SCHUR CONVEXITY OF FUNCTIONS ASSOCIATED TO
FEJER’S INEQUALITY FOR CONVEX FUNCTIONS IN LINEAR
SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. For a non-negative Lebesgue integrable and symmetric function
p:[0,1] — [0,00) we consider the functions Mp, T : C? — R defined by

1 T 1
My o) = [ f((l—t)fc+ty)p(t)dt—f( “’)/0 p (1) dt

2

and
f@)+f@ [ !
LRI [o@wa— [ 1@ -0z +mpo
where f: C — R is convex on the convex subset C of a linear space X.

In this paper we show, among others, that M, and T} are Schur convex
on C2. Applications for norms and convex functions of a real variable are also
given.

Ty (z,y) :=

1. INTRODUCTION

For any © = (21, ...,z,) € R", let T[] = ... > o[y denote the components of x in
decreasing order, and let x| = (x[l], ...,x[n}) denote the decreasing rearrangement
of xz. For x, y € R™, © < y if, by definition,

k k
Zi:l zp) < Zi:l Yli)» k=1,...,n—1;

Dot T = iy Y-
When z < y, = is said to be majorized by y (y majorizes x). This notation and
terminology was introduced by Hardy, Littlewood and Pdélya in 1934.
A real-valued function ¢ defined on a set A C R™ is said to be Schur-conver on
A if
(1.1) z<yon A= ¢(x) <o(y).

If, in addition, ¢ () < ¢ (y) whenever & < y but z is not a permutation of y, then
¢ is said to be strictly Schur-conver on A. If A =R"™, then ¢ is simply said to be
Schur-convex or strictly Schur-convex.

For fundamental properties of Schur convexity see the monograph [11] and the
references therein. For some recent results, see [3]-[7] and [12]-[14].

The following result is known in the literature as Schur-Ostrowski theorem [11,
p. 84]:

1991 Mathematics Subject Classification. 26D15.
Key words and phrases. Convex functions, Schur convex functions, Integral inequalities,
Hermite-Hadamard inequality, Fejér’s inequality.
1

RGMIA Res. Rep. Coll. 22 (2019), Art. 76, 11 pp. Received 30/07/19


e5011831
Typewritten Text
RGMIA Res. Rep. Coll. 22 (2019), Art. 76, 11 pp.       Received 30/07/19


2 S.S. DRAGOMIR

Theorem 1. Let I C R be an open interval and let ¢ : I™ — R be continuously
differentiable. Necessary and sufficient conditions for ¢ to be Schur-convex on I™
are

(1.2) ¢ is symmetric on I",

and for all i # j, with i, j € {1,...,n},

(1.3) (zi — 25) [E)g(z) — 8;5(2)} >0 forall z € I,
Z; Xy

where % denotes the partial derivative of ¢ with respect to its k-th argument.

Let A C R™ be a set with the following properties:

(i) A is symmetric in the sense that € A = «II € A for all permutations II of
the coordinates.

(ii) A is convex and has a nonempty interior.

We have the following result, [11, p. 85].

Theorem 2. If ¢ is continuously differentiable on the interior of A and continuous
on A, then necessary and sufficient conditions for ¢ to be Schur-convex on A are

(1.4) ¢ is symmetric on A
and
(1.5) (z1 — 22) {agagf) — aggz)] >0 for all z € A.

Another interesting characterization of Schur convex functions ¢ on A was ob-
tained by C. Stepniak in [15]:

Theorem 3. Let ¢ be any function defined on a symmetric convex set A in R™.
Then the function ¢ is Schur conver on A if and only if
(1.6) G(T1y ooy Ty oy Ty ooy T) = D (T4, ey Ty o, Ty o, )
for all (z1,....,xz,) €A and 1 < i< j<n and
(1.7) dAr1+ (1 =Nz, Ao+ (1 — N a1, 23, ..., @n) < P (21, ..., Tn)
for all (z1,...,z,) € A and for all X € (0,1),
It is well known that any symmetric convex function defined on a symmetric

convex set A is Schur convex, [11, p. 97]. If the function ¢ : A — R is symmetric
and quasi-convex, namely

¢ (au+ (1 —a)v) < max{¢(u),d(v)}
for all @ € [0,1] and u, v € A, a symmetric convex set, then ¢ is Schur convex on
A [11, p. 98].
The following result concerning the Schur convexity of the integral mean was
obtained by Elezovi¢ and Pecari¢ in [9]:

Theorem 4. Let h be a continuous function on I. Then
L fjh(t)dt, forx#y, xz, yel;

y—

(1.8) H(z,y) =
h(z), fory==x, x €1,

is Schur convex (concave) on I? if and only if h is convex (concave) on I.
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Three year later, in 2003, Wulbert, [16], improved the above result by showing
that the integral mean H defined in (1.8) is in fact conver on I? if f is convex on
1.

In 2010, Chu et al. [2] obtained the following result concerning the difference
functions associated to the Hermite-Hadamard inequalities:

Theorem 5. Let h be a continuous function on I. Then the functions

YR dt— (YY), foraFy, @, yeT;
F(z,y) =
0, fory==zx, z€l,

and
w — y_%fjh(t)dt, forx#y, x, yel;
G(2,y) =
0, fory=z, x €1,
are Schur convex (concave) on I? if and only if h is convex (concave) on I.

In 1906, Fejér [10], while studying trigonometric polynomials, obtained the fol-
lowing inequalities which generalize that of Hermite & Hadamard:

Theorem 6 (Fejér’s Inequality). Consider the integral f:h () p(x)dx, where h
is a conver function in the interval (a,b) and g is a positive function in the same
interval such that

px)=pla+db—21), x € [a,b],

i.e., y =p(x) is a symmetric curve with respect to the straight line which contains
the point (% (a+0b) ,0) and is normal to the x-axis. Under those conditions the
following inequalities are valid:

(1.9) h(‘“f) /ubp(x)d:c</abh(a?)p(x)d:c<h(a);_h(b)/abp(a:)dx.

If h is concave on (a,b), then the inequalities reverse in (1.9).

We consider the function f : C' — R defined on the convex subset C' of the linear
space X and for each (x,y) € C? := C x C we introduce the auxiliary function
Pz * [0,1] — R defined by

Ploy) ) = (1 —t)z+1ty).

It is well known that the function f is convex on C if and only if for each (z,y) € C?
the auxiliary function ¢, ) is convex on [0,1].

By utilising the classical Fejér’s inequality for the convex function ¢, ) on
[0,1] we then have for an integrable non-negative weight p that is symmetric, i.e.
p(l—t)=p(t) for all t € [0,1],

(1.10) f(x;”)/01p<t>dt</01f<<1—t>x+ty>p<t>dt

<W/O p(t)dt

for all (z,y) € C%
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If (X,|I]) is a normed space and r > 1, then from (1.10) we get the norm
inequalities
Tty
2

(1.11) / pdr< [ J0-0z+ul o) d

T T 1
<l bl
2 0

for all (x,y) € X? and an integrable non-negative weight p that is symmetric on
[0,1].

For a non-negative Lebesgue integrable and symmetric function p : [0,1] —
[0, 00) we consider the functions M,, T, : C* — R defined by

112 M) = [ f<<1—t>x+ty>p(t>dt—f(“”;y)/o p () dt

and

1 1
113 1= [ga- [ra-nermpo

where f : C — R is convex on the convex subset C' of a linear space X.
We observe that

M, (z,z) =T, (z,x) :f(x)/lp(t)dt for all z € C.
0

Motivated by the above results, in this paper we investigate, among others, the
Schur convexity of the functions M, and T}, and provide some applications for norms
and convex functions of a real variable defined on an interval.

2. SCHUR CONVEXITY ON LINEAR SPACES

Let X be a linear space and G C X? := X x X a convex set. We say that G is
symmetric if (z,y) € G implies that (y,z) € G. If D C X is a convex subset of X,
then the Cartesian product G := D? := D x D is convex and symmetric in X?2.

Motivated by the characterization result of Stepniak above, we say that a func-
tion ¢ : G — R will be called Schur convex on the convex and symmetric set
GcCX?if
(21) ¢(S(m7y)+<1_8) (y,a?)) §¢($,y)
for all (z,y) € G and for all s € [0,1].

If G = D2, then we recapture the general concept of Schur convexity introduced
by Burai and Maké in 2016, [1].

We say that the function ¢ : G — R is symmetric on G if ¢ (z,y) = ¢ (y,x) for
all (z,y) € G.

If ¢ : G — R is Schur conver on the convex and symmetric set G C X2, then
¢ is symmetric on G. Indeed, if (z,y) € G, then by (2.1) we get for s = 0 that
o (y,z) < ¢ (z,y) . If we replace z with y then we also get ¢ (x,y) < ¢ (y,x) which
shows that ¢ (z,y) = ¢ (y,z) for all (z,y) € G.

Now, for a convex function f: C — R and a ¢ € [0,1] define the functions M,
Tt : 02 —R

M; (z,y) == [f((lt)z+ty)+f((1t)y+tx)]f(f”;y> >0

N | —
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and

M_l[f((l_t)x+ty)+f((1—t)y+tx)]20.

T; =
t (x7 y) 2 2
We have the following result concerning the Schur convexity of M.

Theorem 7. Let f: C — R be a convex function on the convex set C in X. For
allt € [0,1], t # § the function My is Schur convex on C.

Proof. Let (z,y) € C? and s € [0,1]. Then
M; (S (m,y) + (1 - S) (y,x))
=M (sx+(1—38)y,sy+(1—s)x)
= %f((l—t)(sx—&-(l—s)y)+t(sy+(l—s)x))

—&-%f((l—t)(sy—k(l—s)x)—i—t(sm—i—(l—s)y))

f(8w+(1—s)y—;sy+(1—s)x)

= S (s = 1)t ty) + (1= 8) (1= By + )

+;f(s((1t)y+tm)+(1s)((lt)a:+ty))f(z;y).

By the convexity of f we have
fls((=t)z+ty) + (1 —s) (1 - 1)y +tx))
<sf(l—=t)z+ty) +(1L—s5)f(1—-t)y+tx)

and
fls(=t)y+iz)+(1—s)((1-1t)z+1y))
<sf(Ql—-t)y+tx)+(1—s5)f(1—t)z+ty).

for all (z,y) € C% and s € [0,1].

If we add these two inequalities and divide by 2 we get
1
2
+

F(U =t z+1ty)+(1—s) (1= )y +t2))
S (1= 1)y +12) + (1= 5) (1~ 1) + 1)
< SUF (= 0yt t2) + 7 (L= 1)+ ty)]

for all (z,y) € C? and s € [0,1].

Therefore
M, (S (m,y) + (1 _ S) (y,x))
<UDyt +f@-0erw] -7 (52
= M, (z,y)

for all (z,y) € C% and s € [0,1], which shows that M; is Schur convex on C2. [
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For a convex function f: C — R and ¢ : [0,1] — [0,00) a Lebesgue integrable
function we consider the function M; : C? — [0,00) defined by

M; (z,y) = /o My (z,y) q(t)dt

:%/ [F((1 =t o +ty)+ F (1= t)y +1x)] q (1) dt

0

_f(“";y)/olq(t)dt

=/01f((1—t)w+ty)ci(t)dt—f(W)/Olq(t)dta

2

where 1

q(t):=5la®)+q-1)],t<[0,1].
Corollary 1. Let f: C — R be a convex function on C and q : [0,1] — [0,00) a
Lebesgue integrable function on [0,1], then My is Schur convex on C?.

Proof. Let (x,y) € C? and s € [0,1]. By the Schur convexity of M, for all t € [0, 1],
we have

My (s (z,y) + (1= s) (y,w))=/0 My (s (z,y) + (1= s) (y, ) q (¢) dt

1
< / M, (xvy)q(t)dt = Md(xvy)v
0
which proves the Schur convexity of M;. (]

Corollary 2. Let f: C — R be a convex function on C and p : [0,1] — [0,00) a
Lebesgue integrable symmetric function on [0,1], then M, is Schur convex on C*.

We denote by [z, y] the closed segment defined by {(1 — s) z + sy, s € [0,1]} . We
also define the functional
(2.2) Upe(@y) =0 —-t)f (@) +tf(y) - f(I-t)z+ty) =20
where z, y € C'and ¢ € [0,1].

In [4] we obtained among others the following result :

Lemma 1. Let f : C C X — R be a convex function on the convex set C. Then
for each z, y € C and z € [z,y] we have

(2.3) (0) Uy (z,2) + Vpe(2,y) < Uy ()

for each t € [0,1], i.e., the functional Wy, (-,-) is superadditive as a function of
interval.
If z, u € [x,y], then

(2.4) (0<)Uys(2,u) < Wy (z,y)

for each t € [0,1], i.e., the functional Uy (-,-) is nondecreasing as a function of
interval.

By utilising this lemma we can prove the following result as well:

Theorem 8. Let f: C — R be a convex function on the convex set C' in X. For
all t € (0,1), the function Ty is Schur convexr on C2.
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Proof. Let (z,y) € C? with  # y and s € [0,1]. Then
Ti (s (z,y) + (1 = s) (y,2))
=Ti(sz+(1—s)y,sy+(1—s)x)
_ St (U —s)y) +flsy+ (1 —s)x)

2
ST (U= 1) (524 (1= 8)9) + sy + (1= )2))
1

fif((lft)(sy+(1fs)x)+t(s:c+(1fs)y)).
From (2.4) we have for z, u € [z,y]
Uei(z,u) <Wyy(z,y) and Upgy (2,u) < Wiy (2,Y),
which, by addition gives that
Wi (zou) +Wrag(z,u) < Wy (z,y) +Vyp1y(z,9)
namely
(L=1) f(2) +tf (u) = f((L=1) 2 + tu)
+tf(z)+(1—t) (u) — f(tz+ (1 —t)u)
SA=t)f(x)+tf(y) = F(A-t)z+ty)
+tf @)+ A —t)fy) - fla+(1-t)y),
which is equivalent to
(2.5) fEO+fw—-f(A-)z+tu)—ftz+(1—-t)u)
Sf@)+f@) - A=tz +ty) - fz+(1-1)y)
for all z, u € [z,y].
If we take z = sz + (1 —s)y and u = sy + (1 — s)x, with s € [0,1] then z,
u € [z,y] and by (2.5) we get
flsz4+ 1 =s)y)+ f(sy+(1—s)z)
—f((A=t)(sz+ (L —-s)y)+i(sy+ (1 —s)x))
—f(A=t)(sy+ (1 —=s)z)+1(sz+(1-s)y))
Sf@)+f)-f(A-tzt+ty) - flz+(1-1)y).
This inequality is equivalent to
Ti (s (z,y) + (1 = s) (y, @) < Ty (2, 9)
for all (x,y) € C? and s € [0,1]. This proves the Schur convexity of T;. O

Remark 1. Since both M; and T; are Schur convexr when f is convex on C' it
follows that the sum, namely the Jensen’s functional

S = LW f<x;y>

is also Schur Convex on C?.

In the case of normed spaces (X, ||-|), if we put

Izl +llyll”
2

r+y "
2

Jr (z,y) == r>1

7
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then we conclude that J, is Schur convex on X2.

For a convex function f: C — R and ¢ : [0,1] — [0,00) a Lebesgue integrable
function we consider the function Ty : C? — [0, 00) defined by

Td(m,y) 1:/0 Tt (xvy)Q(t)dt

L@I0) [

1

_5/0 [fF((L=t)z+ty)+ fF((1—t)y+tx)]q(t)dt

:W/O a@dt— [ F(1=Daswi

Corollary 3. Let f: C — R be a convezx function on C and q : [0,1] — [0,00) a
Lebesgue integrable function on [0,1], then Ty is Schur convex on C2. In particular,
if p:[0,1] — [0,00) is a Lebesgue integrable symmetric function on [0, 1], then T,
is Schur convex on C?.

If (X, |I]) is a normed linear space, r > 1 and p : [0,1] — [0,00) is a Lebesgue
integrable symmetric function on [0, 1], then the functions

L ! AP r . T+y mort
(26) My (ary) = / 1= 6+ by p (1) de / p (1) dt
and
@0 Tplea)= L Cpwa- [0 narur @

are Schur convex on X?2.
In particular,

T

1
(2.8) M (@) = [ N0= 0w+l de - || Y
0
and
r_|_ T 1 i
(2.9) T, (z,y) ;:M_/ (1 =)z + ty|” dt
0

are Schur convex on X?2.
If we take p = 1 and consider the functions

M (z,y) == /Olf((lt)x+ty)dtf(x;y>

and
1
T (2,y) ;:W—/O FU(L =)z + ty) dt

then we conclude that M and T are Schur convex functions on C? if f is convex
on C. This result generalizes the result of Chu et al. [2] that was proved in the case
of convex functions defined on real intervals.
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Also, if we consider the symmetric weights py (t) = |t — | and p2 (t) =t (1 — ),
t €10,1], then

1
e [ 0-ofa- b (55)

and

M. (2,y) 1=/0 f((l_t)x-l-ty)t(l—t)dt—éf (x;y)

are Schur convex on C? if f is convex on C.
The trapezoid functions

T—y) (=9) ’:W—/O f((l—t)a:—&—ty)’t—;‘dt
and
oy (&) ::W—/O F(A =tz +iy)t(1-1)dt

are also Schur convexr on C? if f is convex on C.

3. EXAMPLES FOR FUNCTIONS OF A REAL VARIABLE

Assume that f is a continuous function on the interval I and z, y € I. Also, let
p : [0,1] — [0,00) be a Lebesgue integrable function on [0, 1]. If we consider the
functions

My = [ s -nerwp@a-s (S5 [

and

1, (o) i= LD [y ae- [ - 0asmpa

then
My (z,z) =T, (z,x) =0 for z € I.

If © # y, then by the change of the variable u = (1 —t)x + ty, we have du =

(y—x)dt, t = “=%, and we can consider the functions of two variables M, T}, :
y—x

I? — R defined by

S LY ) p (B22) du— £ (552 o p(t)dt,
31) M, (z,y) =4 @y el’ x#y,

0, (xy)el? z#y

and

L L) (P ) dt — 32 7 f (u)p (Z:i) du
(32)  T,(ay):={ @Y EL z#y,

0, (z,y)€l? z#y.
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In particular, we have the functions M, T : I? — R introduced in [2] and defined
by
2 L fwydu—f(52), (z,y) € I, 2 #y,
M (z,y) :=
0, (z,9) € I, x#y,
and
HOPIW) — o [V f(w) du, (2,y) € %, x4y,
T (z,y) =
0, (z,y)el? z#y.

We can also consider the weighted functions defined on I?
o L2 S ) = 5 du = 5 f (554),

(y—a)?

12
M|7%|(.’E,y) = (x,y)e ’ ‘T#y7

0, (z,y) € I?, = #y,

f(w)-gf(y) _ (ij)Q fjf(u) ‘u— ITW du,
Ty @y ={ @Vl ety

0, (w,y) €I? z#y,
e S ) ()~ wydu = 37 (552)
Ma_y(zy) =4 @YEL oy,

07 (xvy) € 125 x 7'51/»

and

LI — L [V f () (u — ) (y — u) du,
2

Ta, (z,y) =4 @By e vFy,

0’ ("E,y) c 12, T 7é Y.

By utilising Corollary 2 and Corollary 3 we can state the following Schur convexity
result:

Proposition 1. Assume that f is a convex function on the interval I and let
p:[0,1] — [0,00) be a Lebesque integrable symmetric function on [0,1]. Then the
functions M, and T, are Schur convex on I°.

In the case p = 1 and f is convex on I, we obtain the fact that the functions
M and T are Schur convex on I2, established by Chu et al. in [2]. The functions
M|_7l , T|.7l|, M.q-.y and T.;_.) defined above are also Schur convex on I?,

2 2

provided that f is convex on I.
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