
SCHUR CONVEXITY OF FUNCTIONS ASSOCIATED TO
FEJÉR�S INEQUALITY FOR CONVEX FUNCTIONS IN LINEAR

SPACES

SILVESTRU SEVER DRAGOMIR1;2

Abstract. For a non-negative Lebesgue integrable and symmetric function
p : [0; 1]! [0;1) we consider the functions Mp; Tp : C2 ! R de�ned by

Mp (x; y) :=

Z 1

0
f ((1� t)x+ ty) p (t) dt� f

�
x+ y

2

�Z 1

0
p (t) dt

and

Tp (x; y) :=
f (x) + f (y)

2

Z 1

0
p (t) dt�

Z 1

0
f ((1� t)x+ ty) p (t) dt;

where f : C ! R is convex on the convex subset C of a linear space X:
In this paper we show, among others, that Mp and Tp are Schur convex

on C2: Applications for norms and convex functions of a real variable are also
given.

1. Introduction

For any x = (x1; :::; xn) 2 Rn, let x[1] � ::: � x[n] denote the components of x in
decreasing order, and let x# =

�
x[1]; :::; x[n]

�
denote the decreasing rearrangement

of x. For x; y 2 Rn, x � y if, by de�nition,8<:
Pk

i=1 x[i] �
Pk

i=1 y[i]; k = 1; :::; n� 1;Pn
i=1 x[i] =

Pn
i=1 y[i]:

When x � y, x is said to be majorized by y (y majorizes x). This notation and
terminology was introduced by Hardy, Littlewood and Pólya in 1934.
A real-valued function � de�ned on a set A � Rn is said to be Schur-convex on

A if

(1.1) x � y on A ) � (x) � � (y) :

If, in addition, � (x) < � (y) whenever x � y but x is not a permutation of y, then
� is said to be strictly Schur-convex on A. If A = Rn, then � is simply said to be
Schur-convex or strictly Schur-convex.
For fundamental properties of Schur convexity see the monograph [11] and the

references therein. For some recent results, see [3]-[7] and [12]-[14].
The following result is known in the literature as Schur-Ostrowski theorem [11,

p. 84]:
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2 S. S. DRAGOMIR

Theorem 1. Let I � R be an open interval and let � : In ! R be continuously
di¤erentiable. Necessary and su¢ cient conditions for � to be Schur-convex on In

are

(1.2) � is symmetric on In;

and for all i 6= j, with i; j 2 f1; :::; ng ;

(1.3) (zi � zj)
�
@�(z)

@xi
� @�(z)

@xj

�
� 0 for all z 2 In;

where @�
@xk

denotes the partial derivative of � with respect to its k-th argument.

Let A � Rn be a set with the following properties:
(i) A is symmetric in the sense that x 2 A ) x� 2 A for all permutations � of

the coordinates.
(ii) A is convex and has a nonempty interior.
We have the following result, [11, p. 85].

Theorem 2. If � is continuously di¤erentiable on the interior of A and continuous
on A, then necessary and su¢ cient conditions for � to be Schur-convex on A are

(1.4) � is symmetric on A
and

(1.5) (z1 � z2)
�
@�(z)

@x1
� @�(z)

@x2

�
� 0 for all z 2 A:

Another interesting characterization of Schur convex functions � on A was ob-
tained by C. St¾epniak in [15]:

Theorem 3. Let � be any function de�ned on a symmetric convex set A in Rn.
Then the function � is Schur convex on A if and only if

(1.6) � (x1; :::; xi; :::; xj ; :::; xn) = � (x1; :::; xj ; :::; xi; :::; xn)

for all (x1; :::; xn) 2 A and 1 � i < j � n and
(1.7) � (�x1 + (1� �)x2; �x2 + (1� �)x1; x3; :::; xn) � � (x1; :::; xn)
for all (x1; :::; xn) 2 A and for all � 2 (0; 1) ;

It is well known that any symmetric convex function de�ned on a symmetric
convex set A is Schur convex, [11, p. 97]. If the function � : A ! R is symmetric
and quasi-convex, namely

� (�u+ (1� �) v) � max f� (u) ; � (v)g
for all � 2 [0; 1] and u; v 2 A, a symmetric convex set, then � is Schur convex on
A [11, p. 98].
The following result concerning the Schur convexity of the integral mean was

obtained by Elezovíc and Peµcaríc in [9]:

Theorem 4. Let h be a continuous function on I: Then

(1.8) H (x; y) :=

8<:
1

y�x
R y
x
h (t) dt, for x 6= y; x; y 2 I;

h (x) ; for y = x; x 2 I;
is Schur convex (concave) on I2 if and only if h is convex (concave) on I:
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Three year later, in 2003, Wulbert, [16], improved the above result by showing
that the integral mean H de�ned in (1.8) is in fact convex on I2 if f is convex on
I.
In 2010, Chu et al. [2] obtained the following result concerning the di¤erence

functions associated to the Hermite-Hadamard inequalities:

Theorem 5. Let h be a continuous function on I: Then the functions

F (x; y) :=

8<:
1

y�x
R y
x
h (t) dt� f

�
x+y
2

�
, for x 6= y; x; y 2 I;

0; for y = x; x 2 I;

and

G (x; y) :=

8<:
f(x)+f(y)

2 � 1
y�x

R y
x
h (t) dt, for x 6= y; x; y 2 I;

0; for y = x; x 2 I;
are Schur convex (concave) on I2 if and only if h is convex (concave) on I:

In 1906, Fejér [10], while studying trigonometric polynomials, obtained the fol-
lowing inequalities which generalize that of Hermite & Hadamard:

Theorem 6 (Fejér�s Inequality). Consider the integral
R b
a
h (x) p (x) dx, where h

is a convex function in the interval (a; b) and g is a positive function in the same
interval such that

p (x) = p (a+ b� x) ; x 2 [a; b] ;
i.e., y = p (x) is a symmetric curve with respect to the straight line which contains
the point

�
1
2 (a+ b) ; 0

�
and is normal to the x-axis. Under those conditions the

following inequalities are valid:

(1.9) h

�
a+ b

2

�Z b

a

p (x) dx �
Z b

a

h (x) p (x) dx � h (a) + h (b)

2

Z b

a

p (x) dx:

If h is concave on (a; b), then the inequalities reverse in (1.9).

We consider the function f : C ! R de�ned on the convex subset C of the linear
space X and for each (x; y) 2 C2 := C � C we introduce the auxiliary function
'(x;y) : [0; 1]! R de�ned by

'(x;y) (t) := f ((1� t)x+ ty) :

It is well known that the function f is convex on C if and only if for each (x; y) 2 C2
the auxiliary function '(x;y) is convex on [0; 1] :
By utilising the classical Fejér�s inequality for the convex function '(x;y) on

[0; 1] we then have for an integrable non-negative weight p that is symmetric, i.e.
p (1� t) = p (t) for all t 2 [0; 1] ;

f

�
x+ y

2

�Z 1

0

p (t) dt �
Z 1

0

f ((1� t)x+ ty) p (t) dt(1.10)

� f (x) + f (y)

2

Z 1

0

p (t) dt

for all (x; y) 2 C2:
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If (X; k�k) is a normed space and r � 1; then from (1.10) we get the norm
inequalities 



x+ y2





r Z 1

0

p (t) dt �
Z 1

0

k(1� t)x+ tykr p (t) dt(1.11)

� kxkr + kykr

2

Z 1

0

p (t) dt;

for all (x; y) 2 X2 and an integrable non-negative weight p that is symmetric on
[0; 1] :
For a non-negative Lebesgue integrable and symmetric function p : [0; 1] !

[0;1) we consider the functions Mp; Tp : C
2 ! R de�ned by

(1.12) Mp (x; y) :=

Z 1

0

f ((1� t)x+ ty) p (t) dt� f
�
x+ y

2

�Z 1

0

p (t) dt

and

(1.13) Tp (x; y) :=
f (x) + f (y)

2

Z 1

0

p (t) dt�
Z 1

0

f ((1� t)x+ ty) p (t) dt

where f : C ! R is convex on the convex subset C of a linear space X:
We observe that

Mp (x; x) = Tp (x; x) = f (x)

Z 1

0

p (t) dt for all x 2 C:

Motivated by the above results, in this paper we investigate, among others, the
Schur convexity of the functionsMp and Tp and provide some applications for norms
and convex functions of a real variable de�ned on an interval.

2. Schur Convexity on Linear Spaces

Let X be a linear space and G � X2 := X �X a convex set. We say that G is
symmetric if (x; y) 2 G implies that (y; x) 2 G: If D � X is a convex subset of X;
then the Cartesian product G := D2 := D �D is convex and symmetric in X2:
Motivated by the characterization result of St¾epniak above, we say that a func-

tion � : G ! R will be called Schur convex on the convex and symmetric set
G � X2 if

(2.1) � (s (x; y) + (1� s) (y; x)) � � (x; y)
for all (x; y) 2 G and for all s 2 [0; 1] :
If G = D2; then we recapture the general concept of Schur convexity introduced

by Burai and Makó in 2016, [1].
We say that the function � : G ! R is symmetric on G if � (x; y) = � (y; x) for

all (x; y) 2 G.
If � : G ! R is Schur convex on the convex and symmetric set G � X2; then

� is symmetric on G: Indeed, if (x; y) 2 G; then by (2.1) we get for s = 0 that
� (y; x) � � (x; y) : If we replace x with y then we also get � (x; y) � � (y; x) which
shows that � (x; y) = � (y; x) for all (x; y) 2 G:
Now, for a convex function f : C ! R and a t 2 [0; 1] de�ne the functions Mt,

Tt : C
2 ! R

Mt (x; y) :=
1

2
[f ((1� t)x+ ty) + f ((1� t) y + tx)]� f

�
x+ y

2

�
� 0
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and

Tt (x; y) :=
f (x) + f (y)

2
� 1
2
[f ((1� t)x+ ty) + f ((1� t) y + tx)] � 0:

We have the following result concerning the Schur convexity of Mt:

Theorem 7. Let f : C ! R be a convex function on the convex set C in X: For
all t 2 [0; 1] ; t 6= 1

2 the function Mt is Schur convex on C2:

Proof. Let (x; y) 2 C2 and s 2 [0; 1] : Then

Mt (s (x; y) + (1� s) (y; x))
=Mt (sx+ (1� s) y; sy + (1� s)x)

=
1

2
f ((1� t) (sx+ (1� s) y) + t (sy + (1� s)x))

+
1

2
f ((1� t) (sy + (1� s)x) + t (sx+ (1� s) y))

� f
�
sx+ (1� s) y + sy + (1� s)x

2

�
=
1

2
f (s ((1� t)x+ ty) + (1� s) ((1� t) y + tx))

+
1

2
f (s ((1� t) y + tx) + (1� s) ((1� t)x+ ty))� f

�
x+ y

2

�
:

By the convexity of f we have

f (s ((1� t)x+ ty) + (1� s) ((1� t) y + tx))
� sf ((1� t)x+ ty) + (1� s) f ((1� t) y + tx)

and

f (s ((1� t) y + tx) + (1� s) ((1� t)x+ ty))
� sf ((1� t) y + tx) + (1� s) f ((1� t)x+ ty) :

for all (x; y) 2 C2 and s 2 [0; 1] :
If we add these two inequalities and divide by 2 we get

1

2
f (s ((1� t)x+ ty) + (1� s) ((1� t) y + tx))

+
1

2
f (s ((1� t) y + tx) + (1� s) ((1� t)x+ ty))

� 1

2
[f ((1� t) y + tx) + f ((1� t)x+ ty)]

for all (x; y) 2 C2 and s 2 [0; 1] :
Therefore

Mt (s (x; y) + (1� s) (y; x))

� 1

2
[f ((1� t) y + tx) + f ((1� t)x+ ty)]� f

�
x+ y

2

�
=Mt (x; y)

for all (x; y) 2 C2 and s 2 [0; 1] ; which shows that Mt is Schur convex on C2: �
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For a convex function f : C ! R and q : [0; 1] ! [0;1) a Lebesgue integrable
function we consider the function M�q : C

2 ! [0;1) de�ned by

M�q (x; y) :=

Z 1

0

Mt (x; y) q (t) dt

=
1

2

Z 1

0

[f ((1� t)x+ ty) + f ((1� t) y + tx)] q (t) dt

� f
�
x+ y

2

�Z 1

0

q (t) dt

=

Z 1

0

f ((1� t)x+ ty) �q (t) dt� f
�
x+ y

2

�Z 1

0

q (t) dt;

where
�q (t) :=

1

2
[q (t) + q (1� t)] ; t 2 [0; 1] :

Corollary 1. Let f : C ! R be a convex function on C and q : [0; 1] ! [0;1) a
Lebesgue integrable function on [0; 1] ; then M�q is Schur convex on C2:

Proof. Let (x; y) 2 C2 and s 2 [0; 1] : By the Schur convexity ofMt for all t 2 [0; 1] ;
we have

M�q (s (x; y) + (1� s) (y; x)) =
Z 1

0

Mt (s (x; y) + (1� s) (y; x)) q (t) dt

�
Z 1

0

Mt (x; y) q (t) dt =M�q (x; y) ;

which proves the Schur convexity of M�q: �
Corollary 2. Let f : C ! R be a convex function on C and p : [0; 1] ! [0;1) a
Lebesgue integrable symmetric function on [0; 1] ; then Mp is Schur convex on C2:

We denote by [x; y] the closed segment de�ned by f(1� s)x+ sy, s 2 [0; 1]g :We
also de�ne the functional

(2.2) 	f;t (x; y) := (1� t) f (x) + tf (y)� f ((1� t)x+ ty) � 0
where x; y 2 C and t 2 [0; 1] :
In [4] we obtained among others the following result :

Lemma 1. Let f : C � X ! R be a convex function on the convex set C. Then
for each x; y 2 C and z 2 [x; y] we have
(2.3) (0 �)	f;t (x; z) + 	f;t (z; y) � 	f;t (x; y)
for each t 2 [0; 1] ; i.e., the functional 	f;t (�; �) is superadditive as a function of
interval.
If z; u 2 [x; y] ; then

(2.4) (0 �)	f;t (z; u) � 	f;t (x; y)
for each t 2 [0; 1] ; i.e., the functional 	f (�; �) is nondecreasing as a function of
interval.

By utilising this lemma we can prove the following result as well:

Theorem 8. Let f : C ! R be a convex function on the convex set C in X: For
all t 2 (0; 1) ; the function Tt is Schur convex on C2:
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Proof. Let (x; y) 2 C2 with x 6= y and s 2 [0; 1] : Then
Tt (s (x; y) + (1� s) (y; x))
= Tt (sx+ (1� s) y; sy + (1� s)x)

=
f (sx+ (1� s) y) + f (sy + (1� s)x)

2

� 1
2
f ((1� t) (sx+ (1� s) y) + t (sy + (1� s)x))

� 1
2
f ((1� t) (sy + (1� s)x) + t (sx+ (1� s) y)) :

From (2.4) we have for z; u 2 [x; y]
	f;t (z; u) � 	f;t (x; y) and 	f;1�t (z; u) � 	f;1�t (x; y) ;

which, by addition gives that

	f;t (z; u) + 	f;1�t (z; u) � 	f;t (x; y) + 	f;1�t (x; y)
namely

(1� t) f (z) + tf (u)� f ((1� t) z + tu)
+ tf (z) + (1� t) f (u)� f (tz + (1� t)u)
� (1� t) f (x) + tf (y)� f ((1� t)x+ ty)
+ tf (x) + (1� t) f (y)� f (tx+ (1� t) y) ;

which is equivalent to

f (z) + f (u)� f ((1� t) z + tu)� f (tz + (1� t)u)(2.5)

� f (x) + f (y)� f ((1� t)x+ ty)� f (tx+ (1� t) y)
for all z; u 2 [x; y] :
If we take z = sx + (1� s) y and u = sy + (1� s)x; with s 2 [0; 1] then z;

u 2 [x; y] and by (2.5) we get
f (sx+ (1� s) y) + f (sy + (1� s)x)
� f ((1� t) (sx+ (1� s) y) + t (sy + (1� s)x))
� f ((1� t) (sy + (1� s)x) + t (sx+ (1� s) y))
� f (x) + f (y)� f ((1� t)x+ ty)� f (tx+ (1� t) y) :

This inequality is equivalent to

Tt (s (x; y) + (1� s) (y; x)) � Tt (x; y)
for all (x; y) 2 C2 and s 2 [0; 1] : This proves the Schur convexity of Tt: �

Remark 1. Since both Mt and Tt are Schur convex when f is convex on C it
follows that the sum, namely the Jensen�s functional

J (x; y) :=
f (x) + f (y)

2
� f

�
x+ y

2

�
is also Schur Convex on C2:
In the case of normed spaces (X; k�k), if we put

Jr (x; y) :=
kxkr + kykr

2
�




x+ y2





r ; r � 1;
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then we conclude that Jr is Schur convex on X2:

For a convex function f : C ! R and q : [0; 1] ! [0;1) a Lebesgue integrable
function we consider the function T�q : C2 ! [0;1) de�ned by

T�q (x; y) :=

Z 1

0

Tt (x; y) q (t) dt

=
f (x) + f (y)

2

Z 1

0

q (t) dt

� 1
2

Z 1

0

[f ((1� t)x+ ty) + f ((1� t) y + tx)] q (t) dt

=
f (x) + f (y)

2

Z 1

0

q (t) dt�
Z 1

0

f ((1� t)x+ ty) �q (t) dt:

Corollary 3. Let f : C ! R be a convex function on C and q : [0; 1] ! [0;1) a
Lebesgue integrable function on [0; 1] ; then T�q is Schur convex on C2: In particular,
if p : [0; 1] ! [0;1) is a Lebesgue integrable symmetric function on [0; 1] ; then Tp
is Schur convex on C2:

If (X; k�k) is a normed linear space, r � 1 and p : [0; 1] ! [0;1) is a Lebesgue
integrable symmetric function on [0; 1] ; then the functions

(2.6) Mr;p (x; y) :=

Z 1

0

k(1� t)x+ tykr p (t) dt�




x+ y2





r Z 1

0

p (t) dt

and

(2.7) Tr;p (x; y) :=
kxkr + kykr

2

Z 1

0

p (t) dt�
Z 1

0

k(1� t)x+ tykr p (t) dt

are Schur convex on X2:
In particular,

(2.8) Mr (x; y) :=

Z 1

0

k(1� t)x+ tykr dt�




x+ y2





r
and

(2.9) Tr (x; y) :=
kxkr + kykr

2
�
Z 1

0

k(1� t)x+ tykr dt

are Schur convex on X2:
If we take p � 1 and consider the functions

M (x; y) :=

Z 1

0

f ((1� t)x+ ty) dt� f
�
x+ y

2

�
and

T (x; y) :=
f (x) + f (y)

2
�
Z 1

0

f ((1� t)x+ ty) dt

then we conclude that M and T are Schur convex functions on C2 if f is convex
on C: This result generalizes the result of Chu et al. [2] that was proved in the case
of convex functions de�ned on real intervals.
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Also, if we consider the symmetric weights p1 (t) =
��t� 1

2

�� and p2 (t) = t (1� t) ;
t 2 [0; 1] ; then

Mj�� 1
2 j (x; y) :=

Z 1

0

f ((1� t)x+ ty)
����t� 12

���� dt� 14f
�
x+ y

2

�
and

M�(1��) (x; y) :=

Z 1

0

f ((1� t)x+ ty) t (1� t) dt� 1
6
f

�
x+ y

2

�
are Schur convex on C2 if f is convex on C:
The trapezoid functions

Tj�� 1
2 j (x; y) :=

f (x) + f (y)

8
�
Z 1

0

f ((1� t)x+ ty)
����t� 12

���� dt
and

T�(1��) (x; y) :=
f (x) + f (y)

12
�
Z 1

0

f ((1� t)x+ ty) t (1� t) dt

are also Schur convex on C2 if f is convex on C:

3. Examples for Functions of a Real Variable

Assume that f is a continuous function on the interval I and x; y 2 I: Also, let
p : [0; 1] ! [0;1) be a Lebesgue integrable function on [0; 1] : If we consider the
functions

Mp (x; y) :=

Z 1

0

f ((1� t)x+ ty) p (t) dt� f
�
x+ y

2

�Z 1

0

p (t) dt

and

Tp (x; y) :=
f (x) + f (y)

2

Z 1

0

p (t) dt�
Z 1

0

f ((1� t)x+ ty) p (t) dt

then

Mp (x; x) = Tp (x; x) = 0 for x 2 I:
If x 6= y; then by the change of the variable u = (1� t)x + ty; we have du =
(y � x) dt; t = u�x

y�x , and we can consider the functions of two variables Mp; Tp :

I2 ! R de�ned by

(3.1) Mp (x; y) :=

8>>><>>>:
1

y�x
R y
x
f (u) p

�
u�x
y�x

�
du� f

�
x+y
2

� R 1
0
p (t) dt;

(x; y) 2 I2; x 6= y;

0; (x; y) 2 I2; x 6= y

and

(3.2) Tp (x; y) :=

8>>><>>>:
f(x)+f(y)

2

R 1
0
p (t) dt� 1

y�x
R y
x
f (u) p

�
u�x
y�x

�
du

(x; y) 2 I2; x 6= y;

0; (x; y) 2 I2; x 6= y:
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In particular, we have the functionsM; T : I2 ! R introduced in [2] and de�ned
by

M (x; y) :=

8<:
1

y�x
R y
x
f (u) du� f

�
x+y
2

�
; (x; y) 2 I2; x 6= y;

0; (x; y) 2 I2; x 6= y;
and

T (x; y) :=

8<:
f(x)+f(y)

2 � 1
y�x

R y
x
f (u) du; (x; y) 2 I2; x 6= y;

0; (x; y) 2 I2; x 6= y:
We can also consider the weighted functions de�ned on I2

Mj�� 1
2 j (x; y) :=

8>><>>:
1

(y�x)2
R y
x
f (u)

��u� x+y
2

�� du� 1
4f
�
x+y
2

�
;

(x; y) 2 I2; x 6= y;

0; (x; y) 2 I2; x 6= y;

Tj�� 1
2 j (x; y) :=

8>><>>:
f(x)+f(y)

8 � 1
(y�x)2

R y
x
f (u)

��u� x+y
2

�� du;
(x; y) 2 I2; x 6= y;

0; (x; y) 2 I2; x 6= y;

M�(1��) (x; y) :=

8>><>>:
1

(y�x)3
R y
x
f (u) (u� x) (y � u) du� 1

6f
�
x+y
2

�
;

(x; y) 2 I2; x 6= y;

0; (x; y) 2 I2; x 6= y;
and

T�(1��) (x; y) :=

8>><>>:
f(x)+f(y)

12 � 1
(y�x)3

R y
x
f (u) (u� x) (y � u) du;

(x; y) 2 I2; x 6= y;

0; (x; y) 2 I2; x 6= y:
By utilising Corollary 2 and Corollary 3 we can state the following Schur convexity
result:

Proposition 1. Assume that f is a convex function on the interval I and let
p : [0; 1] ! [0;1) be a Lebesgue integrable symmetric function on [0; 1] : Then the
functions Mp and Tp are Schur convex on I2:

In the case p � 1 and f is convex on I; we obtain the fact that the functions
M and T are Schur convex on I2; established by Chu et al. in [2]. The functions
Mj�� 1

2 j; Tj�� 1
2 j; M�(1��) and T�(1��) de�ned above are also Schur convex on I2;

provided that f is convex on I:
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