SCHUR CONVEXITY OF FUNCTIONS ASSOCIATED TO FEJÉR'S INEQUALITY FOR CONVEX FUNCTIONS IN LINEAR SPACES

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. For a non-negative Lebesgue integrable and symmetric function $p:[0,1] \to [0,\infty)$ we consider the functions $M_p, T_p: C^2 \to \mathbb{R}$ defined by

$$M_{p}(x,y) := \int_{0}^{1} f((1-t)x + ty) p(t) dt - f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) dt$$

and

$$T_{p}(x,y) := \frac{f(x) + f(y)}{2} \int_{0}^{1} p(t) dt - \int_{0}^{1} f((1-t)x + ty) p(t) dt,$$

where $f: C \to \mathbb{R}$ is convex on the convex subset C of a linear space X.

In this paper we show, among others, that M_p and T_p are Schur convex on C^2 . Applications for norms and convex functions of a real variable are also given.

1. INTRODUCTION

For any $x = (x_1, ..., x_n) \in \mathbb{R}^n$, let $x_{[1]} \ge ... \ge x_{[n]}$ denote the components of x in decreasing order, and let $x_{\downarrow} = (x_{[1]}, ..., x_{[n]})$ denote the decreasing rearrangement of x. For $x, y \in \mathbb{R}^n$, $x \prec y$ if, by definition,

$$\begin{cases} \sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]}, \ k = 1, ..., n-1; \\ \sum_{i=1}^{n} x_{[i]} = \sum_{i=1}^{n} y_{[i]}. \end{cases}$$

When $x \prec y$, x is said to be *majorized* by y (y majorizes x). This notation and terminology was introduced by Hardy, Littlewood and Pólya in 1934.

A real-valued function ϕ defined on a set $\mathcal{A} \subset \mathbb{R}^n$ is said to be *Schur-convex* on \mathcal{A} if

(1.1)
$$x \prec y \text{ on } \mathcal{A} \Rightarrow \phi(x) \leq \phi(y)$$

If, in addition, $\phi(x) < \phi(y)$ whenever $x \prec y$ but x is not a permutation of y, then ϕ is said to be *strictly Schur-convex* on \mathcal{A} . If $\mathcal{A} = \mathbb{R}^n$, then ϕ is simply said to be Schur-convex or strictly Schur-convex.

For fundamental properties of Schur convexity see the monograph [11] and the references therein. For some recent results, see [3]-[7] and [12]-[14].

The following result is known in the literature as *Schur-Ostrowski theorem* [11, p. 84]:

¹⁹⁹¹ Mathematics Subject Classification. 26D15.

Key words and phrases. Convex functions, Schur convex functions, Integral inequalities, Hermite-Hadamard inequality, Fejér's inequality.

Theorem 1. Let $I \subset \mathbb{R}$ be an open interval and let $\phi : I^n \to \mathbb{R}$ be continuously differentiable. Necessary and sufficient conditions for ϕ to be Schur-convex on I^n are

(1.2)
$$\phi$$
 is symmetric on I^n .

and for all $i \neq j$, with $i, j \in \{1, ..., n\}$,

(1.3)
$$(z_i - z_j) \left[\frac{\partial \phi(z)}{\partial x_i} - \frac{\partial \phi(z)}{\partial x_j} \right] \ge 0 \text{ for all } z \in I^n,$$

where $\frac{\partial \phi}{\partial x_k}$ denotes the partial derivative of ϕ with respect to its k-th argument.

Let $\mathcal{A} \subset \mathbb{R}^n$ be a set with the following properties:

(i) \mathcal{A} is symmetric in the sense that $x \in \mathcal{A} \Rightarrow x \Pi \in \mathcal{A}$ for all permutations Π of the coordinates.

(ii) \mathcal{A} is convex and has a nonempty interior.

We have the following result, [11, p. 85].

Theorem 2. If ϕ is continuously differentiable on the interior of \mathcal{A} and continuous on \mathcal{A} , then necessary and sufficient conditions for ϕ to be Schur-convex on \mathcal{A} are

(1.4)
$$\phi \text{ is symmetric on } \mathcal{A}$$

and

(1.5)
$$(z_1 - z_2) \left[\frac{\partial \phi(z)}{\partial x_1} - \frac{\partial \phi(z)}{\partial x_2} \right] \ge 0 \text{ for all } z \in \mathcal{A}.$$

Another interesting characterization of Schur convex functions ϕ on \mathcal{A} was obtained by C. Stępniak in [15]:

Theorem 3. Let ϕ be any function defined on a symmetric convex set \mathcal{A} in \mathbb{R}^n . Then the function ϕ is Schur convex on \mathcal{A} if and only if

(1.6)
$$\phi(x_1, ..., x_i, ..., x_j, ..., x_n) = \phi(x_1, ..., x_j, ..., x_i, ..., x_n)$$

for all $(x_1, ..., x_n) \in \mathcal{A}$ and $1 \leq i < j \leq n$ and

(1.7)
$$\phi(\lambda x_1 + (1 - \lambda) x_2, \lambda x_2 + (1 - \lambda) x_1, x_3, ..., x_n) \le \phi(x_1, ..., x_n)$$

for all $(x_1, ..., x_n) \in \mathcal{A}$ and for all $\lambda \in (0, 1)$,

It is well known that any symmetric convex function defined on a symmetric convex set \mathcal{A} is Schur convex, [11, p. 97]. If the function $\phi : \mathcal{A} \to \mathbb{R}$ is symmetric and quasi-convex, namely

$$\phi\left(\alpha u + (1 - \alpha)v\right) \le \max\left\{\phi\left(u\right), \phi\left(v\right)\right\}$$

for all $\alpha \in [0, 1]$ and $u, v \in \mathcal{A}$, a symmetric convex set, then ϕ is Schur convex on \mathcal{A} [11, p. 98].

The following result concerning the Schur convexity of the integral mean was obtained by Elezović and Pečarić in [9]:

Theorem 4. Let h be a continuous function on I. Then

(1.8)
$$H(x,y) := \begin{cases} \frac{1}{y-x} \int_x^y h(t) \, dt, \text{ for } x \neq y, \ x, \ y \in I; \\ h(x), \text{ for } y = x, \ x \in I, \end{cases}$$

is Schur convex (concave) on I^2 if and only if h is convex (concave) on I.

Three year later, in 2003, Wulbert, [16], improved the above result by showing that the integral mean H defined in (1.8) is in fact convex on I^2 if f is convex on I.

In 2010, Chu et al. [2] obtained the following result concerning the difference functions associated to the Hermite-Hadamard inequalities:

Theorem 5. Let h be a continuous function on I. Then the functions

$$F(x,y) := \begin{cases} \frac{1}{y-x} \int_x^y h(t) dt - f\left(\frac{x+y}{2}\right), \text{ for } x \neq y, x, y \in I \\\\0, \text{ for } y = x, x \in I, \end{cases}$$

and

$$G(x,y) := \begin{cases} \frac{f(x)+f(y)}{2} - \frac{1}{y-x} \int_x^y h(t) \, dt, \text{ for } x \neq y, \ x, \ y \in I; \\\\0, \text{ for } y = x, \ x \in I, \end{cases}$$

are Schur convex (concave) on I^2 if and only if h is convex (concave) on I.

In 1906, Fejér [10], while studying trigonometric polynomials, obtained the following inequalities which generalize that of Hermite & Hadamard:

Theorem 6 (Fejér's Inequality). Consider the integral $\int_a^b h(x) p(x) dx$, where h is a convex function in the interval (a, b) and g is a positive function in the same interval such that

$$p(x) = p(a+b-x), x \in [a,b],$$

i.e., y = p(x) is a symmetric curve with respect to the straight line which contains the point $(\frac{1}{2}(a+b), 0)$ and is normal to the x-axis. Under those conditions the following inequalities are valid:

(1.9)
$$h\left(\frac{a+b}{2}\right)\int_{a}^{b}p(x)\,dx \le \int_{a}^{b}h(x)\,p(x)\,dx \le \frac{h(a)+h(b)}{2}\int_{a}^{b}p(x)\,dx.$$

If h is concave on (a, b), then the inequalities reverse in (1.9).

We consider the function $f: C \to \mathbb{R}$ defined on the convex subset C of the linear space X and for each $(x, y) \in C^2 := C \times C$ we introduce the auxiliary function $\varphi_{(x,y)} : [0,1] \to \mathbb{R}$ defined by

$$\varphi_{(x,y)}(t) := f\left((1-t)x + ty\right).$$

It is well known that the function f is convex on C if and only if for each $(x, y) \in C^2$ the auxiliary function $\varphi_{(x,y)}$ is convex on [0,1].

By utilising the classical Fejér's inequality for the convex function $\varphi_{(x,y)}$ on [0,1] we then have for an integrable non-negative weight p that is symmetric, i.e. p(1-t) = p(t) for all $t \in [0,1]$,

(1.10)
$$f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) dt \leq \int_{0}^{1} f\left((1-t)x+ty\right) p(t) dt$$
$$\leq \frac{f(x)+f(y)}{2} \int_{0}^{1} p(t) dt$$

for all $(x, y) \in C^2$.

If $(X, \|\cdot\|)$ is a normed space and $r \ge 1$, then from (1.10) we get the norm inequalities

(1.11)
$$\left\|\frac{x+y}{2}\right\|^{r} \int_{0}^{1} p(t) dt \leq \int_{0}^{1} \left\|(1-t)x+ty\right\|^{r} p(t) dt$$
$$\leq \frac{\left\|x\right\|^{r}+\left\|y\right\|^{r}}{2} \int_{0}^{1} p(t) dt,$$

for all $(x, y) \in X^2$ and an integrable non-negative weight p that is symmetric on [0, 1].

For a non-negative Lebesgue integrable and symmetric function $p : [0,1] \rightarrow [0,\infty)$ we consider the functions $M_p, T_p : C^2 \rightarrow \mathbb{R}$ defined by

(1.12)
$$M_p(x,y) := \int_0^1 f((1-t)x + ty) p(t) dt - f\left(\frac{x+y}{2}\right) \int_0^1 p(t) dt$$

and

(1.13)
$$T_{p}(x,y) := \frac{f(x) + f(y)}{2} \int_{0}^{1} p(t) dt - \int_{0}^{1} f((1-t)x + ty) p(t) dt$$

where $f: C \to \mathbb{R}$ is convex on the convex subset C of a linear space X.

We observe that

$$M_{p}(x,x) = T_{p}(x,x) = f(x) \int_{0}^{1} p(t) dt \text{ for all } x \in C.$$

Motivated by the above results, in this paper we investigate, among others, the Schur convexity of the functions M_p and T_p and provide some applications for norms and convex functions of a real variable defined on an interval.

2. Schur Convexity on Linear Spaces

Let X be a linear space and $G \subset X^2 := X \times X$ a convex set. We say that G is symmetric if $(x, y) \in G$ implies that $(y, x) \in G$. If $D \subset X$ is a convex subset of X, then the Cartesian product $G := D^2 := D \times D$ is convex and symmetric in X^2 .

Motivated by the characterization result of Stępniak above, we say that a function $\phi : G \to \mathbb{R}$ will be called *Schur convex* on the convex and symmetric set $G \subset X^2$ if

(2.1)
$$\phi(s(x,y) + (1-s)(y,x)) \le \phi(x,y)$$

for all $(x, y) \in G$ and for all $s \in [0, 1]$.

If $G = D^2$, then we recapture the general concept of Schur convexity introduced by Burai and Makó in 2016, [1].

We say that the function $\phi : G \to \mathbb{R}$ is symmetric on G if $\phi(x, y) = \phi(y, x)$ for all $(x, y) \in G$.

If $\phi: G \to \mathbb{R}$ is *Schur convex* on the convex and symmetric set $G \subset X^2$, then ϕ is symmetric on G. Indeed, if $(x, y) \in G$, then by (2.1) we get for s = 0 that $\phi(y, x) \leq \phi(x, y)$. If we replace x with y then we also get $\phi(x, y) \leq \phi(y, x)$ which shows that $\phi(x, y) = \phi(y, x)$ for all $(x, y) \in G$.

Now, for a convex function $f:C\to\mathbb{R}$ and a $t\in[0,1]$ define the functions $M_t,$ $T_t:C^2\to\mathbb{R}$

$$M_t(x,y) := \frac{1}{2} \left[f\left((1-t) \, x + ty \right) + f\left((1-t) \, y + tx \right) \right] - f\left(\frac{x+y}{2} \right) \ge 0$$

and

$$T_t(x,y) := \frac{f(x) + f(y)}{2} - \frac{1}{2} \left[f((1-t)x + ty) + f((1-t)y + tx) \right] \ge 0.$$

We have the following result concerning the Schur convexity of M_t .

Theorem 7. Let $f : C \to \mathbb{R}$ be a convex function on the convex set C in X. For all $t \in [0,1]$, $t \neq \frac{1}{2}$ the function M_t is Schur convex on C^2 .

Proof. Let $(x, y) \in C^2$ and $s \in [0, 1]$. Then

$$\begin{split} M_t \left(s \left(x, y \right) + \left(1 - s \right) \left(y, x \right) \right) \\ &= M_t \left(sx + \left(1 - s \right) y, sy + \left(1 - s \right) x \right) \\ &= \frac{1}{2} f \left(\left(1 - t \right) \left(sx + \left(1 - s \right) y \right) + t \left(sy + \left(1 - s \right) x \right) \right) \\ &+ \frac{1}{2} f \left(\left(1 - t \right) \left(sy + \left(1 - s \right) x \right) + t \left(sx + \left(1 - s \right) y \right) \right) \\ &- f \left(\frac{sx + \left(1 - s \right) y + sy + \left(1 - s \right) x}{2} \right) \\ &= \frac{1}{2} f \left(s \left(\left(1 - t \right) x + ty \right) + \left(1 - s \right) \left(\left(1 - t \right) y + tx \right) \right) \\ &+ \frac{1}{2} f \left(s \left(\left(1 - t \right) y + tx \right) + \left(1 - s \right) \left(\left(1 - t \right) x + ty \right) \right) - f \left(\frac{x + y}{2} \right) \end{split}$$

By the convexity of f we have

$$f(s((1-t)x+ty) + (1-s)((1-t)y+tx)) \le sf((1-t)x+ty) + (1-s)f((1-t)y+tx)$$

and

$$f(s((1-t)y+tx) + (1-s)((1-t)x+ty)) \\\leq sf((1-t)y+tx) + (1-s)f((1-t)x+ty).$$

for all $(x, y) \in C^2$ and $s \in [0, 1]$.

If we add these two inequalities and divide by 2 we get

$$\frac{1}{2}f\left(s\left((1-t)x+ty\right)+(1-s)\left((1-t)y+tx\right)\right) \\ +\frac{1}{2}f\left(s\left((1-t)y+tx\right)+(1-s)\left((1-t)x+ty\right)\right) \\ \le \frac{1}{2}\left[f\left((1-t)y+tx\right)+f\left((1-t)x+ty\right)\right]$$

for all $(x, y) \in C^2$ and $s \in [0, 1]$.

Therefore

$$M_t (s (x, y) + (1 - s) (y, x))$$

$$\leq \frac{1}{2} [f ((1 - t) y + tx) + f ((1 - t) x + ty)] - f \left(\frac{x + y}{2}\right)$$

$$= M_t (x, y)$$

for all $(x, y) \in C^2$ and $s \in [0, 1]$, which shows that M_t is Schur convex on C^2 . \Box

For a convex function $f: C \to \mathbb{R}$ and $q: [0,1] \to [0,\infty)$ a Lebesgue integrable function we consider the function $M_{\check{q}}: C^2 \to [0,\infty)$ defined by

$$\begin{split} M_{\breve{q}}\left(x,y\right) &:= \int_{0}^{1} M_{t}\left(x,y\right)q\left(t\right)dt \\ &= \frac{1}{2} \int_{0}^{1} \left[f\left((1-t)x+ty\right)+f\left((1-t)y+tx\right)\right]q\left(t\right)dt \\ &- f\left(\frac{x+y}{2}\right) \int_{0}^{1} q\left(t\right)dt \\ &= \int_{0}^{1} f\left((1-t)x+ty\right)\breve{q}\left(t\right)dt - f\left(\frac{x+y}{2}\right) \int_{0}^{1} q\left(t\right)dt, \end{split}$$

where

$$\breve{q}\left(t\right):=\frac{1}{2}\left[q\left(t\right)+q\left(1-t\right)\right],t\in\left[0,1\right].$$

Corollary 1. Let $f: C \to \mathbb{R}$ be a convex function on C and $q: [0,1] \to [0,\infty)$ a Lebesgue integrable function on [0,1], then $M_{\check{q}}$ is Schur convex on C^2 .

Proof. Let $(x, y) \in C^2$ and $s \in [0, 1]$. By the Schur convexity of M_t for all $t \in [0, 1]$, we have

$$M_{\check{q}}(s(x,y) + (1-s)(y,x)) = \int_{0}^{1} M_{t}(s(x,y) + (1-s)(y,x))q(t) dt$$
$$\leq \int_{0}^{1} M_{t}(x,y)q(t) dt = M_{\check{q}}(x,y),$$

which proves the Schur convexity of $M_{\check{q}}$.

Corollary 2. Let $f: C \to \mathbb{R}$ be a convex function on C and $p: [0,1] \to [0,\infty)$ a Lebesgue integrable symmetric function on [0,1], then M_p is Schur convex on C^2 .

We denote by [x, y] the closed segment defined by $\{(1 - s) x + sy, s \in [0, 1]\}$. We also define the functional

(2.2)
$$\Psi_{f,t}(x,y) := (1-t) f(x) + tf(y) - f((1-t)x + ty) \ge 0$$

where $x, y \in C$ and $t \in [0, 1]$.

In [4] we obtained among others the following result :

Lemma 1. Let $f : C \subset X \to \mathbb{R}$ be a convex function on the convex set C. Then for each $x, y \in C$ and $z \in [x, y]$ we have

(2.3)
$$(0 \le) \Psi_{f,t}(x,z) + \Psi_{f,t}(z,y) \le \Psi_{f,t}(x,y)$$

for each $t \in [0,1]$, i.e., the functional $\Psi_{f,t}(\cdot, \cdot)$ is superadditive as a function of interval.

If $z, u \in [x, y]$, then

(2.4) $(0 \leq) \Psi_{f,t}(z,u) \leq \Psi_{f,t}(x,y)$

for each $t \in [0,1]$, i.e., the functional $\Psi_f(\cdot, \cdot)$ is nondecreasing as a function of interval.

By utilising this lemma we can prove the following result as well:

Theorem 8. Let $f : C \to \mathbb{R}$ be a convex function on the convex set C in X. For all $t \in (0,1)$, the function T_t is Schur convex on C^2 .

 $\mathbf{6}$

7

Proof. Let $(x, y) \in C^2$ with $x \neq y$ and $s \in [0, 1]$. Then

$$T_t \left(s \left(x, y \right) + (1 - s) \left(y, x \right) \right)$$

= $T_t \left(sx + (1 - s) y, sy + (1 - s) x \right)$
= $\frac{f \left(sx + (1 - s) y \right) + f \left(sy + (1 - s) x \right)}{2}$
- $\frac{1}{2} f \left((1 - t) \left(sx + (1 - s) y \right) + t \left(sy + (1 - s) x \right) \right)$
- $\frac{1}{2} f \left((1 - t) \left(sy + (1 - s) x \right) + t \left(sx + (1 - s) y \right) \right)$

From (2.4) we have for $z, u \in [x, y]$

$$\Psi_{f,t}(z,u) \leq \Psi_{f,t}(x,y) \text{ and } \Psi_{f,1-t}(z,u) \leq \Psi_{f,1-t}(x,y)$$

which, by addition gives that

$$\Psi_{f,t}(z,u) + \Psi_{f,1-t}(z,u) \le \Psi_{f,t}(x,y) + \Psi_{f,1-t}(x,y)$$

namely

$$\begin{aligned} &(1-t) f(z) + tf(u) - f((1-t) z + tu) \\ &+ tf(z) + (1-t) f(u) - f(tz + (1-t) u) \\ &\leq (1-t) f(x) + tf(y) - f((1-t) x + ty) \\ &+ tf(x) + (1-t) f(y) - f(tx + (1-t) y) \,, \end{aligned}$$

which is equivalent to

(2.5)
$$f(z) + f(u) - f((1-t)z + tu) - f(tz + (1-t)u) \\ \leq f(x) + f(y) - f((1-t)x + ty) - f(tx + (1-t)y)$$

for all $z, u \in [x, y]$.

If we take z = sx + (1 - s)y and u = sy + (1 - s)x, with $s \in [0, 1]$ then z, $u \in [x, y]$ and by (2.5) we get

$$f(sx + (1 - s)y) + f(sy + (1 - s)x) - f((1 - t)(sx + (1 - s)y) + t(sy + (1 - s)x)) - f((1 - t)(sy + (1 - s)x) + t(sx + (1 - s)y)) \leq f(x) + f(y) - f((1 - t)x + ty) - f(tx + (1 - t)y).$$

This inequality is equivalent to

$$T_t(s(x,y) + (1-s)(y,x)) \le T_t(x,y)$$

for all $(x, y) \in C^2$ and $s \in [0, 1]$. This proves the Schur convexity of T_t .

Remark 1. Since both M_t and T_t are Schur convex when f is convex on C it follows that the sum, namely the Jensen's functional

$$J(x,y) := \frac{f(x) + f(y)}{2} - f\left(\frac{x+y}{2}\right)$$

is also Schur Convex on C^2 .

In the case of normed spaces $(X, \|\cdot\|)$, if we put

$$J_{r}(x,y) := \frac{\|x\|^{r} + \|y\|^{r}}{2} - \left\|\frac{x+y}{2}\right\|^{r}, \ r \ge 1,$$

then we conclude that J_r is Schur convex on X^2 .

For a convex function $f: C \to \mathbb{R}$ and $q: [0,1] \to [0,\infty)$ a Lebesgue integrable function we consider the function $T_{\breve{q}}: C^2 \to [0,\infty)$ defined by

$$\begin{split} T_{\check{q}}\left(x,y\right) &:= \int_{0}^{1} T_{t}\left(x,y\right)q\left(t\right)dt \\ &= \frac{f\left(x\right) + f\left(y\right)}{2} \int_{0}^{1} q\left(t\right)dt \\ &- \frac{1}{2} \int_{0}^{1} \left[f\left((1-t)x + ty\right) + f\left((1-t)y + tx\right)\right]q\left(t\right)dt \\ &= \frac{f\left(x\right) + f\left(y\right)}{2} \int_{0}^{1} q\left(t\right)dt - \int_{0}^{1} f\left((1-t)x + ty\right)\check{q}\left(t\right)dt. \end{split}$$

Corollary 3. Let $f: C \to \mathbb{R}$ be a convex function on C and $q: [0,1] \to [0,\infty)$ a Lebesgue integrable function on [0,1], then $T_{\tilde{q}}$ is Schur convex on C^2 . In particular, if $p: [0,1] \to [0,\infty)$ is a Lebesgue integrable symmetric function on [0,1], then T_p is Schur convex on C^2 .

If $(X, \|\cdot\|)$ is a normed linear space, $r \ge 1$ and $p : [0, 1] \to [0, \infty)$ is a Lebesgue integrable symmetric function on [0, 1], then the functions

(2.6)
$$M_{r,p}(x,y) := \int_0^1 \left\| (1-t) x + ty \right\|^r p(t) dt - \left\| \frac{x+y}{2} \right\|^r \int_0^1 p(t) dt$$

and

(2.7)
$$T_{r,p}(x,y) := \frac{\|x\|^r + \|y\|^r}{2} \int_0^1 p(t) dt - \int_0^1 \|(1-t)x + ty\|^r p(t) dt$$

are Schur convex on X^2 .

In particular,

(2.8)
$$M_r(x,y) := \int_0^1 \|(1-t)x + ty\|^r dt - \left\|\frac{x+y}{2}\right\|^r$$

and

(2.9)
$$T_r(x,y) := \frac{\|x\|^r + \|y\|^r}{2} - \int_0^1 \|(1-t)x + ty\|^r dt$$

are Schur convex on X^2 .

If we take $p \equiv 1$ and consider the functions

$$M(x,y) := \int_0^1 f((1-t)x + ty) \, dt - f\left(\frac{x+y}{2}\right)$$

and

$$T(x,y) := \frac{f(x) + f(y)}{2} - \int_0^1 f((1-t)x + ty) dt$$

then we conclude that M and T are Schur convex functions on C^2 if f is convex on C. This result generalizes the result of Chu et al. [2] that was proved in the case of convex functions defined on real intervals.

9

Also, if we consider the symmetric weights $p_1(t) = \left|t - \frac{1}{2}\right|$ and $p_2(t) = t(1-t)$, $t \in [0,1]$, then

$$M_{\left|\cdot-\frac{1}{2}\right|}\left(x,y\right) := \int_{0}^{1} f\left(\left(1-t\right)x+ty\right) \left|t-\frac{1}{2}\right| dt - \frac{1}{4}f\left(\frac{x+y}{2}\right)$$

and

$$M_{\cdot(1-\cdot)}(x,y) := \int_0^1 f\left((1-t)x + ty\right)t\left(1-t\right)dt - \frac{1}{6}f\left(\frac{x+y}{2}\right)$$

are Schur convex on C^2 if f is convex on C. The trapezoid functions

$$T_{\left|\cdot-\frac{1}{2}\right|}\left(x,y\right):=\frac{f\left(x\right)+f\left(y\right)}{8}-\int_{0}^{1}f\left(\left(1-t\right)x+ty\right)\left|t-\frac{1}{2}\right|dt$$

and

$$T_{\cdot(1-\cdot)}(x,y) := \frac{f(x) + f(y)}{12} - \int_0^1 f((1-t)x + ty) t(1-t) dt$$

are also Schur convex on C^2 if f is convex on C.

3. Examples for Functions of a Real Variable

Assume that f is a continuous function on the interval I and $x, y \in I$. Also, let $p : [0,1] \to [0,\infty)$ be a Lebesgue integrable function on [0,1]. If we consider the functions

$$M_{p}(x,y) := \int_{0}^{1} f((1-t)x + ty) p(t) dt - f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) dt$$

and

$$T_{p}(x,y) := \frac{f(x) + f(y)}{2} \int_{0}^{1} p(t) dt - \int_{0}^{1} f((1-t)x + ty) p(t) dt$$

then

$$M_{p}(x,x) = T_{p}(x,x) = 0 \text{ for } x \in I.$$

If $x \neq y$, then by the change of the variable u = (1-t)x + ty, we have du = (y-x) dt, $t = \frac{u-x}{y-x}$, and we can consider the functions of two variables M_p , $T_p : I^2 \to \mathbb{R}$ defined by

(3.1)
$$M_{p}(x,y) := \begin{cases} \frac{1}{y-x} \int_{x}^{y} f(u) p\left(\frac{u-x}{y-x}\right) du - f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) dt, \\ (x,y) \in I^{2}, \ x \neq y, \\ 0, \ (x,y) \in I^{2}, \ x \neq y \end{cases}$$

and

(3.2)
$$T_{p}(x,y) := \begin{cases} \frac{f(x)+f(y)}{2} \int_{0}^{1} p(t) dt - \frac{1}{y-x} \int_{x}^{y} f(u) p\left(\frac{u-x}{y-x}\right) du \\ (x,y) \in I^{2}, \ x \neq y, \\ 0, \ (x,y) \in I^{2}, \ x \neq y. \end{cases}$$

In particular, we have the functions $M,\,T:I^2\to\mathbb{R}$ introduced in [2] and defined by

$$M(x,y) := \begin{cases} \frac{1}{y-x} \int_x^y f(u) \, du - f\left(\frac{x+y}{2}\right), & (x,y) \in I^2, \ x \neq y, \\\\ 0, & (x,y) \in I^2, \ x \neq y, \end{cases}$$

and

$$T\left(x,y\right) := \begin{cases} \frac{f(x)+f(y)}{2} - \frac{1}{y-x} \int_{x}^{y} f\left(u\right) du, \ (x,y) \in I^{2}, \ x \neq y, \\\\ 0, \ (x,y) \in I^{2}, \ x \neq y. \end{cases}$$

We can also consider the weighted functions defined on I^2

$$\begin{split} M_{\left|\cdot-\frac{1}{2}\right|}\left(x,y\right) &:= \begin{cases} \left.\frac{1}{(y-x)^2}\int_x^y f\left(u\right)\left|u-\frac{x+y}{2}\right|du-\frac{1}{4}f\left(\frac{x+y}{2}\right),\\ (x,y)\in I^2,\ x\neq y,\\ 0,\ (x,y)\in I^2,\ x\neq y,\\ \\ \\ T_{\left|\cdot-\frac{1}{2}\right|}\left(x,y\right) &:= \begin{cases} \left.\frac{f(x)+f(y)}{8}-\frac{1}{(y-x)^2}\int_x^y f\left(u\right)\left|u-\frac{x+y}{2}\right|du,\\ (x,y)\in I^2,\ x\neq y,\\ \\ 0,\ (x,y)\in I^2,\ x\neq y,\\ \\ 0,\ (x,y)\in I^2,\ x\neq y,\\ \\ 0,\ (x,y)\in I^2,\ x\neq y,\\ \\ (x,y)\in I^2,\ x\neq y,\\ \\ 0,\ (x,y)\in I^2,\ x\neq y,\\ \end{cases} \end{split}$$

and

$$T_{\cdot(1-\cdot)}(x,y) := \begin{cases} \frac{f(x)+f(y)}{12} - \frac{1}{(y-x)^3} \int_x^y f(u) (u-x) (y-u) du, \\ (x,y) \in I^2, \ x \neq y, \\ 0, \ (x,y) \in I^2, \ x \neq y. \end{cases}$$

By utilising Corollary 2 and Corollary 3 we can state the following Schur convexity result:

Proposition 1. Assume that f is a convex function on the interval I and let $p: [0,1] \rightarrow [0,\infty)$ be a Lebesgue integrable symmetric function on [0,1]. Then the functions M_p and T_p are Schur convex on I^2 .

In the case $p \equiv 1$ and f is convex on I, we obtain the fact that the functions M and T are Schur convex on I^2 , established by Chu et al. in [2]. The functions $M_{\left|\cdot-\frac{1}{2}\right|}, T_{\left|\cdot-\frac{1}{2}\right|}, M_{\cdot(1-\cdot)}$ and $T_{\cdot(1-\cdot)}$ defined above are also Schur convex on I^2 , provided that f is convex on I.

References

- P. Burai and J. Makó, On certain Schur-convex functions, Publ. Math. Debrecen, 89 (3) (2016), 307-319.
- [2] Y. Chu, G. Wang, X. Zhang, Schur convexity and Hadamard's inequality, Math. Inequal. Appl. 13 (4) (2010) 725-731.
- [3] V. Čuljak, A remark on Schur-convexity of the mean of a convex function. J. Math. Inequal. 9 (2015), No. 4, 1133–1142.

10

- [4] S. S. Dragomir, Superadditivity and monotonicity of some functionals associated with the Hermite-Hadamard inequality for convex functions in linear spaces. *Rocky Mountain J. Math.* 42 (2012), no. 5, 1447–1459.
- [5] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results. Aust. J. Math. Anal. Appl. 14 (2017), No. 1, Art. 1, 283 pp. [Online https://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P1.tex].
- [6] S. S. Dragomir, Integral inequalities for Schur convex functions on symmetric and convex sets in linear spaces, Preprint RGMIA Res. Rep. Coll. 22 (2019), Art.
- [7] S. S. Dragomir and K. Nikodem, Functions generating (m, M, Ψ)-Schur-convex sums. Aequationes Math. 93 (2019), No. 1, 79–90.
- [8] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online https://rgmia.org/monographs/hermite_hadamard.html].
- [9] N. Elezović and J. Pečarić, A note on Schur convex fuctions, Rocky Mountain J. Math. 30 (2000), No. 3, 853-956.
- [10] L. Fejér, Über die Fourierreihen, II, Math. Naturwiss, Anz. Ungar. Akad. Wiss., 24 (1906), 369-390. (In Hungarian).
- [11] A. W. Marshall, I. Olkin and B. C. Arnold, *Inequalities: Theory of Majorization and Its Applications*, Second Edition, Springer New York Dordrecht Heidelberg London, 2011.
- [12] K. Nikodem, T. Rajba and S. Wąsowicz, Functions generating strongly Schur-convex sums. Inequalities and applications 2010, 175–182, Internat. Ser. Numer. Math., 161, Birkhäuser/Springer, Basel, 2012.
- [13] J. Qi and W. Wang, Schur convex functions and the Bonnesen style isoperimetric inequalities for planar convex polygons. J. Math. Inequal. 12 (2018), no. 1, 23–29.
- [14] H.-N. Shi and J. Zhang, Compositions involving Schur harmonically convex functions. J. Comput. Anal. Appl. 22 (2017), no. 5, 907–922.
- [15] C. Stępniak, An effective characterization of Schur-convex functions with applications, Journal of Convex Analysis, 14 (2007), No. 1, 103–108.
- [16] D. E. Wulbert, Favard's inequality on average values of convex functions, Mathematical and Computer Modelling, Vol. 37 (2003), no. 12-13, pp. 1383–1391.

¹Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au *URL*: http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-SRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA