained the following results:

Theorem 8. Suppose h: I — R is a continuous function. Function

yia: fjh(t)dtih(%)a (x,y) 612, TFY

M (x,y) =
0, (z,y)€I? z=y

is Schur-convex (Schur-concave) on I? if and only if h is convex (concave) on I.
Furthermore, function

M M) L (Y (t)dt, (z,y) €12, x4y
T (z,y) =
0,(z,y)€I? v=y

is Schur-convex (Schur-concave) on I? if and only if h is convex (concave) on I.
Observe that for ¢ € [0,1], t # 1/2 we have
T (t(z,y)+ (1 =1)(y,7))

=T({z+(1-t)y,ty+ (1 —1t)x)
At (1)) thiyt(00)

tm+1 t
= T (- 2tyw)fty+ yh’ )da (xay)6127$3&y

07 (xay) 6123 =Y.

For t = % we have

T(m—;—yy;—;—y) =0, (z,y) €I>

We have:

Corollary 10. Assume that h is continuous convex on I. Then we have the fol-
lowing refinement of the second Hermite-Hadamard inequality

hte+(1—t)y) +h(ty+ (1 —t)z)
2

1 te+(1—t)y
_ h(s)ds
0-2)( ) /tym_t)w (#)

Sh(fﬁ);’h(iy)_ylz/jh(t)dt,

(4.11) 0<

forallz £y, x,yel andt €0,1], t #1/2.
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Proof. Since h is continuous convex on I, hence by Theorem 8 we get that H is
Schur convex on I2. By utilising Lemma 1 we conclude that

T<x;y$;y) ST (t(z,y) + (1=1) (y,2)) < T (2,y)

for t € [0,1], and the inequality (4.11) is obtained. O

With the notations above, we have for  # y, z, y € I and t € [0,1], ¢ # 1/2 let
put

(412) 6h,(w,y) (t) : =T (t (:E7 y) + (1 - t) (y, :E))

h(te+(1—t)y) JQF Qo9 Yn () ()

1
6h,(w,y) (2> =0

Corollary 11. Assume that h is continuous convex on I and x # y, x,y € I. Then
the function the function &, (5, is nonnegative, monotone decreasing on [0,1/2),
monotone increasing on (1/2,1], and 6y (1) has a global minimum at 1/2 .

and

From Lemma 1 we have:

We also have, by utilising Theorem 4:

Corollary 12. Assume that h is continuous convex on I andx # y, x,y € I. Then
for any Lebesgue integrable function p : [0,1] — [0, 00) we have

(4.13) 0</1h(tas—l—(l—t)y)+h(ty—|—(1—t)x)p(t)dt

2
/wm,y p(t)dt
s ] o

In particular, we have the following refinement of the second Hermite-Hadamard
inequality

1
(4.14) Ofyfx/ dt—/ G o)
gh();h() y_x/xh(t)dt.

If more conditions are assumed for the weight p, then we also have:

Corollary 13. Assume that h is continuous convex on I and x # vy, x, y € I and
p: [0,1] — [0,00) is symmetric towards 1/2 and positive.
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(i) If p is decreasing on [0,1/2], then

1 y !
(4.15) 0< y_x/ h(t) dtf/ U (o) (£)

i dt/ btz + (1 —)y)p ) dt

1
p(t) dt/wh e ()P (0)dt

Sh(:c)2 1 /jh(t)dt

y—x
for all (z,y) € G.
(ii) If p is increasing on [0,1/2], then

fo

1
(4.16) / h(te+(1—t)y)p(t)dt

#
_fop(t

1
fl (t dt/d]h (z,y) ) dt

0P

“y—z/, (t) dt — /O wh,(a;,y) (t) dt

h Y
M@ thy) 1 / h(#) dt.
2 Y—x J;
The proof follows by Corollary 2.

Corollary 14. Assume that h is continuous convex on I and x # y, xz, y € I
and p : [0,1] — [0,00) is symmetric towards 1/2 and positive. If p : [0,1] — R is
symmetric towards 1/2 and monotonic decreasing on [0,1/2] then

(4.17) Og/olh(ta:Jr(lt £ dt — /@ph(my p(t)dt
fronl oo s
o252 o]

If we take in (4.17) p(¢) = |t — 3|, t € [0,1], then we obtain the inequality

1 1 1 1
(4.18) 0< ; h(tx+(1t)y)‘t2‘dt/0 V() (t)‘tQ‘dt
[ 1 v 1
-1 [y_x/ h(t)dt—/ o) (t)dt}
1[h(z)+h(y
S8{ 2 —x/h }
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