SCHUR CONVEXITY OF INTEGRAL MEANS

SILVESTRU SEVER DRAGOMIR!+?

ABSTRACT. For a Lebesgue integrable function p : [0,1] — [0,00) we consider
the function Sy ,, My, : D — R defined by

1
sf,p<x,y>:/0 Flte+ 1=y ty+ (1 —t)a)p(t)dt

and

1
Mf,p(x,m:/O Flte 41—y ty+ (1 —t)a)p(t)dt

() o

where f: D — R is Schur convex on the symmetric convex subset D of a X2,
where X is a linear space. In this paper we show among others that Sy , and
My, preserve the Schur convexity of f. We also provide some applications for
norms and Schur convex functions of two real variable.

1. INTRODUCTION

For any z = (21, ...,7,) € R", let z1) > ... > x},) denote the components of x in
decreasing order, and let x| = (xm, ...,xm) denote the decreasing rearrangement
of z. For x, y € R™, z < y if, by definition,

k k
Zi:l N < Zi:l Yli)» k= la sy T — 17

2oim1 Tl = 2ie1 Y-

When z < y, x is said to be majorized by y (y majorizes x). This notation and
terminology was introduced by Hardy, Littlewood and Pélya in 1934.

Functions that preserve the ordering of majorization are said to be Schur-convex.
Perhaps “Schur-increasing” would be more appropriate, but the term “Schur-convex”
is by now well entrenched in the literature, as mentioned in [8, p.80].

A real-valued function ¢ defined on a set A C R™ is said to be Schur-conver on
A if
(1.1) r<yon A= ¢(x) <o(y).

If, in addition, ¢ (z) < ¢ (y) whenever x < y but z is not a permutation of y, then
¢ is said to be strictly Schur-convexr on A. If A = R", then ¢ is simply said to be
Schur-convex or strictly Schur-convex.

For fundamental properties of Schur convexity see the monograph [8] and the
references therein. For some recent results, see [3]-[6] and [9]-[11].
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Let A C R™ be a set with the following properties:

(i) Ais symmetric in the sense that x € A = zII € A for all permutations II of
the coordinates.

(ii) A is convex and has a nonempty interior.

We have the following result, [8, p. 85].

Theorem 1. If ¢ is continuously differentiable on the interior of A and continuous
on A, then necessary and sufficient conditions for ¢ to be Schur-convex on A are

(1.2) ¢ is symmetric on A
and
(1.3) (21 — 22) {8;5;?) - agzz)] >0 for all z € A.

Another interesting characterization of Schur convex functions ¢ on A was ob-
tained by C. Stepniak in [12]:

Theorem 2. Let ¢ be any function defined on a symmetric convexr set A in R™.
Then the function ¢ is Schur conver on A if and only if

(1.4) O(X1,s ey iy oy Ty oy T) = G (X1, oy Ty ey Ty oy Ty)

for all (z1,....,xz,) €A and 1 < i< j<n and

(1.5) P+ (1 =Nz, Ao+ (1 — N x1,23, ..., 2n) < ¢ (21, ..., Zn)
for all (z1,...,xz,) € A and for all A € (0,1),

It is well known that any symmetric convex function defined on a symmetric
convex set A is Schur convex, [8, p. 97]. If the function ¢ : 4 — R is symmetric
and quasi-convex, namely

¢ (cu+ (1 - a)v) < max{¢(u),d(v)}

for all @ € [0,1] and u, v € A, a symmetric convex set, then ¢ is Schur convex on
A [8, p. 98].

Let X be a linear space and G C X? := X x X a convex set. We say that G is
symmetric if (z,y) € G implies that (y,x) € G. If D C X is a convex subset of X,
then the Cartesian product G := D? := D x D is convex and symmetric in X?2.

Motivated by the characterization result of Stepniak above, we say that a func-

tion f : G — R will be called Schur convexr on the convex and symmetric set
GcCX?if

(1.6) f(zy)+ A =1)(y,2) < f(2,9)

for all (z,y) € G and for all ¢ € [0,1].

If G = D? then we recapture the general concept of Schur convexity introduced
by Burai and Mak¢ in 2016, [1].

We say that the function f : G — R is symmetric on G if f (z,y) = f (y,x) for
all (z,y) € G. If the function f is symmetric on G and the inequality holds for a
given ¢t € (0,1) and for all (x,y) € G, then we say that f is t-Schur convex on G.

The following fact follows from the definition of Schur convex functions:

Proposition 1. If f : G — R is Schur convex on the conver and symmetric set
G C X2, then f is symmetric on G.
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For (z,y) € G, as in [1], let us define the following auxiliary function ¢, . :
[0,1] = R by

(L7) @p gy O = (2 y) + (1 =1) (y,2)) = [tz + (1 =)y, ty + (1 =) 2).
The properties of this function are as follows [4]:

Lemma 1. Let G C X? be a convex and symmetric set and f : G — R a symmet-
ric function on G. Then [ is Schur convex on G if and only if for all arbitrarily
fived (z,y) € G the function ¢y (, . is monotone decreasing on [0,1/2), monotone
increasing on (1/2,1], and ¢y (. has a global minimum at 1/2 .

The proof of this result in the case of G = D? was given in [1].
We have the following weighted double integral inequality [4]:

Theorem 3. Assume that the function f : G — R is Schur convex on the convex
and symmetric set G C X2. Then for any Lebesgue integrable function w : [0,1] —
[0,00) we have

(1.8) f(x;y,x;y)/olw(s)ds

1
s/o flso+ (1= s)ysy+ (1 5)2)w(s)ds

sm,y)/o w(s) ds

for all (z,y) € G.
In particular, we have

o (TP < [ At 0t -9 0ds < o)

for all (z,y) € G.

For a Lebesgue integrable function p : [0,1] — [0,00) we consider the function
Stpy My D — R defined by

Sf,p<x,y>=/o Fltz+ (L= 8y ty+ (1—t)2)p(t) dt

and

Mf,pu,y):/o Fltz+ (L= t)yty+ (1—t)z)p(t) dt

r+y T+y !
— d
f( 5 >/0p(t) t,

where f : D — R is Schur convex on the symmetric convex subset D of a X2, where
X is a linear space.

Motivated by the above results, in this paper we show among others that St ,
and My, preserve the Schur convexity of f. We also provide some applications for
Schur convex and convex functions of two real variable.
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2. SCHUR CONVEXITY FOR FUNCTIONS OF COMPOSITE ARGUMENTS

Assume that the function f : G — R is Schur convezr on the convex and sym-
metric set G C X?. For t € [0,1], we define the function Sf; : G — R defined
by
2.1 Spe(@y)=f(t(zy)+A-t)(y,2)=f(z+ (1 -y ty+(1-t)z).

In the case when ¢t = 0 or ¢ = 1 the definition (2.1) becomes, by the symmetry of f
in G, that

Sf,O (x,y) = Sf,l (xay) = f (iU,y), ($,y) € G.
We have:

Theorem 4. Assume that the function f: G — R is Schur convex on G then Sy,
is Schur convex on G for allt € (0,1).

Proof. Let (z,y) € G and s € [0,1], t € (0,1). Observe that

tsc+(1—9s)y,sy+(1—9s)z)+(1—¢t)(sy+(1—s)z,sc+ (1 —3s)y)
t(s(z,y) + (1 =s)(y,2) + (1 —1)(s(y,2) + (1 =) (z,9))

slt(z,y)+ (1 =1) (y,2)] + (1 =9)[t(y,2)+ (1 1) (z,y)]

=s(tze+ (1 —-t)y,ty+ (1 —t)x)+ (1 —9) [ty + (1 = t) z,tx + (1 — t) y)]
=s(u,v) + (1 —s) (v,u),

where v :=tx + (1 —t)y and v :=ty + (1 — t) z for all (z,y) € G and s, t € [0,1].

By Schur convexity of f on G we get

f (s (u,0) + (1= s) (v,u)) < f(u,0)

for all s € [0,1].
Therefore
(2.2) Spi(s(z,y) + (1=9) (y,2))
=[flt(sz+ (1 =s)y,sy+ (1 -s)z)+ (1 —=t)(sy+(1=s)z,s2+(1-s)y)
< f(t$+ (1 7t)yaty+ (1 7t)$) - Sf,t (‘T7y)
for (z,y) € G and s, t € [0,1].
This proves the Schur convexity of S¢; on G. O

We define for ¢ € [0,1], t # 3 the function My, on G by

My (o) = 1 0o + (-0 o) - (25255
:f(ta:+(1—t)y,ty+(1—t)x)—f(zgy,x;y>

r+y T+
:vat(x7y)_f< 2 y) 2y)7

where f : G — R is Schur convex on the convex and symmetric subset G C X2.

We have the following result.

Corollary 1. Let f be a Schur convez function on D and t € [0,1], t # % Then
the function My, is Schur conver on D.
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Proof. Let s € [0,1] and (z,y) € G. Then
My (s (z,y) + (1 = s) (y, 7))
= Spe(s(z,y) + (1 =) (y,2))
f(sx+(1s)y+sy+(ls)x sx+(1s)y+sy+(ls)x>

2 ’ 2

rT+Yy r+y
=My (sl + (1= 9) ) - 1 (5225
rT+y TrT+y
< S0 - 1 (LY = bapa o),
which proves the Schur convexity of My on D. O
Let (X, ||-]]) be a normed space. The function f (z) = ||z||", r > 1 is convex on

X. Assume that ¢ : [0,1] — [0,00) is a Lebesgue integrable symmetric function on
[0,1]. If we define

(2.3) Ny (2,9) = / 1@ —7)z+ ] g (r) dr,

then we know that N,.,, is globally convex on X?, see [5].
For t € [0,1], we define

(24) Sr,q,t (‘Tay) = Nr,q (tl‘ + (1 - t) Y, 1y + (1 - t) :L’)

=/0 1= 7) (2 + (L= t)y) + 7 (ty + (1 — ) o) g () dr

1
:/0 1=7)t+7(1 =]z +[1—7)(1—t)+7tly| ¢(r)dr
and
(2.5) M, 40 (2,y)

r+y

=Ntz +1—-t)y,ty+(1—t)x) — 5

T/()lq(r)dr

1
:/0 IA=7)t+7A=]z+[1-7) L —t)+t]yl" q(r)dr
T+y

T 1
5 /o q(7)dr,

where r > 1 and (z,y) € X2
By utilising Theorem 4, we can state the following result:

Proposition 2. Assume that g : [0,1] — [0,00) is a Lebesgue integrable symmetric
function on [0,1], t € [0,1] and r > 1. Then the functions Sy q+ and M, 4 are
Schur conver on X?2.

Let C be a convex subset in X and f: C2 := C x C — R. For (t,s) € [0,1]° we
consider the function Py (; 4 : C* — R defined by

Pf,(t,s) (1‘7 y)

::%[f(ta:—i—(1—t)y,sx+(1—s)y)-l—f((l—t)x—l—ty,sy—i-(1—3)95)},
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where (z,y) € C2.

Theorem 5. Assume that f : C2 — R is convex on C% and (t,s) € [0,1]%. Then
the function Py s is Schur conver on C2.

Proof. Let a, 8> 0 with a4+ 8 =1, (z,y) € C? and consider
2P (a(z,y) + B (y, 7))
= Pus) (ax + By, ay + Bx)
= f(t(ax+By)+ (1—1t)(ay + Bz),s(ax + By) + (1 — ) (ay + Bz))
+ [ —=t) (ax + By) + t (ay + Bz) , s (ay + Bz) + (1 — 5) (ax + By)) -
Observe that
(t(azx + fy) + (1 = 1) (ay + Bz) ;s (e + By) + (1 = 5) (ay + Bi))
=a(tz+(1-t)y,se+(1-s)y) +p{ty+(1-t)z,sy+(1-s)z)
and
(L =1) (az + By) +t(ay + fz) , s (ay + fz) + (1 = ) (az + By))
=a((l-t)e+ty,sy+(1—s)z)+(1—-t)y+tz,sc+ (1 —39)y).
Since f is convex on D, hence
flatz+ (1 -t)y,sze+(1—-9)y)+B0y+ (1 —t)z,sy+ (1 —s)x)]
<af(te+(1—-t)y,sc+(1—s)y)+6f(ty+(1—t)z,sy+(1—s)x)
and
fla(l=t)rc+ty,sy+(1—s)x)+L8((1—t)y+tz,sz+ (1 —3)y)]
<af(l-t)z+ty,sy+ (1 —s)x)+Bf (1 —t)y+te,sz+ (1 —9)y).
If we add these two inequalities, we get
2P, (o (2,y) + B (y, 7)) S af (tz+ (L - 1)y, sz + (1 - 5)y)
+0f(1—-t)y+tx,sz+(1—s
+Bf(ty+ (1 —t)x, sy + (
+af(l-t)z+ty,sy+(1—s
=ftz+(1-t)y,sz+(1—3)y)
+fty+ A =t)z,sy+ (1—s)x) =2, (2,y),

~—

which shows that P ) is Schur convex on C2. ([l

For (t,s) € [0, 1]2 we also consider the function Q) : C? — R defined by
Qf,(t,s) (.’L‘, y)

rT+Yy r+y
::Pf,(t,s)(xay)_Pf,(t,s)< 5 3 )

= St (=) g2+ (L= )9) + (1= 0) o+ ty,sy+ (1= 5)a)]

_p(zry aty
2 72 )
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Corollary 2. Assume that f : C2 — R is convex on C? and (t,s) € [0,1]*. Then
the function Q) is Schur conver on C2.

3. SCHUR CONVEXITY OF INTEGRAL MEAN

For a Lebesgue integrable function p : [0, 1] — [0, 00) and a Schur convex function
f: G — R on the convex and symmetric set G C X? we define the functions Sy,
and My, on G by

Spp(2,y) = / Sy (@,y) p(t) dt

= [t a-onwsa-nopna

and

1
My, (z,9) :/ Flte+ (1= tyty+ (1—t)a)p(t)de

r+y r+y !
— dt.
f( 53 )/Op(t)t

In particular, if p = 1, then we also consider the functions

Sf(x,y)::/o Flto+ (1=t y,ty+ (1 —t)z) dt

and

1
My (x,y) 32/0 f(t96+(1—t)y,ty+(1—t)x)dt_f<x;ry,$;y>.

‘We have:

Theorem 6. Assume that the function f : G — R is Schur convex on G and
p:[0,1] — [0,00) is a Lebesgue integrable function on [0, 1], then the functions Sy,
and My, are Schur conver on G.

Proof. Let s € [0,1] and (x,y) € G. Then, by the Schur convexity of Sy, for
t €10,1], we have

Sip (s (@y) + (1= s) (y,2)) = /0 Spi(s(z,y) + (1= s)(y,2))p(t)dt

1
< [ Sniepp®dt =S5, (@),
0

which proves the Schur convexity of Sy .
The proof for My, is similar. O

Corollary 3. Assume that the function f : G — R is Schur convex on G, then the
Junctions Sy and My are Schur convex on G.

We also have the following double integral inequalities:
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Corollary 4. Assume that the function f: G — R is Schur convex on the convex

and symmetric set G C X2. Then for any Lebesque integrable functions w, p :
[0,1] — [0, 00) we have

(3.1) f(“y ‘2“’)/ <>dt/01w<s>ds

//f (sz+ (1—8)y) +(1— 1) (sy+ (1—8)2),
t(sy+(1—s)x)+ (1 —t)(sz+ (1—9)y)]p(t)w(s)dtds

1
/ftm—i—(l—t)y,ty—i—(l—t dt/w
0

(< f(z,y)/olp(t)dt/olw(S)dS)

for all (z,y) € G.

The proof follows by Theorem 3 applied for the function S . This is a refinement
of the inequality (1.8) from Introduction.
For p, w = 1 we get for (z,y) € G that

(3.2) f(:c+y x+y>

2

//f (so+ (1= 8)y) + (1 —1) (sy+ (1 - 5)a),
tsy+(1—s)z)+ (1 —1t)(sz+ (1 —s)y)]dtds

s/ fltz+ (- 8y ty+(1—t)a)dt (< f(z.y),
0

where f : G — R is Schur convex on the convex and symmetric set G C X?2. This
is a refinement of the inequality (1.9) from Introduction.

Let (X, ||-]|) be a normed space. The function f (z) = ||z]|", r > 1 is convex on
X. Assume that ¢ : [0,1] — [0,00) is a Lebesgue integrable symmetric function on
[0,1] . For a Lebesgue integrable function p : [0, 1] — [0, 00), we can define the norm
related functions

Srqp (T, 9)

=/ Npg (tz+ (1= 1)y, ty + (1 — t)2) p(¢) dt
0
1 1

and
Mr,q,p (x7 y)

1 1
= [ [t r e 0= 00l ) o) dr
r+y

: r/olq(T)dT/Olp(t)dt.

By making use of Theorem 7 we have the following result:
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Proposition 3. Assume that g : [0,1] — [0,00) is a Lebesgue integrable symmetric
function on [0,1], p: [0,1] — [0, 00) is Lebesgue integrable on [0,1] and r > 1. Then
the functions Sy.4, and M, ,, are Schur convex on X2.

Consider the two variable weight W : [0,1]* — [0, 00) that is Lebesgue integrable
on [0,1]” and define

Frw (@.y) //Pf(ts (z,y) W (t, 5) dtds
_5/0 /0 fltz+ (1 —t)y,sz+ (1—s)y) W (t,s) dtds

1
*/ lf((l—t)$+ty,3y+(1—s)x)W(t,s)dtds.
0 0

If W is symmetric on [0, 1]% in the sense that W (¢,s) = W (s, t) for all (¢,s) € [0,1]?,
then

PﬁW(:c,y):/O /0 flx+ (1 —=t)y,sz+ (1 —s)y) W (t,s)dtds.

In particular, if w : [0, 1] — [0, 00) is Lebesgue integrable on [0, 1], then by taking
W (t,s) =w(t)w(s), (ts) €[0,1]* we can also consider the function

11
Prova) = [ [ fltas =050+ (1= s)p)w (0w (s)deds

o Jo

and the unweighted function

1,1
Py (z,y) :/ / flz+ (1 —1)y,sx+ (1—s)y)dtds.
o Jo
In a similar way, we can consider
1,1
r+y T+
Qf,W(xay) = Pf,W(xay)f( 2y7 2y>/ / W(tas)dtdsa
o Jo

2

@ 2.0) = Pra o) - £ (5L 550) ([wiwar)

rT+y r+vy
2 7 2 ’

and

Qs (x.y) = Py (x.) — f (

Theorem 7. Assume that f : C2 — R is convez on C% and W : [0,1]% — [0, 00) is
Lebesgue integrable on [0, 1]2 , then Py w and Qs w are Schur convex on C2.

Proof. Let o € [0,1] and (x,y) € G. Then, by the Schur convexity of Py ) for
(t,s) € [0,1]%, we have

Prw (a(z,y) + (1 —a)(y,2))

// ts) (@ (2, y) + (1= a) (y, ) W (t, s) dtds

< [ [ Prio @) W 4 5) s = Py ),
0 Jo

which proves the Schur convexity of Py .
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The Schur convexity of Q¢ w goes in a similar way. O

Corollary 5. Assume that f : C* — R is convexr on C? and w : [0,1] — [0, 00)
is Lebesque integrable on [0,1], then Pf., and Q¢ are Schur convex on C?. In
particular, Py and Qf are Schur convex on C?.

4. EXAMPLES FOR FUNCTIONS OF TwO REAL VARIABLES

For a Lebesgue integrable function p : [0, 1] — [0, 00) and a Schur convex function
f:I? — R where I is an interval of real numbers, by changing the variable

u=(1—t)a+tb, t€[0,1] with (a,b) € I? and a # b

we can express the functions Sy, and My, on I? by

(4.1) S (a)b) = /fta+(1—t)btb+(1—t) a)p () dt
/fua+b—u) ( s>du

and

(4.2) My, (a,b) = /lf(ta+ (1= )b th+ (1 — ) a) p (£) dt

_f<a+b a;b)/o p(t) dt
:bia/ f(u,a—!—b—u)p(Z:Z)du
_f<a—|—b a—2|—b>/0 D (t) d.

For (a,b) € I? with a = b we have

1
(4.3) S¢p(a,a) = f(a, a)/ p(t)dt and My, (a,a) = 0.
0
In particular, if p = 1, then we also consider the functions

ﬁfabf(u,a—i—b—u)du for (a,b) € I? with a # b,
(4.4) Sy (a,b) =
f(a,a) for (a,b) € I? witha=1b

and

o

% . S (u, a—l—b—u)du—f(aTH’,“Ter)

b
(4.5) My (a,b) = { for (a,b) € I* with a # b,
0 for (a,b) € I? with a = b.

Proposition 4. Assume that f : I? — R is Schur convex on I? and p : [0,1] —
[0, 00) is Lebesgue integrable on [0,1], then Sy, and My, defined by (4.1)-(4.3) are
Schur convex on I%. In particular, the functions Sy and My defined by (4.4) and
(4.5) are Schur convex on I*.
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If w: [0,1] — [0, 00) is Lebesgue integrable on [0,1] and f : I? — R is convex on
I?, then by changing the variables tb + (1 —t)a = u and sb+ (1 — s) a = v and we
can also consider the function

(4.6) P (a,b) = (bla)2 /ab /abf(u,v)w <Z_Z> w <Z_Z> dudy

if (a,b) € I? with a # b and

2

(4.7) Pt (a,a) := f(a,a) (/Ol w (t) dt)

We also can consider

(48)  Qu(ab) = (bla)2 /ab /abf(u,v)w <Z_Z> w <Z_Z> dudy

a+b a+d ! 2
~r(5055) () von)
if (a,b) € I? with a # b and
(4.9) Qfw(a,a):=0.

In particular, we have

o I2 L2 f (u,0) dudv if (a,b) € I? with a # b,
(4.10)  Pj(a,b):=

f(a,a) if (a,b) € I? with a # b

and

(b—#a)Q f; f;f(u,v) dudv — f (a-z*-b, aT+b)
(4.11) Q;(a,b) = if (@b) € I* witha # 0,

0if (a,b) € I? with a # b.

Proposition 5. Assume that f : I — R is convez on I? and w : [0,1] — [0,00) is
Lebesgue integrable on [0,1], then Pf., and Qy,., defined by (4.6)-(4.9) are Schur
convex on I2. In particular, the functions Sy and My defined by (4.10) and (4.11)
are Schur conver on I2.

In [2] Chu et al. obtained the following results:

Lemma 2. Suppose h: I — R is a continuous function. Function
A [ln@)dt—h (), (zy) €l x#y
Mh (.’E, y) =
0, (z,y)el*, z=y
is Schur-convex (Schur-concave) on I? if and only if h is convex (concave) on I.
Furthermore, function
h(x)+h
Mo Ph) — L (Y (t)dt, (z,y) €12 x#y
Th (l',y) =
0,(z,y) €I?, z=y

is Schur-convex (Schur-concave) on I? if and only if h is convex (concave) on I.
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If we take f, : I? — R defined as f, (z,y) = M}, (z,y) then Sy, , defined by
(4.1) becomes

th,’p (av b)

“ima [ pesmn (G5 o

it w5 (55
L amem ([ o) (=)

- blah(a;b) /abp<z_z> du

for a # b and Sy, p (a,a) =0 with a, b € I.

Therefore, by Proposition 4.1 we conclude that Sy, , is Schur conver on I*

provided that h is continuous convex on I and p : [0,1] — [0,00) is Lebesgue
integrable on [0,1].
In particular

wha [ am (ST R @ dt) du— R (252), a b

0, a

Spn (a,0) =
b

is Schur convex on I2.

If we take now gy : I? — R defined as gy, (z,y) = T}, (z,y) then Sy, , defined by
(4.1) becomes

Sgh P (a’a b)

1 b uU—a
:b—a/agh(u’a+b_u)p<b—a>du
1 [ h@)+hlat+b—u) 1 atb-u
_b—a/a< 2 _a+b—2u/u h(t)dt
xp(Z_Z>du

1 "h(u)+h(a+b—u) [(u—a
b—a/a 2 p<b—a>du

1 b 1 atb-u u—a
_b—a/a a,—|—b—2u</u h(t)dt>p(b—a)du

for a # b and Sy, p (a,a) =0 with a, b € I.
By Proposition 4.1 we conclude that Sy, , is Schur convex on [/ 2 provided that
h is continuous convex on I and p : [0,1] — [0, 00) is Lebesgue integrable on [0,1] .
If p is symmetric on [0, 1], namely p (1 —t) = p(¢t) for all ¢ € [0, 1], then

1 "hu)+h(a+b—u) [u—a 1 b u—a
b—a/a 2 p<b—a>dub—a ah(u)p(b_a)du




SCHUR CONVEXITY OF INTEGRAL MEANS 13

and in this case

1 b u—a
Sghap(a7b): b_a/ h‘(u)p<b_a>du

1 b 1 atb-u u—a
— h(t)dt d
b—a/a a+b—2u /u ®) p(b—a) “

which is Schur convex on I? if h is continuous convex on I.

In particular, we get that

1 b 1 b 1 ll+b7’u
Sgh(a,b):b_a/a h(u)du—b_a/a - L h(t)dt | du,

is Schur convex on I? when h is continuous convex on I.
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