h-CONVEXITY OF THE WEIGHTED INTEGRAL MEAN OF FUNCTIONS DEFINED ON CONVEX SETS IN LINEAR SPACES

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract. For a Lebesgue integrable function $p:[0,1] \rightarrow[0, \infty)$ we consider the function $F_{p}: C^{2} \rightarrow \mathbb{R}$ defined by

$$
F_{p}(x, y):=\int_{0}^{1} f((1-t) x+t y) p(t) d t
$$

where $f: C \rightarrow \mathbb{R}$ is h-convex and hemi-Lebesgue integrable on the convex subset C of a linear space X. In this paper we investigate the h-global convexity of the function F_{p}, establish some Hermite-Hadamard type inequalities and provide some applications for some classical examples of h-convex functions that are available in the literature.

1. Introduction

The following inequality holds for any convex function f defined on \mathbb{R}

$$
\begin{equation*}
(b-a) f\left(\frac{a+b}{2}\right) \leq \int_{a}^{b} f(x) d x \leq(b-a) \frac{f(a)+f(b)}{2}, \quad a, b \in \mathbb{R}, a<b \tag{1.1}
\end{equation*}
$$

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [42]). But this result was nowhere mentioned in the mathematical literature and was not widely known as Hermite's result.
E. F. Beckenbach, a leading expert on the history and the theory of convex functions, wrote that this inequality was proven by J. Hadamard in 1893 [5]. In 1974, D. S. Mitrinović found Hermite's note in Mathesis [42]. Since (1.1) was known as Hadamard's inequality, the inequality is now commonly referred as the Hermite-Hadamard inequality.

For related results, see [10]-[19], [22]-[25], [32]-[35] and [45].
Let X be a vector space over the real or complex number field \mathbb{K} and $x, y \in$ $X, x \neq y$. Define the segment

$$
[x, y]:=\{(1-t) x+t y, t \in[0,1]\} .
$$

We consider the function $f:[x, y] \rightarrow \mathbb{R}$ and the associated function

$$
g(x, y):[0,1] \rightarrow \mathbb{R}, g(x, y)(t):=f[(1-t) x+t y], t \in[0,1]
$$

Note that f is convex on $[x, y]$ if and only if $g(x, y)$ is convex on $[0,1]$.
For any convex function defined on a segment $[x, y] \subset X$, we have the HermiteHadamard integral inequality (see [20, p. 2], [21, p. 2])

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \leq \int_{0}^{1} f[(1-t) x+t y] d t \leq \frac{f(x)+f(y)}{2}, \tag{1.2}
\end{equation*}
$$

[^0]which can be derived from the classical Hermite-Hadamard inequality (1.1) for the convex function $g(x, y):[0,1] \rightarrow \mathbb{R}$.

Since $f(x)=\|x\|^{p}(x \in X$ and $1 \leq p<\infty)$ is a convex function, then for any x, $y \in X$ we have the following norm inequality from (1.2) (see [46, p. 106])

$$
\begin{equation*}
\left\|\frac{x+y}{2}\right\|^{p} \leq \int_{0}^{1}\|(1-t) x+t y\|^{p} d t \leq \frac{\|x\|^{p}+\|y\|^{p}}{2} \tag{1.3}
\end{equation*}
$$

For a Lebesgue integrable function $p:[0,1] \rightarrow[0, \infty)$ we consider the function $F_{p}: C^{2} \rightarrow \mathbb{R}$ defined by

$$
F_{p}(x, y):=\int_{0}^{1} f((1-t) x+t y) p(t) d t
$$

where $f: C \rightarrow \mathbb{R}$ is h-convex and hemi-Lebesgue integrable on the convex subset C of a linear space X.

In this paper we investigate the h-global convexity of the function F_{p}, establish some Hermite-Hadamard type inequalities and provide some applications for some classical examples of h-convex functions that are available in the literature.

2. h-Convex Functions on Linear Spaces

We recall here some concepts of convexity that are well known in the literature. Let I be an interval in \mathbb{R}.

Definition 1 ([37]). We say that $f: I \rightarrow \mathbb{R}$ is a Godunova-Levin function or that f belongs to the class $Q(I)$ if f is non-negative and for all $x, y \in I$ and $t \in(0,1)$ we have

$$
\begin{equation*}
f(t x+(1-t) y) \leq \frac{1}{t} f(x)+\frac{1}{1-t} f(y) \tag{2.1}
\end{equation*}
$$

Some further properties of this class of functions can be found in [28], [29], [31], [43], [46] and [47]. Among others, its has been noted that non-negative monotone and non-negative convex functions belong to this class of functions.

The above concept can be extended for functions $f: C \subseteq X \rightarrow[0, \infty)$ where C is a convex subset of the real or complex linear space X and the inequality (2.1) is satisfied for any vectors $x, y \in C$ and $t \in(0,1)$. If the function $f: C \subseteq X \rightarrow \mathbb{R}$ is non-negative and convex, then it is of Godunova-Levin type.

Definition 2 ([31]). We say that a function $f: I \rightarrow \mathbb{R}$ belongs to the class $P(I)$ if it is nonnegative and for all $x, y \in I$ and $t \in[0,1]$ we have

$$
\begin{equation*}
f(t x+(1-t) y) \leq f(x)+f(y) \tag{2.2}
\end{equation*}
$$

Obviously $Q(I)$ contains $P(I)$ and for applications it is important to note that also $P(I)$ contain all nonnegative monotone, convex and quasi convex functions, i. e. nonnegative functions satisfying

$$
\begin{equation*}
f(t x+(1-t) y) \leq \max \{f(x), f(y)\} \tag{2.3}
\end{equation*}
$$

for all $x, y \in I$ and $t \in[0,1]$.
For some results on P-functions see [31] and [44] while for quasi convex functions, the reader can consult [30].

If $f: C \subseteq X \rightarrow[0, \infty)$, where C is a convex subset of the real or complex linear space X, then we say that it is of P-type (or quasi-convex) if the inequality (2.2) (or (2.3)) holds true for $x, y \in C$ and $t \in[0,1]$.
Definition 3 ([7]). Let s be a real number, $s \in(0,1]$. A function $f:[0, \infty) \rightarrow[0, \infty)$ is said to be s-convex (in the second sense) or Breckner s-convex if

$$
f(t x+(1-t) y) \leq t^{s} f(x)+(1-t)^{s} f(y)
$$

for all $x, y \in[0, \infty)$ and $t \in[0,1]$.
For some properties of this class of functions see [1], [2], [7], [8], [26], [27], [38], [40] and [49].

The concept of Breckner s-convexity can be similarly extended for functions defined on convex subsets of linear spaces.

It is well known that if $(X,\|\cdot\|)$ is a normed linear space, then the function $f(x)=\|x\|^{p}, p \geq 1$ is convex on X.

Utilising the elementary inequality $(a+b)^{s} \leq a^{s}+b^{s}$ that holds for any $a, b \geq 0$ and $s \in(0,1]$, we have for the function $g(x)=\|x\|^{s}$ that

$$
\begin{aligned}
g(t x+(1-t) y) & =\|t x+(1-t) y\|^{s} \leq(t\|x\|+(1-t)\|y\|)^{s} \\
& \leq(t\|x\|)^{s}+[(1-t)\|y\|]^{s} \\
& =t^{s} g(x)+(1-t)^{s} g(y)
\end{aligned}
$$

for any $x, y \in X$ and $t \in[0,1]$, which shows that g is Breckner s-convex on X.
In order to unify the above concepts for functions of real variable, S. Varošanec introduced the concept of h-convex functions as follows.

Assume that I and J are intervals in $\mathbb{R},(0,1) \subseteq J$ and functions h and f are real non-negative functions defined in J and I, respectively.

Definition 4 ([52]). Let $h: J \rightarrow[0, \infty)$ with h not identical to 0 . We say that $f: I \rightarrow[0, \infty)$ is an h-convex function if for all $x, y \in I$ we have

$$
\begin{equation*}
f(t x+(1-t) y) \leq h(t) f(x)+h(1-t) f(y) \tag{2.4}
\end{equation*}
$$

for all $t \in(0,1)$.
For some results concerning this class of functions see [52], [6], [41], [50], [48] and [51].

This concept can be extended for functions defined on convex subsets of linear spaces in the same way as above replacing the interval I be the corresponding convex subset C of the linear space X.

We can introduce now another class of functions.
Definition 5. We say that the function $f: C \subseteq X \rightarrow[0, \infty)$ is of s-GodunovaLevin type, with $s \in[0,1]$, if

$$
\begin{equation*}
f(t x+(1-t) y) \leq \frac{1}{t^{s}} f(x)+\frac{1}{(1-t)^{s}} f(y) \tag{2.5}
\end{equation*}
$$

for all $t \in(0,1)$ and $x, y \in C$.
We observe that for $s=0$ we obtain the class of P-functions while for $s=1$ we obtain the class of Godunova-Levin. If we denote by $Q_{s}(C)$ the class of s -Godunova-Levin functions defined on C, then we obviously have

$$
P(C)=Q_{0}(C) \subseteq Q_{s_{1}}(C) \subseteq Q_{s_{2}}(C) \subseteq Q_{1}(C)=Q(C)
$$

for $0 \leq s_{1} \leq s_{2} \leq 1$.
We have the following generalization of the Hermite-Hadamard inequality for h-convex functions defined on convex subsets of linear spaces [24].

Theorem 1. Assume that the function $f: C \subseteq X \rightarrow[0, \infty)$ is an h-convex function with $h \in L[0,1]$. Let $y, x \in C$ with $y \neq x$ and assume that the mapping $[0,1] \ni t \mapsto$ $f[(1-t) x+t y]$ is Lebesgue integrable on $[0,1]$. Then

$$
\begin{equation*}
\frac{1}{2 h\left(\frac{1}{2}\right)} f\left(\frac{x+y}{2}\right) \leq \int_{0}^{1} f[(1-t) x+t y] d t \leq[f(x)+f(y)] \int_{0}^{1} h(t) d t \tag{2.6}
\end{equation*}
$$

Remark 1. If $f: I \rightarrow[0, \infty)$ is an h-convex function on an interval I of real numbers with $h \in L[0,1]$ and $f \in L[a, b]$ with $a, b \in I, a<b$, then from (2.6) we get the Hermite-Hadamard type inequality obtained by Sarikaya et al. in [48]

$$
\frac{1}{2 h\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}\right) \leq \int_{a}^{b} f(u) d u \leq[f(a)+f(b)] \int_{0}^{1} h(t) d t
$$

If we write (2.6) for $h(t)=t$, then we get the classical Hermite-Hadamard inequality for convex functions 1.2 .

If we write (2.6) for the case of P-type functions $f: C \rightarrow[0, \infty)$, i.e., $h(t)=1$, $t \in[0,1]$, then we get the inequality

$$
\begin{equation*}
\frac{1}{2} f\left(\frac{x+y}{2}\right) \leq \int_{0}^{1} f[(1-t) x+t y] d t \leq f(x)+f(y) \tag{2.7}
\end{equation*}
$$

that has been obtained for functions of real variable in [31].
If f is Breckner s-convex on C, for $s \in(0,1)$, then by taking $h(t)=t^{s}$ in (2.6) we get

$$
\begin{equation*}
2^{s-1} f\left(\frac{x+y}{2}\right) \leq \int_{0}^{1} f[(1-t) x+t y] d t \leq \frac{f(x)+f(y)}{s+1} \tag{2.8}
\end{equation*}
$$

that was obtained for functions of a real variable in [26].
Since the function $g(x)=\|x\|^{s}$ is Breckner s-convex on on the normed linear space $X, s \in(0,1)$, then for any $x, y \in X$ we have

$$
\begin{equation*}
\frac{1}{2}\|x+y\|^{s} \leq \int_{0}^{1}\|(1-t) x+t y\|^{s} d t \leq \frac{\|x\|^{s}+\|x\|^{s}}{s+1} \tag{2.9}
\end{equation*}
$$

If $f: C \rightarrow[0, \infty)$ is of s-Godunova-Levin type, with $s \in[0,1)$, then

$$
\begin{equation*}
\frac{1}{2^{s+1}} f\left(\frac{x+y}{2}\right) \leq \int_{0}^{1} f[(1-t) x+t y] d t \leq \frac{f(x)+f(y)}{1-s} \tag{2.10}
\end{equation*}
$$

We notice that for $s=1$ the first inequality in (2.10) still holds, i.e.

$$
\begin{equation*}
\frac{1}{4} f\left(\frac{x+y}{2}\right) \leq \int_{0}^{1} f[(1-t) x+t y] d t \tag{2.11}
\end{equation*}
$$

The case for functions of real variables was obtained for the first time in [31].
Theorem 2. Assume that the function $f: C \subseteq X \rightarrow[0, \infty)$ is an h-convex function with $h \in L[0,1]$. Let $y, x \in C$ with $y \neq x$ and assume that the mapping $[0,1] \ni t \mapsto$
$f[(1-t) x+t y]$ is Lebesgue integrable on $[0,1]$. If $p:[0,1] \rightarrow[0, \infty)$ is Lebesgue integrable, then

$$
\begin{align*}
& \frac{1}{2 h\left(\frac{1}{2}\right)} f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) d t \tag{2.12}\\
& \leq \int_{0}^{1}[f((1-t) x+t y)] \breve{p}(t) d t \leq[f(x)+f(y)] \int_{0}^{1} h(t) \breve{p}(t) d t
\end{align*}
$$

where $\breve{p}(t):=\frac{1}{2}[p(t)+p(1-t)], t \in[0,1]$.
Proof. By the h-convexity of f we have

$$
f(t x+(1-t) y) \leq h(t) f(x)+h(1-t) f(y)
$$

for any $t \in[0,1]$.
We also have

$$
f((1-t) x+t y) \leq h(1-t) f(x)+h(t) f(y)
$$

for any $t \in[0,1]$.
If we add these two inequalities, we get

$$
\begin{align*}
& \frac{1}{2}[f(t x+(1-t) y)+f((1-t) x+t y)] \tag{2.13}\\
& \leq \frac{1}{2}[h(t)+h(1-t)][f(x)+f(y)]
\end{align*}
$$

for any $t \in[0,1]$.
If we multiply (2.13) by $p(t) \geq 0$ and integrate on $[0,1]$ we get

$$
\begin{align*}
& \frac{1}{2} \int_{0}^{1}[f(t x+(1-t) y)+f((1-t) x+t y)] p(t) d t \tag{2.14}\\
& \leq \frac{1}{2}[f(x)+f(y)] \int_{0}^{1}[h(t)+h(1-t)] p(t) d t
\end{align*}
$$

By using the change of variable $s=1-t, t \in[0,1]$ we have

$$
\int_{0}^{1} f((1-t) x+t y) p(t) d t=\int_{0}^{1} f(s x+(1-s) y) p(1-s) d t
$$

and

$$
\int_{0}^{1} h(1-t) p(t) d t=\int_{0}^{1} h(s) p(1-s) d t
$$

and by (2.14) we get

$$
\int_{0}^{1}[f(t x+(1-t) y)] \breve{p}(t) d t \leq[f(x)+f(y)] \int_{0}^{1} h(t) \breve{p}(t) d t
$$

From the h-convexity of f we have

$$
\begin{equation*}
f\left(\frac{z+w}{2}\right) \leq h\left(\frac{1}{2}\right)[f(z)+f(w)] \tag{2.15}
\end{equation*}
$$

for any $z, w \in C$.
If we take in $(2.15) z=t x+(1-t) y$ and $w=(1-t) x+t y$, then we get

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \leq h\left(\frac{1}{2}\right)[f(t x+(1-t) y)+f((1-t) x+t y)] \tag{2.16}
\end{equation*}
$$

for any $t \in[0,1]$.

If we multiply (2.16) by $p(t) \geq 0$ and integrate on [0,1] we get

$$
\begin{align*}
& \frac{1}{2} f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) d t \tag{2.17}\\
& \leq h\left(\frac{1}{2}\right) \int_{0}^{1}\left[\frac{f(t x+(1-t) y)+f((1-t) x+t y)}{2}\right] p(t) d t
\end{align*}
$$

which proves the first part of (2.12).
Corollary 1. With the assumptions of Theorem 2 and if p is symmetric, namely $p(1-t)=p(t)$ for $t \in[0,1]$, then

$$
\begin{align*}
& \frac{1}{2 h\left(\frac{1}{2}\right)} f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) d t \tag{2.18}\\
& \leq \int_{0}^{1}[f((1-t) x+t y)] p(t) d t \leq[f(x)+f(y)] \int_{0}^{1} h(t) p(t) d t
\end{align*}
$$

Remark 2. If $f: I \rightarrow[0, \infty)$ is an h-convex function on an interval I of real numbers with $h \in L[0,1]$ and $f \in L[a, b]$ with $a, b \in I, a<b$. If p is Lebesgue integrable and symmetric on $[0,1]$, namely $p(1-t)=p(t)$ for $t \in[0,1]$, then

$$
\begin{align*}
& \frac{1}{2 h\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}\right) \int_{0}^{1} p(t) d t \tag{2.19}\\
& \leq \int_{0}^{1}[f((1-t) a+t b)] p(t) d t \leq[f(a)+f(b)] \int_{0}^{1} h(t) p(t) d t
\end{align*}
$$

If we change the variable $x=(1-t) a+t b, t \in[0,1]$ then by (2.19) we get

$$
\begin{align*}
& \frac{1}{2 h\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}\right) \int_{0}^{1} p(t) d t \tag{2.20}\\
& \leq \frac{1}{b-a} \int_{a}^{b} f(x) p\left(\frac{x-a}{b-a}\right) d x \leq[f(a)+f(b)] \int_{0}^{1} h(t) p(t) d t
\end{align*}
$$

If we put $w:[a, b] \rightarrow[0, \infty), w(x)=p\left(\frac{x-a}{b-a}\right)$ then from (2.20) we recapture the result from [6]

$$
\begin{align*}
& \frac{1}{2 h\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}\right) \int_{a}^{b} w(x) d x \tag{2.21}\\
& \leq \int_{a}^{b} f(x) w(x) d x \leq[f(a)+f(b)] \int_{0}^{1} h(t) w((1-t) a+t b) d t
\end{align*}
$$

where $f: I \rightarrow[0, \infty)$ is an h-convex function on an interval I of real numbers with $h \in L[0,1], f \in L[a, b]$ and $w(x)=w(a+b-x), x \in[a, b], w \geq 0$ and Lebesgue integrable on $[a, b]$.

In what follows we assume that p is Lebesgue integrable and symmetric on $[0,1]$.
If we write (2.18) for $h(t)=t$, then we get the classical Hermite-HadamardFejér's inequality for convex functions $f: C \rightarrow \mathbb{R}$ defined on convex subsets C of
linear spaces

$$
\begin{align*}
& f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) d t \tag{2.22}\\
& \leq \int_{0}^{1}[f((1-t) x+t y)] p(t) d t \leq[f(x)+f(y)] \int_{0}^{1} t p(t) d t
\end{align*}
$$

where $x, y \in C$.
If we write (2.18) for the case of P-type functions $f: C \rightarrow[0, \infty)$, i.e., $h(t)=$ $1, t \in[0,1]$, then we get the inequality

$$
\begin{align*}
& \frac{1}{2} f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) d t \tag{2.23}\\
& \leq \int_{0}^{1}[f((1-t) x+t y)] p(t) d t \leq[f(x)+f(y)] \int_{0}^{1} p(t) d t
\end{align*}
$$

where $x, y \in C$.
If f is Breckner s-convex on C, for $s \in(0,1)$, then by taking $h(t)=t^{s}$ in (2.18) we get

$$
\begin{align*}
& 2^{s-1} f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) d t \tag{2.24}\\
& \leq \int_{0}^{1}[f((1-t) x+t y)] p(t) d t \leq[f(x)+f(y)] \int_{0}^{1} t^{s} p(t) d t
\end{align*}
$$

where $x, y \in C$.
Since the function $g(x)=\|x\|^{s}$ is Breckner s-convex on the normed linear space $X, s \in(0,1)$, then for any $x, y \in X$ we have

$$
\begin{align*}
\frac{1}{2}\|x+y\|^{s} \int_{0}^{1} p(t) d t & \leq \int_{0}^{1}\|(1-t) x+t y\|^{s} p(t) d t \tag{2.25}\\
& \leq\left[\|x\|^{s}+\|x\|^{s}\right] \int_{0}^{1} t^{s} p(t) d t
\end{align*}
$$

If $f: C \rightarrow[0, \infty)$ is of s-Godunova-Levin type, with $s \in[0,1)$, then by taking $h(t)=\frac{1}{t^{s}}$

$$
\begin{align*}
\frac{1}{2^{s+1}} f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) d t & \leq \int_{0}^{1} f[(1-t) x+t y] p(t) d t \tag{2.26}\\
& \leq[f(x)+f(y)] \int_{0}^{1} \frac{1}{t^{s}} p(t) d t
\end{align*}
$$

where $x, y \in C$.
We notice that for $s=1$ we get

$$
\begin{align*}
\frac{1}{4} f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) d t & \leq \int_{0}^{1} f[(1-t) x+t y] p(t) d t \tag{2.27}\\
& \leq[f(x)+f(y)] \int_{0}^{1} \frac{1}{t} p(t) d t
\end{align*}
$$

where $x, y \in C$, and provided the above integrals exist.

3. h-Convexity of Integral Means

Assume that the function $f: C \subseteq X \rightarrow[0, \infty)$ is an h-convex function with $h \in L[0,1]$. Let $y, x \in C$. We say that the function is f is hemi-Lebesgue integrable on C if $[0,1] \ni t \mapsto f[(1-t) x+t y]$ is Lebesgue integrable on $[0,1]$ for all $(x, y) \in$ $C^{2}:=C \times C$.

If $p:[0,1] \rightarrow[0, \infty)$ is Lebesgue integrable, then we can define the function $F_{p}: C \times C \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
F_{p}(x, y)=\int_{0}^{1} f((1-t) x+t y) p(t) d t \tag{3.1}
\end{equation*}
$$

For $p \equiv 1$ we can consider the function

$$
\begin{equation*}
F(x, y)=\int_{0}^{1} f((1-t) x+t y) d t \tag{3.2}
\end{equation*}
$$

for all $(x, y) \in C^{2}$.
Theorem 3. Assume that the function $f: C \subseteq X \rightarrow[0, \infty)$ is an h-convex function with $h \in L[0,1]$. If f is hemi-Lebesgue integrable on C, then the function F_{p} defined by (3.1) is h-convex on C^{2}. Moreover, if p is symmetric on $[0,1]$ then $F_{p}(y, x)=$ $F_{p}(x, y)$ for all $(x, y) \in C^{2}$, namely F_{p} is symmetric on C^{2}.

Proof. Let $(x, y),(u, v) \in C^{2}$ and $\alpha \in[0,1]$. Then

$$
\begin{aligned}
& F_{p}(\alpha(x, y)+(1-\alpha)(u, v)) \\
& =F_{p}(\alpha x+(1-\alpha) u, \alpha y+(1-\alpha) v) \\
& =\int_{0}^{1} f((1-t)(\alpha x+(1-\alpha) u)+t(\alpha y+(1-\alpha) v)) p(t) d t \\
& =\int_{0}^{1} f(\alpha((1-t) x+t y)+(1-\alpha)((1-t) u+t v)) p(t) d t \\
& \leq \int_{0}^{1}\{h(\alpha) f((1-t) x+t y)+h(1-\alpha) f((1-t) u+t v)\} p(t) d t
\end{aligned}
$$

(by the h-convexity of f)

$$
\begin{aligned}
& =h(\alpha) \int_{0}^{1} f((1-t) x+t y) p(t) d t+h(1-\alpha) \int_{0}^{1} f((1-t) u+t v) p(t) d t \\
& =h(\alpha) F_{p}(x, y)+h(1-\alpha) F_{p}(u, v)
\end{aligned}
$$

which proves the convexity of F_{p} on C^{2}.
For $(x, y) \in C^{2}$, we have, by changing the variable $s=1-t, t \in[0,1]$, that

$$
\begin{aligned}
F_{p}(y, x) & =\int_{0}^{1} f((1-t) y+t x) p(t) d t=\int_{0}^{1} f(s y+(1-s) x) p(1-s) d s \\
& =\int_{0}^{1} f((1-s) x+s y) p(s) d s=F_{p}(x, y)
\end{aligned}
$$

and the theorem is proved.

Corollary 2. Assume that the function $f: C \subseteq X \rightarrow[0, \infty)$ is an h-convex function with $h \in L[0,1]$ and f is hemi-Lebesgue integrable on C. Then the functions

$$
\begin{aligned}
F(x, y) & :=\int_{0}^{1} f((1-t) x+t y) d t \\
F_{\left|\cdot-\frac{1}{2}\right|}(x, y) & :=\int_{0}^{1} f((1-t) x+t y)\left|t-\frac{1}{2}\right| d t
\end{aligned}
$$

and

$$
F_{\cdot(1-\cdot)}(x, y):=\int_{0}^{1} f((1-t) x+t y) t(1-t) d t
$$

are h-convex and symmetric on C^{2}.
We have:
Theorem 4. Assume that the function $f: C \subseteq X \rightarrow[0, \infty)$ is an h-convex function with $h \in L[0,1]$ and f is hemi-Lebesgue integrable on C. If p is Lebesgue integrable and symmetric on $[0,1]$, then

$$
\begin{align*}
& \frac{1}{2 h\left(\frac{1}{2}\right)} f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) d t \tag{3.3}\\
& \leq \int_{0}^{1}\left(\int_{0}^{1} f([(1-t)(1-\alpha)+\alpha t] x+[(1-t) \alpha+t(1-\alpha)] y) p(t) d t\right) d \alpha \\
& \leq 2 \int_{0}^{1} f((1-t) x+t y) p(t) d t \int_{0}^{1} h(\alpha) d \alpha \\
& \leq 2[f(x)+f(y)] \int_{0}^{1} h(t) p(t) d t \int_{0}^{1} h(\alpha) d \alpha
\end{align*}
$$

for all $(x, y) \in C^{2}$.
Proof. From the inequality (2.6) for the h-convex F_{p} we have

$$
\begin{align*}
& \frac{1}{2 h\left(\frac{1}{2}\right)} F_{p}\left(\frac{(x, y)+(u, v)}{2}\right) \tag{3.4}\\
& \leq \int_{0}^{1}\left[F_{p}((1-\alpha)(x, y)+\alpha(u, v))\right] d \alpha \leq\left[F_{p}(x, y)+F_{p}(u, v)\right] \int_{0}^{1} h(\alpha) d \alpha
\end{align*}
$$

for all $(x, y),(u, v) \in C^{2}$.
If we take $(u, v)=(y, x)$ in (3.4), then we get

$$
\begin{align*}
& \frac{1}{2 h\left(\frac{1}{2}\right)} F_{p}\left(\frac{(x, y)+(y, x)}{2}\right) \tag{3.5}\\
& \leq \int_{0}^{1}\left[F_{p}((1-\alpha)(x, y)+\alpha(y, x))\right] d \alpha \leq\left[F_{p}(x, y)+F_{p}(y, x)\right] \int_{0}^{1} h(\alpha) d \alpha
\end{align*}
$$

for all $(x, y) \in C^{2}$.
Observe that

$$
F_{p}\left(\frac{(x, y)+(y, x)}{2}\right)=F_{p}\left(\frac{x+y}{2}, \frac{x+y}{2}\right)=f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) d t
$$

$$
\begin{aligned}
& \int_{0}^{1}\left[F_{p}((1-\alpha)(x, y)+\alpha(y, x))\right] d \alpha \\
& =\int_{0}^{1}\left[F_{p}((1-\alpha) x+\alpha y,(1-\alpha) y+\alpha x)\right] d \alpha \\
& =\int_{0}^{1}\left(\int_{0}^{1} f((1-t)((1-\alpha) x+\alpha y)+t((1-\alpha) y+\alpha x)) p(t) d t\right) d \alpha \\
& =\int_{0}^{1}\left(\int_{0}^{1} f([(1-t)(1-\alpha)+\alpha t] x+[(1-t) \alpha+t(1-\alpha)] y) p(t) d t\right) d \alpha
\end{aligned}
$$

and

$$
\left[F_{p}(x, y)+F_{p}(y, x)\right] \int_{0}^{1} h(t) d t=2 \int_{0}^{1} f((1-t) x+t y) p(t) d t \int_{0}^{1} h(\alpha) d \alpha
$$

Then by (3.5) we get the first part of (3.3).
Since

$$
\int_{0}^{1} f((1-t) x+t y) p(t) d t \leq[f(x)+f(y)] \int_{0}^{1} h(t) p(t) d t
$$

hence the last part of (3.3) also holds.

Remark 3. If the function $f: C \subseteq X \rightarrow[0, \infty)$ is a convex function, namely $h(t)=t, t \in[0,1]$ then from (3.3) we get

$$
\begin{align*}
& f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) d t \tag{3.6}\\
& \leq \int_{0}^{1}\left(\int_{0}^{1} f([(1-t)(1-\alpha)+\alpha t] x+[(1-t) \alpha+t(1-\alpha)] y) p(t) d t\right) d \alpha \\
& \leq \int_{0}^{1} f((1-t) x+t y) p(t) d t
\end{align*}
$$

provided that p is Lebesgue integrable and symmetric on $[0,1]$ and $(x, y) \in C^{2}$.
If we write (3.3) for the case of P-type functions $f: C \rightarrow[0, \infty)$, i.e., $h(t)=1$, $t \in[0,1]$, then we get the inequality

$$
\begin{align*}
& \frac{1}{2} f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) d t \tag{3.7}\\
& \leq \int_{0}^{1}\left(\int_{0}^{1} f([(1-t)(1-\alpha)+\alpha t] x+[(1-t) \alpha+t(1-\alpha)] y) p(t) d t\right) d \alpha \\
& \leq 2 \int_{0}^{1} f((1-t) x+t y) p(t) d t \leq 2[f(x)+f(y)] \int_{0}^{1} p(t) d t
\end{align*}
$$

provided that p is Lebesgue integrable and symmetric on $[0,1]$, where $(x, y) \in C^{2}$.

If f is Breckner s-convex on C, for $s \in(0,1)$, then by taking $h(t)=t^{s}$ in (2.18) we get

$$
\begin{align*}
& 2^{s-1} f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) d t \tag{3.8}\\
& \leq \int_{0}^{1}\left(\int_{0}^{1} f([(1-t)(1-\alpha)+\alpha t] x+[(1-t) \alpha+t(1-\alpha)] y) p(t) d t\right) d \alpha \\
& \leq \frac{2}{s+1} \int_{0}^{1} f((1-t) x+t y) p(t) d t \leq \frac{2}{s+1}[f(x)+f(y)] \int_{0}^{1} t^{s} p(t) d t
\end{align*}
$$

provided that p is Lebesgue integrable and symmetric on $[0,1]$, where $(x, y) \in C^{2}$.
If $(X,\|\cdot\|)$ is a normed linear space, $s \in(0,1)$, then for any $x, y \in X$ we have

$$
\begin{align*}
& 2^{s-1}\left\|\frac{x+y}{2}\right\|^{s} \int_{0}^{1} p(t) d t \tag{3.9}\\
& \leq \int_{0}^{1}\left(\int_{0}^{1}\|[(1-t)(1-\alpha)+\alpha t] x+[(1-t) \alpha+t(1-\alpha)] y\|^{s} p(t) d t\right) d \alpha \\
& \leq \frac{2}{s+1} \int_{0}^{1}\|(1-t) x+t y\|^{s} p(t) d t \leq \frac{2}{s+1}\left[\|x\|^{s}+\|y\|^{s}\right] \int_{0}^{1} t^{s} p(t) d t
\end{align*}
$$

provided that p is Lebesgue integrable and symmetric on $[0,1]$.
If $f: C \rightarrow[0, \infty)$ is of s-Godunova-Levin type, with $s \in[0,1)$, then by taking $h(t)=\frac{1}{t^{s}}$ in (3.3) we get

$$
\begin{align*}
& \frac{1}{2^{s+1}} f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) d t \tag{3.10}\\
& \leq \int_{0}^{1}\left(\int_{0}^{1} f([(1-t)(1-\alpha)+\alpha t] x+[(1-t) \alpha+t(1-\alpha)] y) p(t) d t\right) d \alpha \\
& \leq \frac{2}{1-s} \int_{0}^{1} f((1-t) x+t y) p(t) d t \\
& \leq \frac{2}{1-s}[f(x)+f(y)] \int_{0}^{1} \frac{p(t)}{t^{s}} d t
\end{align*}
$$

provided that p is Lebesgue integrable and symmetric on $[0,1]$, where $(x, y) \in C^{2}$.

4. Some Examples for Functions of a Real Variable

Let $g: I \rightarrow \mathbb{R}$ an integrable function on the interval I and $p:[0,1] \rightarrow[0, \infty)$ a symmetric and integrable function on $[0,1]$. For $(a, b) \in I^{2}$ we consider the function

$$
\begin{equation*}
G_{p}(a, b)=\int_{0}^{1} g((1-t) a+t b) p(t) d t \tag{4.1}
\end{equation*}
$$

If $b=a$, then

$$
G_{p}(a, a)=g(a) \int_{0}^{1} p(t) d t
$$

If $a \neq b$, then by making the change of variable $u=(1-t) a+t b, t \in[0,1]$, we have $d u=(b-a) d t, t=\frac{u-a}{b-a}$ and from (4.1) we obtain

$$
G_{p}(a, b)=\left\{\begin{array}{l}
\int_{a}^{b} g(u) p\left(\frac{u-a}{b-a}\right) d u, \quad(a, b) \in I^{2}, a \neq b \tag{4.2}\\
g(a) \int_{0}^{1} p(t) d t, \quad(a, b) \in I^{2}, a=b
\end{array}\right.
$$

In particular, we can consider the functions $G, G_{\left|\cdot-\frac{1}{2}\right|}, G_{\cdot(1-\cdot)}: I^{2} \rightarrow \mathbb{R}$ defined by

$$
\begin{gathered}
G(a, b):=\left\{\begin{array}{l}
\frac{1}{b-a} \int_{a}^{b} g(u) d u, \quad(a, b) \in I^{2}, a \neq b, \\
g(a),(a, b) \in I^{2}, a \neq b,
\end{array}\right. \\
G_{\left|\cdot-\frac{1}{2}\right|}(a, b):=\left\{\begin{array}{l}
\frac{1}{(b-a)^{2}} \int_{a}^{b} g(u)\left|u-\frac{a+b}{2}\right| d u, \quad(a, b) \in I^{2}, a \neq b, \\
\frac{1}{4} g(a), \quad(a, b) \in I^{2}, a \neq b,
\end{array}\right.
\end{gathered}
$$

and

$$
G_{\cdot(1-\cdot)}(a, b):=\left\{\begin{array}{l}
\frac{1}{(b-a)^{3}} \int_{a}^{b} g(u)(u-a)(b-u) d u, \quad(a, b) \in I^{2}, a \neq b \\
\frac{1}{6} g(a), \quad(a, b) \in I^{2}, a \neq b
\end{array}\right.
$$

By utilising the general Theorem 3, we can state the following result concerning the h-convexity of the weighted integral mean (4.2):
Proposition 1. Assume that the function $g: I \subseteq \mathbb{R} \rightarrow[0, \infty)$ is an h-convex function with $h \in L[0,1]$. If g is Lebesgue integrable on I, then the function G_{p} defined by (4.2) is h-convex on I^{2}. Moreover, if p is symmetric on $[0,1]$ then $G_{p}(b, a)=G_{p}(a, b)$ for all $(a, b) \in I^{2}$.

We observe that, if g is a convex function on I, then G_{p} is convex on I^{2}. In the particular case when $p \equiv 1$, we recapture Wulbert's result from 2003, [53], who showed that the integral mean of a convex function is globally convex as a function of two variables.

The above proposition can be used as a simple tool to build h-convex functions (P-type functions, Breckner s-convex functions, s-Godunova-Levin type functions etc...) on $I^{2} \subset \mathbb{R}^{2}$ starting with the same kind of function defined on I. The details are omitted.

References

[1] M. Alomari and M. Darus, The Hadamard's inequality for s-convex function. Int. J. Math. Anal. (Ruse) 2 (2008), no. 13-16, 639-646.
[2] M. Alomari and M. Darus, Hadamard-type inequalities for s-convex functions. Int. Math. Forum 3 (2008), no. 37-40, 1965-1975.
[3] G. A. Anastassiou, Univariate Ostrowski inequalities, revisited. Monatsh. Math., 135 (2002), no. 3, 175-189.
[4] N. S. Barnett, P. Cerone, S. S. Dragomir, M. R. Pinheiro, and A. Sofo, Ostrowski type inequalities for functions whose modulus of the derivatives are convex and applications. Inequality Theory and Applications, Vol. 2 (Chinju/Masan, 2001), 19-32, Nova Sci. Publ., Hauppauge, NY, 2003. Preprint: RGMIA Res. Rep. Coll. 5 (2002), No. 2, Art. 1 [Online http://rgmia.org/papers/v5n2/Paperwapp2q.pdf].
[5] E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54(1948), 439-460.
[6] M. Bombardelli and S. Varošanec, Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities. Comput. Math. Appl. 58 (2009), no. 9, 1869-1877.
[7] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen. (German) Publ. Inst. Math. (Beograd) (N.S.) 23(37) (1978), 13-20.
[8] W. W. Breckner and G. Orbán, Continuity properties of rationally s-convex mappings with values in an ordered topological linear space. Universitatea "Babeş-Bolyai", Facultatea de Matematica, Cluj-Napoca, 1978. viii+92 pp.
[9] P. Cerone and S. S. Dragomir, Midpoint-type rules from an inequalities point of view, Ed. G. A. Anastassiou, Handbook of Analytic-Computational Methods in Applied Mathematics, CRC Press, New York. 135-200.
[10] P. Cerone and S. S. Dragomir, New bounds for the three-point rule involving the RiemannStieltjes integrals, in Advances in Statistics Combinatorics and Related Areas, C. Gulati, et al. (Eds.), World Science Publishing, 2002, 53-62.
[11] P. Cerone, S. S. Dragomir and J. Roumeliotis, Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio Mathematica, 32(2) (1999), 697712.
[12] G. Cristescu, Hadamard type inequalities for convolution of h-convex functions. Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity 8 (2010), 3-11.
[13] S. S. Dragomir, Ostrowski's inequality for monotonous mappings and applications, J. KSIAM, 3(1) (1999), 127-135.
[14] S. S. Dragomir, The Ostrowski's integral inequality for Lipschitzian mappings and applications, Comp. Math. Appl., 38 (1999), 33-37.
[15] S. S. Dragomir, On the Ostrowski's inequality for Riemann-Stieltjes integral, Korean J. Appl. Math., 7 (2000), 477-485.
[16] S. S. Dragomir, On the Ostrowski's inequality for mappings of bounded variation and applications, Math. Ineq. \& Appl., 4(1) (2001), 33-40.
[17] S. S. Dragomir, On the Ostrowski inequality for Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$ where f is of Hölder type and u is of bounded variation and applications, J. KSIAM, $\mathbf{5}(1)$ (2001), 35-45.
[18] S. S. Dragomir, Ostrowski type inequalities for isotonic linear functionals, J. Inequal. Pure \& Appl. Math., 3(5) (2002), Art. 68.
[19] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 3 (2002), no. 2, Article 31, 8 pp.
[20] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), No. 2, Article 31.
[21] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), No.3, Article 35.
[22] S. S. Dragomir, An Ostrowski like inequality for convex functions and applications, Revista Math. Complutense, 16(2) (2003), 373-382.
[23] S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type. Springer Briefs in Mathematics. Springer, New York, 2012. x+112 pp. ISBN: 978-1-4614-1778-1
[24] S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Proyecciones Journal of Mathematics, 34 (2015), No 4, pp. 323-341.
[25] S. S. Dragomir, P. Cerone, J. Roumeliotis and S. Wang, A weighted version of Ostrowski inequality for mappings of Hölder type and applications in numerical analysis, Bull. Math. Soc. Sci. Math. Romanie, $42(90)$ (4) (1999), 301-314.
[26] S.S. Dragomir and S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the second sense. Demonstratio Math. 32 (1999), no. 4, 687-696.
[27] S.S. Dragomir and S. Fitzpatrick,The Jensen inequality for s-Breckner convex functions in linear spaces. Demonstratio Math. 33 (2000), no. 1, 43-49.
[28] S. S. Dragomir and B. Mond, On Hadamard's inequality for a class of functions of Godunova and Levin. Indian J. Math. 39 (1997), no. 1, 1-9.
[29] S. S. Dragomir and C. E. M. Pearce, On Jensen's inequality for a class of functions of Godunova and Levin. Period. Math. Hungar. 33 (1996), no. 2, 93-100.
[30] S. S. Dragomir and C. E. M. Pearce, Quasi-convex functions and Hadamard's inequality, Bull. Austral. Math. Soc. 57 (1998), 377-385.
[31] S. S. Dragomir, J. Pečarić and L. Persson, Some inequalities of Hadamard type. Soochow J. Math. 21 (1995), no. 3, 335-341.
[32] S. S. Dragomir and Th. M. Rassias (Eds), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publisher, 2002.
[33] S. S. Dragomir and S. Wang, A new inequality of Ostrowski's type in $L_{1}-$ norm and applications to some special means and to some numerical quadrature rules, Tamkang J. of Math., 28 (1997), 239-244.
[34] S. S. Dragomir and S. Wang, Applications of Ostrowski's inequality to the estimation of error bounds for some special means and some numerical quadrature rules, Appl. Math. Lett., 11 (1998), 105-109.
[35] S. S. Dragomir and S. Wang, A new inequality of Ostrowski's type in L_{p}-norm and applications to some special means and to some numerical quadrature rules, Indian J. of Math., 40(3) (1998), 245-304.
[36] A. El Farissi, Simple proof and refinement of Hermite-Hadamard inequality, J. Math. Ineq. 4 (2010), No. 3, 365-369.
[37] E. K. Godunova and V. I. Levin, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions. (Russian) Numerical mathematics and mathematical physics (Russian), 138-142, 166, Moskov. Gos. Ped. Inst., Moscow, 1985
[38] H. Hudzik and L. Maligranda, Some remarks on s-convex functions. Aequationes Math. 48 (1994), no. 1, 100-111.
[39] E. Kikianty and S. S. Dragomir, Hermite-Hadamard's inequality and the p-HH-norm on the Cartesian product of two copies of a normed space, Math. Inequal. Appl. (in press)
[40] U. S. Kirmaci, M. Klaričić Bakula, M. E Özdemir and J. Pečarić, Hadamard-type inequalities for s-convex functions. Appl. Math. Comput. 193 (2007), no. 1, 26-35.
[41] M. A. Latif, On some inequalities for h-convex functions. Int. J. Math. Anal. (Ruse) 4 (2010), no. 29-32, 1473-1482.
[42] D. S. Mitrinović and I. B. Lacković, Hermite and convexity, Aequationes Math. 28 (1985), 229-232.
[43] D. S. Mitrinović and J. E. Pečarić, Note on a class of functions of Godunova and Levin. C. R. Math. Rep. Acad. Sci. Canada 12 (1990), no. 1, 33-36.
[44] C. E. M. Pearce and A. M. Rubinov, P-functions, quasi-convex functions, and Hadamard-type inequalities. J. Math. Anal. Appl. 240 (1999), no. 1, 92-104.
[45] J. E. Pečarić and S. S. Dragomir, On an inequality of Godunova-Levin and some refinements of Jensen integral inequality. Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca, 1989), 263-268, Preprint, 89-6, Univ. "Babeş-Bolyai", Cluj-Napoca, 1989.
[46] J. Pečarić and S. S. Dragomir, A generalization of Hadamard's inequality for isotonic linear functionals, Radovi Mat. (Sarajevo) 7 (1991), 103-107.
[47] M. Radulescu, S. Radulescu and P. Alexandrescu, On the Godunova-Levin-Schur class of functions. Math. Inequal. Appl. 12 (2009), no. 4, 853-862.
[48] M. Z. Sarikaya, A. Saglam, and H. Yildirim, On some Hadamard-type inequalities for hconvex functions. J. Math. Inequal. 2 (2008), no. 3, 335-341.
[49] E. Set, M. E. Özdemir and M. Z. Sarıkaya, New inequalities of Ostrowski's type for s-convex functions in the second sense with applications. Facta Univ. Ser. Math. Inform. 27 (2012), no. 1, 67-82.
[50] M. Z. Sarikaya, E. Set and M. E. Özdemir, On some new inequalities of Hadamard type involving h-convex functions. Acta Math. Univ. Comenian. (N.S.) 79 (2010), no. 2, 265-272.
[51] M. Tunç, Ostrowski-type inequalities via h-convex functions with applications to special means. J. Inequal. Appl. 2013, 2013:326.
[52] S. Varošanec, On h-convexity. J. Math. Anal. Appl. 326 (2007), no. 1, 303-311.
[53] D. E. Wulbert, Favard's inequality on average values of convex functions, Mathematical and Computer Modelling, Vol. 37 (2003), no. 12-13, pp. 1383-1391.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand,, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 26D15.
 Key words and phrases. Convex functions, Schur convex functions, Integral inequalities, Hermite-Hadamard inequality.

