SCHUR CONVEXITY OF FUNCTIONS ASSOCIATED TO FEJÉR'S INEQUALITY FOR CONVEX FUNCTIONS IN LINEAR SPACES

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract. For a non-negative Lebesgue integrable and symmetric function $p:[0,1] \rightarrow[0, \infty)$ we consider the functions $M_{p}, T_{p}: C^{2} \rightarrow \mathbb{R}$ defined by

$$
M_{p}(x, y):=\int_{0}^{1} f((1-t) x+t y) p(t) d t-f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) d t
$$

and

$$
T_{p}(x, y):=\frac{f(x)+f(y)}{2} \int_{0}^{1} p(t) d t-\int_{0}^{1} f((1-t) x+t y) p(t) d t
$$

where $f: C \rightarrow \mathbb{R}$ is convex on the convex subset C of a linear space X.
In this paper we show, among others, that M_{p} and T_{p} are Schur convex on C^{2}. Applications for norms and convex functions of a real variable are also given.

1. Introduction

For any $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, let $x_{[1]} \geq \ldots \geq x_{[n]}$ denote the components of x in decreasing order, and let $x_{\downarrow}=\left(x_{[1]}, \ldots, x_{[n]}\right)$ denote the decreasing rearrangement of x. For $x, y \in \mathbb{R}^{n}, x \prec y$ if, by definition,

$$
\left\{\begin{array}{l}
\sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]}, k=1, \ldots, n-1 \\
\sum_{i=1}^{n} x_{[i]}=\sum_{i=1}^{n} y_{[i]}
\end{array}\right.
$$

When $x \prec y, x$ is said to be majorized by y (y majorizes x). This notation and terminology was introduced by Hardy, Littlewood and Pólya in 1934.

A real-valued function ϕ defined on a set $\mathcal{A} \subset \mathbb{R}^{n}$ is said to be Schur-convex on \mathcal{A} if

$$
\begin{equation*}
x \prec y \text { on } \mathcal{A} \Rightarrow \phi(x) \leq \phi(y) \tag{1.1}
\end{equation*}
$$

If, in addition, $\phi(x)<\phi(y)$ whenever $x \prec y$ but x is not a permutation of y, then ϕ is said to be strictly Schur-convex on \mathcal{A}. If $\mathcal{A}=\mathbb{R}^{n}$, then ϕ is simply said to be Schur-convex or strictly Schur-convex.

For fundamental properties of Schur convexity see the monograph [11] and the references therein. For some recent results, see [3]-[7] and [12]-[14].

The following result is known in the literature as Schur-Ostrowski theorem [11, p. 84]:

[^0]Theorem 1. Let $I \subset \mathbb{R}$ be an open interval and let $\phi: I^{n} \rightarrow \mathbb{R}$ be continuously differentiable. Necessary and sufficient conditions for ϕ to be Schur-convex on I^{n} are

$$
\begin{equation*}
\phi \text { is symmetric on } I^{n}, \tag{1.2}
\end{equation*}
$$

and for all $i \neq j$, with $i, j \in\{1, \ldots, n\}$,

$$
\begin{equation*}
\left(z_{i}-z_{j}\right)\left[\frac{\partial \phi(z)}{\partial x_{i}}-\frac{\partial \phi(z)}{\partial x_{j}}\right] \geq 0 \text { for all } z \in I^{n} \tag{1.3}
\end{equation*}
$$

where $\frac{\partial \phi}{\partial x_{k}}$ denotes the partial derivative of ϕ with respect to its k-th argument.
Let $\mathcal{A} \subset \mathbb{R}^{n}$ be a set with the following properties:
(i) \mathcal{A} is symmetric in the sense that $x \in \mathcal{A} \Rightarrow x \Pi \in \mathcal{A}$ for all permutations Π of the coordinates.
(ii) \mathcal{A} is convex and has a nonempty interior.

We have the following result, [11, p. 85].
Theorem 2. If ϕ is continuously differentiable on the interior of \mathcal{A} and continuous on \mathcal{A}, then necessary and sufficient conditions for ϕ to be Schur-convex on \mathcal{A} are

$$
\begin{equation*}
\phi \text { is symmetric on } \mathcal{A} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(z_{1}-z_{2}\right)\left[\frac{\partial \phi(z)}{\partial x_{1}}-\frac{\partial \phi(z)}{\partial x_{2}}\right] \geq 0 \text { for all } z \in \mathcal{A} \tag{1.5}
\end{equation*}
$$

Another interesting characterization of Schur convex functions ϕ on \mathcal{A} was obtained by C. Stępniak in [15]:

Theorem 3. Let ϕ be any function defined on a symmetric convex set \mathcal{A} in \mathbb{R}^{n}. Then the function ϕ is Schur convex on \mathcal{A} if and only if

$$
\begin{equation*}
\phi\left(x_{1}, \ldots, x_{i}, \ldots, x_{j}, \ldots, x_{n}\right)=\phi\left(x_{1}, \ldots, x_{j}, \ldots, x_{i}, \ldots, x_{n}\right) \tag{1.6}
\end{equation*}
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{A}$ and $1 \leq i<j \leq n$ and

$$
\begin{equation*}
\phi\left(\lambda x_{1}+(1-\lambda) x_{2}, \lambda x_{2}+(1-\lambda) x_{1}, x_{3}, \ldots, x_{n}\right) \leq \phi\left(x_{1}, \ldots, x_{n}\right) \tag{1.7}
\end{equation*}
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{A}$ and for all $\lambda \in(0,1)$,
It is well known that any symmetric convex function defined on a symmetric convex set \mathcal{A} is Schur convex, [11, p. 97]. If the function $\phi: \mathcal{A} \rightarrow \mathbb{R}$ is symmetric and quasi-convex, namely

$$
\phi(\alpha u+(1-\alpha) v) \leq \max \{\phi(u), \phi(v)\}
$$

for all $\alpha \in[0,1]$ and $u, v \in \mathcal{A}$, a symmetric convex set, then ϕ is Schur convex on \mathcal{A} [11, p. 98].

The following result concerning the Schur convexity of the integral mean was obtained by Elezović and Pečarić in [9]:

Theorem 4. Let h be a continuous function on I. Then

$$
H(x, y):=\left\{\begin{array}{l}
\frac{1}{y-x} \int_{x}^{y} h(t) d t, \text { for } x \neq y, x, y \in I \tag{1.8}\\
h(x), \text { for } y=x, x \in I
\end{array}\right.
$$

is Schur convex (concave) on I^{2} if and only if h is convex (concave) on I.

Three year later, in 2003, Wulbert, [16], improved the above result by showing that the integral mean H defined in (1.8) is in fact convex on I^{2} if f is convex on I.

In 2010, Chu et al. [2] obtained the following result concerning the difference functions associated to the Hermite-Hadamard inequalities:

Theorem 5. Let h be a continuous function on I. Then the functions

$$
F(x, y):=\left\{\begin{array}{l}
\frac{1}{y-x} \int_{x}^{y} h(t) d t-f\left(\frac{x+y}{2}\right), \text { for } x \neq y, x, y \in I \\
0, \text { for } y=x, x \in I
\end{array}\right.
$$

and

$$
G(x, y):=\left\{\begin{array}{l}
\frac{f(x)+f(y)}{2}-\frac{1}{y-x} \int_{x}^{y} h(t) d t, \text { for } x \neq y, x, y \in I \\
0, \text { for } y=x, x \in I
\end{array}\right.
$$

are Schur convex (concave) on I^{2} if and only if h is convex (concave) on I.
In 1906, Fejér [10], while studying trigonometric polynomials, obtained the following inequalities which generalize that of Hermite \& Hadamard:

Theorem 6 (Fejér's Inequality). Consider the integral $\int_{a}^{b} h(x) p(x) d x$, where h is a convex function in the interval (a, b) and g is a positive function in the same interval such that

$$
p(x)=p(a+b-x), x \in[a, b]
$$

i.e., $y=p(x)$ is a symmetric curve with respect to the straight line which contains the point $\left(\frac{1}{2}(a+b), 0\right)$ and is normal to the x-axis. Under those conditions the following inequalities are valid:

$$
\begin{equation*}
h\left(\frac{a+b}{2}\right) \int_{a}^{b} p(x) d x \leq \int_{a}^{b} h(x) p(x) d x \leq \frac{h(a)+h(b)}{2} \int_{a}^{b} p(x) d x . \tag{1.9}
\end{equation*}
$$

If h is concave on (a, b), then the inequalities reverse in (1.9).
We consider the function $f: C \rightarrow \mathbb{R}$ defined on the convex subset C of the linear space X and for each $(x, y) \in C^{2}:=C \times C$ we introduce the auxiliary function $\varphi_{(x, y)}:[0,1] \rightarrow \mathbb{R}$ defined by

$$
\varphi_{(x, y)}(t):=f((1-t) x+t y)
$$

It is well known that the function f is convex on C if and only if for each $(x, y) \in C^{2}$ the auxiliary function $\varphi_{(x, y)}$ is convex on $[0,1]$.

By utilising the classical Fejér's inequality for the convex function $\varphi_{(x, y)}$ on $[0,1]$ we then have for an integrable non-negative weight p that is symmetric, i.e. $p(1-t)=p(t)$ for all $t \in[0,1]$,

$$
\begin{align*}
f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) d t & \leq \int_{0}^{1} f((1-t) x+t y) p(t) d t \tag{1.10}\\
& \leq \frac{f(x)+f(y)}{2} \int_{0}^{1} p(t) d t
\end{align*}
$$

for all $(x, y) \in C^{2}$.

If $(X,\|\cdot\|)$ is a normed space and $r \geq 1$, then from (1.10) we get the norm inequalities

$$
\begin{align*}
\left\|\frac{x+y}{2}\right\|^{r} \int_{0}^{1} p(t) d t & \leq \int_{0}^{1}\|(1-t) x+t y\|^{r} p(t) d t \tag{1.11}\\
& \leq \frac{\|x\|^{r}+\|y\|^{r}}{2} \int_{0}^{1} p(t) d t
\end{align*}
$$

for all $(x, y) \in X^{2}$ and an integrable non-negative weight p that is symmetric on $[0,1]$.

For a non-negative Lebesgue integrable and symmetric function $p:[0,1] \rightarrow$ $[0, \infty)$ we consider the functions $M_{p}, T_{p}: C^{2} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
M_{p}(x, y):=\int_{0}^{1} f((1-t) x+t y) p(t) d t-f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) d t \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{p}(x, y):=\frac{f(x)+f(y)}{2} \int_{0}^{1} p(t) d t-\int_{0}^{1} f((1-t) x+t y) p(t) d t \tag{1.13}
\end{equation*}
$$

where $f: C \rightarrow \mathbb{R}$ is convex on the convex subset C of a linear space X.
We observe that

$$
M_{p}(x, x)=T_{p}(x, x)=f(x) \int_{0}^{1} p(t) d t \text { for all } x \in C
$$

Motivated by the above results, in this paper we investigate, among others, the Schur convexity of the functions M_{p} and T_{p} and provide some applications for norms and convex functions of a real variable defined on an interval.

2. Schur Convexity on Linear Spaces

Let X be a linear space and $G \subset X^{2}:=X \times X$ a convex set. We say that G is symmetric if $(x, y) \in G$ implies that $(y, x) \in G$. If $D \subset X$ is a convex subset of X, then the Cartesian product $G:=D^{2}:=D \times D$ is convex and symmetric in X^{2}.

Motivated by the characterization result of Stępniak above, we say that a function $\phi: G \rightarrow \mathbb{R}$ will be called Schur convex on the convex and symmetric set $G \subset X^{2}$ if

$$
\begin{equation*}
\phi(s(x, y)+(1-s)(y, x)) \leq \phi(x, y) \tag{2.1}
\end{equation*}
$$

for all $(x, y) \in G$ and for all $s \in[0,1]$.
If $G=D^{2}$, then we recapture the general concept of Schur convexity introduced by Burai and Makó in 2016, [1].

We say that the function $\phi: G \rightarrow \mathbb{R}$ is symmetric on G if $\phi(x, y)=\phi(y, x)$ for all $(x, y) \in G$.

If $\phi: G \rightarrow \mathbb{R}$ is Schur convex on the convex and symmetric set $G \subset X^{2}$, then ϕ is symmetric on G. Indeed, if $(x, y) \in G$, then by (2.1) we get for $s=0$ that $\phi(y, x) \leq \phi(x, y)$. If we replace x with y then we also get $\phi(x, y) \leq \phi(y, x)$ which shows that $\phi(x, y)=\phi(y, x)$ for all $(x, y) \in G$.

Now, for a convex function $f: C \rightarrow \mathbb{R}$ and a $t \in[0,1]$ define the functions M_{t}, $T_{t}: C^{2} \rightarrow \mathbb{R}$

$$
M_{t}(x, y):=\frac{1}{2}[f((1-t) x+t y)+f((1-t) y+t x)]-f\left(\frac{x+y}{2}\right) \geq 0
$$

and

$$
T_{t}(x, y):=\frac{f(x)+f(y)}{2}-\frac{1}{2}[f((1-t) x+t y)+f((1-t) y+t x)] \geq 0 .
$$

We have the following result concerning the Schur convexity of M_{t}.
Theorem 7. Let $f: C \rightarrow \mathbb{R}$ be a convex function on the convex set C in X. For all $t \in[0,1], t \neq \frac{1}{2}$ the function M_{t} is Schur convex on C^{2}.
Proof. Let $(x, y) \in C^{2}$ and $s \in[0,1]$. Then

$$
\begin{aligned}
& M_{t}(s(x, y)+(1-s)(y, x)) \\
& =M_{t}(s x+(1-s) y, s y+(1-s) x) \\
& =\frac{1}{2} f((1-t)(s x+(1-s) y)+t(s y+(1-s) x)) \\
& +\frac{1}{2} f((1-t)(s y+(1-s) x)+t(s x+(1-s) y)) \\
& -f\left(\frac{s x+(1-s) y+s y+(1-s) x}{2}\right) \\
& =\frac{1}{2} f(s((1-t) x+t y)+(1-s)((1-t) y+t x)) \\
& +\frac{1}{2} f(s((1-t) y+t x)+(1-s)((1-t) x+t y))-f\left(\frac{x+y}{2}\right) .
\end{aligned}
$$

By the convexity of f we have

$$
\begin{aligned}
& f(s((1-t) x+t y)+(1-s)((1-t) y+t x)) \\
& \leq s f((1-t) x+t y)+(1-s) f((1-t) y+t x)
\end{aligned}
$$

and

$$
\begin{aligned}
& f(s((1-t) y+t x)+(1-s)((1-t) x+t y)) \\
& \leq s f((1-t) y+t x)+(1-s) f((1-t) x+t y) .
\end{aligned}
$$

for all $(x, y) \in C^{2}$ and $s \in[0,1]$.
If we add these two inequalities and divide by 2 we get

$$
\begin{aligned}
& \frac{1}{2} f(s((1-t) x+t y)+(1-s)((1-t) y+t x)) \\
& +\frac{1}{2} f(s((1-t) y+t x)+(1-s)((1-t) x+t y)) \\
& \leq \frac{1}{2}[f((1-t) y+t x)+f((1-t) x+t y)]
\end{aligned}
$$

for all $(x, y) \in C^{2}$ and $s \in[0,1]$.
Therefore

$$
\begin{aligned}
& M_{t}(s(x, y)+(1-s)(y, x)) \\
& \leq \frac{1}{2}[f((1-t) y+t x)+f((1-t) x+t y)]-f\left(\frac{x+y}{2}\right) \\
& =M_{t}(x, y)
\end{aligned}
$$

for all $(x, y) \in C^{2}$ and $s \in[0,1]$, which shows that M_{t} is Schur convex on C^{2}.

For a convex function $f: C \rightarrow \mathbb{R}$ and $q:[0,1] \rightarrow[0, \infty)$ a Lebesgue integrable function we consider the function $M_{\breve{q}}: C^{2} \rightarrow[0, \infty)$ defined by

$$
\begin{aligned}
M_{\breve{q}}(x, y) & :=\int_{0}^{1} M_{t}(x, y) q(t) d t \\
& =\frac{1}{2} \int_{0}^{1}[f((1-t) x+t y)+f((1-t) y+t x)] q(t) d t \\
& -f\left(\frac{x+y}{2}\right) \int_{0}^{1} q(t) d t \\
& =\int_{0}^{1} f((1-t) x+t y) \breve{q}(t) d t-f\left(\frac{x+y}{2}\right) \int_{0}^{1} q(t) d t
\end{aligned}
$$

where

$$
\breve{q}(t):=\frac{1}{2}[q(t)+q(1-t)], t \in[0,1] .
$$

Corollary 1. Let $f: C \rightarrow \mathbb{R}$ be a convex function on C and $q:[0,1] \rightarrow[0, \infty) a$ Lebesgue integrable function on $[0,1]$, then $M_{\breve{q}}$ is Schur convex on C^{2}.

Proof. Let $(x, y) \in C^{2}$ and $s \in[0,1]$. By the Schur convexity of M_{t} for all $t \in[0,1]$, we have

$$
\begin{aligned}
M_{\breve{q}}(s(x, y)+(1-s)(y, x)) & =\int_{0}^{1} M_{t}(s(x, y)+(1-s)(y, x)) q(t) d t \\
& \leq \int_{0}^{1} M_{t}(x, y) q(t) d t=M_{\breve{q}}(x, y)
\end{aligned}
$$

which proves the Schur convexity of $M_{\breve{q}}$.
Corollary 2. Let $f: C \rightarrow \mathbb{R}$ be a convex function on C and $p:[0,1] \rightarrow[0, \infty) a$ Lebesgue integrable symmetric function on $[0,1]$, then M_{p} is Schur convex on C^{2}.

We denote by $[x, y]$ the closed segment defined by $\{(1-s) x+s y, s \in[0,1]\}$. We also define the functional

$$
\begin{equation*}
\Psi_{f, t}(x, y):=(1-t) f(x)+t f(y)-f((1-t) x+t y) \geq 0 \tag{2.2}
\end{equation*}
$$

where $x, y \in C$ and $t \in[0,1]$.
In [4] we obtained among others the following result :
Lemma 1. Let $f: C \subset X \rightarrow \mathbb{R}$ be a convex function on the convex set C. Then for each $x, y \in C$ and $z \in[x, y]$ we have

$$
\begin{equation*}
(0 \leq) \Psi_{f, t}(x, z)+\Psi_{f, t}(z, y) \leq \Psi_{f, t}(x, y) \tag{2.3}
\end{equation*}
$$

for each $t \in[0,1]$, i.e., the functional $\Psi_{f, t}(\cdot, \cdot)$ is superadditive as a function of interval.

If $z, u \in[x, y]$, then

$$
\begin{equation*}
(0 \leq) \Psi_{f, t}(z, u) \leq \Psi_{f, t}(x, y) \tag{2.4}
\end{equation*}
$$

for each $t \in[0,1]$, i.e., the functional $\Psi_{f}(\cdot, \cdot)$ is nondecreasing as a function of interval.

By utilising this lemma we can prove the following result as well:
Theorem 8. Let $f: C \rightarrow \mathbb{R}$ be a convex function on the convex set C in X. For all $t \in(0,1)$, the function T_{t} is Schur convex on C^{2}.

Proof. Let $(x, y) \in C^{2}$ with $x \neq y$ and $s \in[0,1]$. Then

$$
\begin{aligned}
& T_{t}(s(x, y)+(1-s)(y, x)) \\
& =T_{t}(s x+(1-s) y, s y+(1-s) x) \\
& =\frac{f(s x+(1-s) y)+f(s y+(1-s) x)}{2} \\
& -\frac{1}{2} f((1-t)(s x+(1-s) y)+t(s y+(1-s) x)) \\
& -\frac{1}{2} f((1-t)(s y+(1-s) x)+t(s x+(1-s) y)) .
\end{aligned}
$$

From (2.4) we have for $z, u \in[x, y]$

$$
\Psi_{f, t}(z, u) \leq \Psi_{f, t}(x, y) \text { and } \Psi_{f, 1-t}(z, u) \leq \Psi_{f, 1-t}(x, y)
$$

which, by addition gives that

$$
\Psi_{f, t}(z, u)+\Psi_{f, 1-t}(z, u) \leq \Psi_{f, t}(x, y)+\Psi_{f, 1-t}(x, y)
$$

namely

$$
\begin{aligned}
& (1-t) f(z)+t f(u)-f((1-t) z+t u) \\
& +t f(z)+(1-t) f(u)-f(t z+(1-t) u) \\
& \leq(1-t) f(x)+t f(y)-f((1-t) x+t y) \\
& +t f(x)+(1-t) f(y)-f(t x+(1-t) y),
\end{aligned}
$$

which is equivalent to

$$
\begin{align*}
& f(z)+f(u)-f((1-t) z+t u)-f(t z+(1-t) u) \tag{2.5}\\
& \leq f(x)+f(y)-f((1-t) x+t y)-f(t x+(1-t) y)
\end{align*}
$$

for all $z, u \in[x, y]$.
If we take $z=s x+(1-s) y$ and $u=s y+(1-s) x$, with $s \in[0,1]$ then z, $u \in[x, y]$ and by (2.5) we get

$$
\begin{aligned}
& f(s x+(1-s) y)+f(s y+(1-s) x) \\
& -f((1-t)(s x+(1-s) y)+t(s y+(1-s) x)) \\
& -f((1-t)(s y+(1-s) x)+t(s x+(1-s) y)) \\
& \leq f(x)+f(y)-f((1-t) x+t y)-f(t x+(1-t) y)
\end{aligned}
$$

This inequality is equivalent to

$$
T_{t}(s(x, y)+(1-s)(y, x)) \leq T_{t}(x, y)
$$

for all $(x, y) \in C^{2}$ and $s \in[0,1]$. This proves the Schur convexity of T_{t}.
Remark 1. Since both M_{t} and T_{t} are Schur convex when f is convex on C it follows that the sum, namely the Jensen's functional

$$
J(x, y):=\frac{f(x)+f(y)}{2}-f\left(\frac{x+y}{2}\right)
$$

is also Schur Convex on C^{2}.
In the case of normed spaces $(X,\|\cdot\|)$, if we put

$$
J_{r}(x, y):=\frac{\|x\|^{r}+\|y\|^{r}}{2}-\left\|\frac{x+y}{2}\right\|^{r}, r \geq 1
$$

then we conclude that J_{r} is Schur convex on X^{2}.
For a convex function $f: C \rightarrow \mathbb{R}$ and $q:[0,1] \rightarrow[0, \infty)$ a Lebesgue integrable function we consider the function $T_{\breve{q}}: C^{2} \rightarrow[0, \infty)$ defined by

$$
\begin{aligned}
T_{\breve{q}}(x, y) & :=\int_{0}^{1} T_{t}(x, y) q(t) d t \\
& =\frac{f(x)+f(y)}{2} \int_{0}^{1} q(t) d t \\
& -\frac{1}{2} \int_{0}^{1}[f((1-t) x+t y)+f((1-t) y+t x)] q(t) d t \\
& =\frac{f(x)+f(y)}{2} \int_{0}^{1} q(t) d t-\int_{0}^{1} f((1-t) x+t y) \breve{q}(t) d t
\end{aligned}
$$

Corollary 3. Let $f: C \rightarrow \mathbb{R}$ be a convex function on C and $q:[0,1] \rightarrow[0, \infty) a$ Lebesgue integrable function on $[0,1]$, then $T_{\breve{q}}$ is Schur convex on C^{2}. In particular, if $p:[0,1] \rightarrow[0, \infty)$ is a Lebesgue integrable symmetric function on $[0,1]$, then T_{p} is Schur convex on C^{2}.

If $(X,\|\cdot\|)$ is a normed linear space, $r \geq 1$ and $p:[0,1] \rightarrow[0, \infty)$ is a Lebesgue integrable symmetric function on $[0,1]$, then the functions

$$
\begin{equation*}
M_{r, p}(x, y):=\int_{0}^{1}\|(1-t) x+t y\|^{r} p(t) d t-\left\|\frac{x+y}{2}\right\|^{r} \int_{0}^{1} p(t) d t \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{r, p}(x, y):=\frac{\|x\|^{r}+\|y\|^{r}}{2} \int_{0}^{1} p(t) d t-\int_{0}^{1}\|(1-t) x+t y\|^{r} p(t) d t \tag{2.7}
\end{equation*}
$$

are Schur convex on X^{2}.
In particular,

$$
\begin{equation*}
M_{r}(x, y):=\int_{0}^{1}\|(1-t) x+t y\|^{r} d t-\left\|\frac{x+y}{2}\right\|^{r} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{r}(x, y):=\frac{\|x\|^{r}+\|y\|^{r}}{2}-\int_{0}^{1}\|(1-t) x+t y\|^{r} d t \tag{2.9}
\end{equation*}
$$

are Schur convex on X^{2}.
If we take $p \equiv 1$ and consider the functions

$$
M(x, y):=\int_{0}^{1} f((1-t) x+t y) d t-f\left(\frac{x+y}{2}\right)
$$

and

$$
T(x, y):=\frac{f(x)+f(y)}{2}-\int_{0}^{1} f((1-t) x+t y) d t
$$

then we conclude that M and T are Schur convex functions on C^{2} if f is convex on C. This result generalizes the result of Chu et al. [2] that was proved in the case of convex functions defined on real intervals.

SCHUR CONVEXITY OF FUNCTIONS ASSOCIATED TO FEJÉR'S INEQUALITY 9
Also, if we consider the symmetric weights $p_{1}(t)=\left|t-\frac{1}{2}\right|$ and $p_{2}(t)=t(1-t)$, $t \in[0,1]$, then

$$
M_{\left|-\frac{1}{2}\right|}(x, y):=\int_{0}^{1} f((1-t) x+t y)\left|t-\frac{1}{2}\right| d t-\frac{1}{4} f\left(\frac{x+y}{2}\right)
$$

and

$$
M_{\cdot(1-\cdot)}(x, y):=\int_{0}^{1} f((1-t) x+t y) t(1-t) d t-\frac{1}{6} f\left(\frac{x+y}{2}\right)
$$

are Schur convex on C^{2} if f is convex on C.
The trapezoid functions

$$
T_{\left|\cdot-\frac{1}{2}\right|}(x, y):=\frac{f(x)+f(y)}{8}-\int_{0}^{1} f((1-t) x+t y)\left|t-\frac{1}{2}\right| d t
$$

and

$$
T_{\cdot(1-\cdot)}(x, y):=\frac{f(x)+f(y)}{12}-\int_{0}^{1} f((1-t) x+t y) t(1-t) d t
$$

are also Schur convex on C^{2} if f is convex on C.

3. Examples for Functions of a Real Variable

Assume that f is a continuous function on the interval I and $x, y \in I$. Also, let $p:[0,1] \rightarrow[0, \infty)$ be a Lebesgue integrable function on $[0,1]$. If we consider the functions

$$
M_{p}(x, y):=\int_{0}^{1} f((1-t) x+t y) p(t) d t-f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) d t
$$

and

$$
T_{p}(x, y):=\frac{f(x)+f(y)}{2} \int_{0}^{1} p(t) d t-\int_{0}^{1} f((1-t) x+t y) p(t) d t
$$

then

$$
M_{p}(x, x)=T_{p}(x, x)=0 \text { for } x \in I
$$

If $x \neq y$, then by the change of the variable $u=(1-t) x+t y$, we have $d u=$ $(y-x) d t, t=\frac{u-x}{y-x}$, and we can consider the functions of two variables M_{p}, T_{p} : $I^{2} \rightarrow \mathbb{R}$ defined by

$$
M_{p}(x, y):=\left\{\begin{array}{l}
\frac{1}{y-x} \int_{x}^{y} f(u) p\left(\frac{u-x}{y-x}\right) d u-f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) d t \tag{3.1}\\
(x, y) \in I^{2}, x \neq y \\
0, \quad(x, y) \in I^{2}, x \neq y
\end{array}\right.
$$

and

$$
T_{p}(x, y):=\left\{\begin{array}{l}
\frac{f(x)+f(y)}{2} \int_{0}^{1} p(t) d t-\frac{1}{y-x} \int_{x}^{y} f(u) p\left(\frac{u-x}{y-x}\right) d u \tag{3.2}\\
(x, y) \in I^{2}, x \neq y \\
0, \quad(x, y) \in I^{2}, x \neq y
\end{array}\right.
$$

In particular, we have the functions $M, T: I^{2} \rightarrow \mathbb{R}$ introduced in [2] and defined by

$$
M(x, y):=\left\{\begin{array}{l}
\frac{1}{y-x} \int_{x}^{y} f(u) d u-f\left(\frac{x+y}{2}\right), \quad(x, y) \in I^{2}, x \neq y \\
0, \quad(x, y) \in I^{2}, x \neq y
\end{array}\right.
$$

and

$$
T(x, y):=\left\{\begin{array}{l}
\frac{f(x)+f(y)}{2}-\frac{1}{y-x} \int_{x}^{y} f(u) d u, \quad(x, y) \in I^{2}, x \neq y \\
0, \quad(x, y) \in I^{2}, x \neq y
\end{array}\right.
$$

We can also consider the weighted functions defined on I^{2}

$$
\begin{aligned}
& M_{\left|\cdot-\frac{1}{2}\right|}(x, y):=\left\{\begin{array}{l}
\frac{1}{(y-x)^{2}} \int_{x}^{y} f(u)\left|u-\frac{x+y}{2}\right| d u-\frac{1}{4} f\left(\frac{x+y}{2}\right), \\
(x, y) \in I^{2}, x \neq y, \\
0,(x, y) \in I^{2}, x \neq y,
\end{array}\right. \\
& T_{\left|\cdot-\frac{1}{2}\right|}(x, y):=\left\{\begin{array}{l}
\frac{f(x)+f(y)}{8}-\frac{1}{(x, y) \in I^{2}, x \neq y,} \int_{x}^{y} f(u)\left|u-\frac{x+y}{2}\right| d u, \\
0,(x, y) \in I^{2}, x \neq y,
\end{array}\right. \\
& M_{\cdot(1-\cdot)}(x, y):=\left\{\begin{array}{l}
\frac{1}{(y-x)^{3}} \int_{x}^{y} f(u)(u-x)(y-u) d u-\frac{1}{6} f\left(\frac{x+y}{2}\right), \\
(x, y) \in I^{2}, x \neq y, \\
0,(x, y) \in I^{2}, x \neq y,
\end{array}\right.
\end{aligned}
$$

and

$$
T_{\cdot(1-\cdot)}(x, y):=\left\{\begin{array}{l}
\frac{f(x)+f(y)}{12}-\frac{1}{(y-x)^{3}} \int_{x}^{y} f(u)(u-x)(y-u) d u \\
(x, y) \in I^{2}, x \neq y, \\
0, \quad(x, y) \in I^{2}, x \neq y .
\end{array}\right.
$$

By utilising Corollary 2 and Corollary 3 we can state the following Schur convexity result:

Proposition 1. Assume that f is a convex function on the interval I and let $p:[0,1] \rightarrow[0, \infty)$ be a Lebesgue integrable symmetric function on $[0,1]$. Then the functions M_{p} and T_{p} are Schur convex on I^{2}.

In the case $p \equiv 1$ and f is convex on I, we obtain the fact that the functions M and T are Schur convex on I^{2}, established by Chu et al. in [2]. The functions $M_{\left|-\frac{1}{2}\right|}, T_{\left|-\frac{1}{2}\right|}, M_{\cdot(1-\cdot)}$ and $T_{\cdot(1-\cdot)}$ defined above are also Schur convex on I^{2}, provided that f is convex on I.

References

[1] P. Burai and J. Makó, On certain Schur-convex functions, Publ. Math. Debrecen, 89 (3) (2016), 307-319.
[2] Y. Chu, G. Wang, X. Zhang, Schur convexity and Hadamard's inequality, Math. Inequal. Appl. 13 (4) (2010) 725-731.
[3] V. Čuljak, A remark on Schur-convexity of the mean of a convex function. J. Math. Inequal. 9 (2015), No. 4, 1133-1142.
[4] S. S. Dragomir, Superadditivity and monotonicity of some functionals associated with the Hermite-Hadamard inequality for convex functions in linear spaces. Rocky Mountain J. Math. 42 (2012), no. 5, 1447-1459.
[5] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results. Aust. J. Math. Anal. Appl. 14 (2017), No. 1, Art. 1, 283 pp. [Online https://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P1.tex].
[6] S. S. Dragomir, Integral inequalities for Schur convex functions on symmetric and convex sets in linear spaces, Preprint RGMIA Res. Rep. Coll. 22 (2019), Art.
[7] S. S. Dragomir and K. Nikodem, Functions generating (m, M, Ψ)-Schur-convex sums. Aequationes Math. 93 (2019), No. 1, 79-90.
[8] S. S. Dragomir and C. E. M. Pearce, Selected Topics on HermiteHadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online https://rgmia.org/monographs/hermite_hadamard.html].
[9] N. Elezović and J. Pečarić, A note on Schur convex fuctions, Rocky Mountain J. Math. 30 (2000), No. 3, 853-956.
[10] L. Fejér, Über die Fourierreihen, II, Math. Naturwiss, Anz. Ungar. Akad. Wiss., 24 (1906), 369-390. (In Hungarian).
[11] A. W. Marshall, I. Olkin and B. C. Arnold, Inequalities: Theory of Majorization and Its Applications, Second Edition, Springer New York Dordrecht Heidelberg London, 2011.
[12] K. Nikodem, T. Rajba and S. Wąsowicz, Functions generating strongly Schur-convex sums. Inequalities and applications 2010, 175-182, Internat. Ser. Numer. Math., 161, Birkhäuser/Springer, Basel, 2012.
[13] J. Qi and W. Wang, Schur convex functions and the Bonnesen style isoperimetric inequalities for planar convex polygons. J. Math. Inequal. 12 (2018), no. 1, 23-29.
[14] H.-N. Shi and J. Zhang, Compositions involving Schur harmonically convex functions. J. Comput. Anal. Appl. 22 (2017), no. 5, 907-922.
[15] C. Stępniak, An effective characterization of Schur-convex functions with applications, Journal of Convex Analysis, 14 (2007), No. 1, 103-108.
[16] D. E. Wulbert, Favard's inequality on average values of convex functions, Mathematical and Computer Modelling, Vol. 37 (2003), no. 12-13, pp. 1383-1391.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 26D15.
 Key words and phrases. Convex functions, Schur convex functions, Integral inequalities, Hermite-Hadamard inequality, Fejér's inequality.

