A Method to Construct Continued-Fraction Approximations and Its Applications

Chao-Ping Chen ${ }^{1, *}$, H. M. Srivastava ${ }^{2,3}$ and Qin Wang ${ }^{4}$
${ }^{1}$ School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo 454000, Henan, People's Republic of China
E-Mail: chenchaoping@sohu.com
*Corresponding Author
${ }^{2}$ Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada
${ }^{3}$ Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, Republic of China
E-Mail: harimsri@math.uvic.ca
${ }^{4}$ School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo 454000, Henan, People's Republic of China

E-Mail: wangqinttxs@sohu.com

Abstract

In this paper, we provide a method to construct a continued-fraction approximation based upon a given asymptotic expansion. As applications of the method developed here, we establish several continued-fraction approximations for the gamma and the digamma (or psi) functions. Finally, some closely-related open problems are also presented.

2010 Mathematics Subject Classification. Primary 11A55, 33B15; Secondary 11Y60.
Key Words and Phrases. Gamma function; Digamma (or psi) function; Euler-Mascheroni constant; Asymptotic expansions; Continued-fraction approximations.

1 Introduction

The gamma function $\Gamma(x)$ given by

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} \mathrm{~d} t \quad(x>0)
$$

RGMIA Res. Rep. Coll. 22 (2019), Art. 79, 37 pp. Received 19/07/19
is one of the most important functions in mathematical analysis and has applications in many diverse areas. The logarithmic derivative $\psi(x)$ of the gamma function $\Gamma(x)$ given by

$$
\psi(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)} \quad \text { or } \quad \ln \Gamma(x)=\int_{1}^{x} \psi(x) \mathrm{d} t
$$

is known as the psi (or digamma) function. The psi function $\psi(x)$ is connected to the EulerMascheroni constant γ and the harmonic numbers H_{n} by means of the following well-known relation (see [1, p. 258, Eq. (6.3.2)]):

$$
\begin{equation*}
\psi(n+1)=-\gamma+H_{n} \quad(n \in \mathbb{N}:=\{1,2,3, \cdots\}), \tag{1.1}
\end{equation*}
$$

where

$$
H_{n}:=\sum_{k=1}^{n} \frac{1}{k} \quad(n \in \mathbb{N})
$$

is the nth harmonic number and γ is the Euler-Mascheroni constant defined by

$$
\gamma=\lim _{n \rightarrow \infty} D_{n}=0.577215664 \cdots,
$$

where

$$
\begin{equation*}
D_{n}=\sum_{k=1}^{n} \frac{1}{k}-\ln n . \tag{1.2}
\end{equation*}
$$

Various approximations of the psi function $\psi(x)$ are used in the relation (1.1) and interpreted as approximation for the harmonic number H_{n} or as approximations of the Euler-Mascheroni constant γ.

There has been significant interest and research on γ as evidenced by survey papers (see, for details, [14]) and expository books (see, for example, [19]), which reveal its essential properties and surprising connections with other areas of the mathematical sciences.

The following two-sided inequality for the difference $D_{n}-\gamma$ was established in [28,33]:

$$
\frac{1}{2(n+1)}<D_{n}-\gamma<\frac{1}{2 n} \quad(n \in \mathbb{N})
$$

The convergence of the sequence D_{n} to γ is very slow. By changing the logarithmic term in (1.2), DeTemple $[15,16]$ presented the following inequality:

$$
\begin{equation*}
\frac{1}{24(n+1)^{2}}<R_{n}-\gamma<\frac{1}{24 n^{2}} \quad(n \in \mathbb{N}) \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{n}=H_{n}-\ln \left(n+\frac{1}{2}\right) . \tag{1.4}
\end{equation*}
$$

On the other hand, Negoi [26] proved that the sequence $\left\{T_{n}\right\}_{n \in \mathbb{N}}$ given by

$$
\begin{equation*}
T_{n}=\sum_{k=1}^{n} \frac{1}{k}-\ln \left(n+\frac{1}{2}+\frac{1}{24 n}\right) \tag{1.5}
\end{equation*}
$$

is strictly increasing and convergent to γ. Moreover, Negoi [26] proved that

$$
\begin{equation*}
\frac{1}{48(n+1)^{3}}<\gamma-T_{n}<\frac{1}{48 n^{3}} \quad(n \in \mathbb{N}) . \tag{1.6}
\end{equation*}
$$

The following faster approximation formulas can be found in [10, 12]:

$$
\begin{equation*}
X_{n}:=H_{n}-\ln \left(n+\frac{1}{2}+\frac{1}{24 n}-\frac{1}{48 n^{2}}\right)=\gamma+O\left(n^{-4}\right) \quad(n \rightarrow \infty) \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
Y_{n}:=H_{n}-\ln \left(n+\frac{1}{2}+\frac{1}{24 n}-\frac{1}{48 n^{2}}+\frac{23}{5760 n^{3}}\right)=\gamma+O\left(n^{-5}\right) \quad(n \rightarrow \infty) . \tag{1.8}
\end{equation*}
$$

In view of (1.3), (1.6), (1.7) and (1.8), Chen and Mortici [10] posed the following open problem:

Open Problem 1. For a given $m \in \mathbb{N}$, find the constants $p_{j}(j=1,2,3, \cdots, m)$ such that

$$
\begin{equation*}
H_{n}-\ln \left(n\left(1+\sum_{j=1}^{m} \frac{p_{j}}{n^{j}}\right)\right) \tag{1.9}
\end{equation*}
$$

is the fastest sequence which would converge to γ.
Yang [31] first presented the solution of Open Problem 1 by using the Bell polynomials of a logarithmic type. Subsequently, other proofs of Open Problem 1 (1.9) were published by Gavrea and Ivan [17, 18], Lin [20], Chen et al. [8], and Chen and Choi [6].

The following familiar Stirling's formula:

$$
\begin{equation*}
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \quad(n \rightarrow \infty) \tag{1.10}
\end{equation*}
$$

has many applications in statistical physics, probability theory and number theory. Actually, it was first discovered in 1733 by the French mathematician, Abraham de Moivre (1667-1754), in the form given by

$$
n!\sim \text { constant } \cdot \sqrt{n}\left(\frac{n}{e}\right)^{n} \quad(n \rightarrow \infty)
$$

when he was studying the Gaussian distribution and the central limit theorem. Afterwards, the Scottish mathematician, James Stirling (1692-1770), found the missing constant $\sqrt{2 \pi}$ when he was attempting to give the normal approximation of the binomial distribution.

Recently, Sándor and Debnath [29, Theorem 5] proved the following inequality for all positive integers $n \geqq 2$:

$$
\begin{equation*}
\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}<\Gamma(n+1)<\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\left(\frac{n}{n-1}\right)^{\frac{1}{2}} \tag{1.11}
\end{equation*}
$$

and proposed the approximation formula given below:

$$
\begin{equation*}
\Gamma(n+1) \sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\left(\frac{n}{n-1}\right)^{\frac{1}{2}} \quad(n \rightarrow \infty) \tag{1.12}
\end{equation*}
$$

Motivated by the above-mentioned work by Sándor and Debnath (1.12), Mortici and Srivastava [25] introduced the following class of approximations for all real numbers a and b :

$$
\begin{equation*}
\Gamma(n+1) \sim \mu_{n}(a, b) \quad\left(n \rightarrow \infty ; \mu_{n}(a, b):=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\left(1+\frac{1}{n+a}\right)^{-b}\right) \tag{1.13}
\end{equation*}
$$

We note that Stirling's formula (1.10) is obtained from the Mortici-Srivastava result (1.13) in its special case when $b=0$. Furthermore, the approximation formula (1.12) can be written as follows:

$$
\Gamma(n+1) \sim \mu_{n}\left(-1,-\frac{1}{2}\right) \quad(n \rightarrow \infty) .
$$

Indeed, in the aforecited work, Mortici and Srivastava [25] proved that

$$
\Gamma(n+1) \sim \mu_{n}\left(-\frac{1}{2},-\frac{1}{12}\right) \quad(n \rightarrow \infty)
$$

is the best approximation among all approximations given by (1.13). We choose to write this best approximation as follows:

$$
\begin{equation*}
\Gamma(n+1) \sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\left(1+\frac{1}{n-\frac{1}{2}}\right)^{\frac{1}{12}} \quad(n \rightarrow \infty) \tag{1.14}
\end{equation*}
$$

Mortici and Srivastava [25] also developed the approximation formula (1.14) in order to produce a complete asymptotic expansion (see [25, Theorem 2]).

In this paper, we provide a method to construct a continued-fraction approximation which is based upon a given asymptotic expansion (see Remarks 1 and 2). As applications of our
continued-fraction approximation, we develop the approximation formula (1.14) to produce several further continued-fraction approximations (see Theorems 3, 4 and 5). We also establish continued-fraction approximation for the psi function (see Theorem 6). Finally, we present the higher-order estimate for the Euler-Mascheroni constant γ (see Theorem 7).

The following lemmas will be useful in our present investigation.
Lemma 1 (see [8]). Let

$$
g(x) \sim \sum_{n=1}^{\infty} b_{n} x^{-n} \quad(x \rightarrow \infty)
$$

be a given asymptotic expansion. Then the composition $\exp (g(x))$ has asymptotic expansion of the following form:

$$
\exp (g(x)) \sim \sum_{n=0}^{\infty} a_{n} x^{-n} \quad(x \rightarrow \infty)
$$

where

$$
\begin{equation*}
a_{0}=1 \quad \text { and } \quad a_{n}=\frac{1}{n} \sum_{k=1}^{n} k b_{k} a_{n-k} \quad(n \in \mathbb{N}) . \tag{1.15}
\end{equation*}
$$

Lemma 2 (see [5, Theorem 9]). Let $k \geqq 1$ and $n \geqq 0$ be integers. Then, for all real numbers $x>0$:

$$
\begin{equation*}
S_{k}(2 n ; x)<(-1)^{k+1} \psi^{(k)}(x)<S_{k}(2 n+1 ; x), \tag{1.16}
\end{equation*}
$$

where

$$
S_{k}(p ; x)=\frac{(k-1)!}{x^{k}}+\frac{k!}{2 x^{k+1}}+\sum_{i=1}^{p}\left[B_{2 i} \prod_{j=1}^{k-1}(2 i+j)\right] \frac{1}{x^{2 i+k}},
$$

$\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}\left(\mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right)$ are the Bernoulli numbers defined by

$$
\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!} .
$$

It follows from (1.16) that

$$
\begin{align*}
\frac{1}{x}+ & \frac{1}{2 x^{2}}+\frac{1}{6 x^{3}}-\frac{1}{30 x^{5}}+\frac{1}{42 x^{7}}-\frac{1}{30 x^{9}}<\psi^{\prime}(x) \\
& <\frac{1}{x}+\frac{1}{2 x^{2}}+\frac{1}{6 x^{3}}-\frac{1}{30 x^{5}}+\frac{1}{42 x^{7}}-\frac{1}{30 x^{9}}+\frac{5}{66 x^{11}} \quad(x>0) \tag{1.17}
\end{align*}
$$

By using the recurrence formula:

$$
\psi^{\prime}(x+1)=\psi^{\prime}(x)-\frac{1}{x^{2}},
$$

we deduce from (1.17) that, for $x>0$,

$$
\begin{align*}
\frac{1}{x}- & \frac{1}{2 x^{2}}+\frac{1}{6 x^{3}}-\frac{1}{30 x^{5}}+\frac{1}{42 x^{7}}-\frac{1}{30 x^{9}}<\psi^{\prime}(x+1) \\
& <\frac{1}{x}-\frac{1}{2 x^{2}}+\frac{1}{6 x^{3}}-\frac{1}{30 x^{5}}+\frac{1}{42 x^{7}}-\frac{1}{30 x^{9}}+\frac{5}{66 x^{11}} . \tag{1.18}
\end{align*}
$$

The numerical calculations presented in this work were performed by using the Maple software for symbolic computations.

2 A Method for the Construction of Continued-Fraction Approximations

In this section, we present a method to construct a continued-fraction approximation based upon a given asymptotic expansion (see Remark 1 and Remark 2 below).

Theorem 1 generalizes an earlier result [13, Lemma 1.1].
Theorem 1. Let $a_{\ell} \neq 0 \quad(\ell \in \mathbb{N})$ and

$$
\begin{equation*}
A(x) \sim \sum_{j=\ell}^{\infty} \frac{a_{j}}{x^{j}} \quad(x \rightarrow \infty) \tag{2.1}
\end{equation*}
$$

be a given asymptotic expansion. Define the function $B(x)$ by

$$
A(x)=\frac{a_{\ell}}{B(x)} .
$$

Then the function $B(x)=\frac{a_{\ell}}{A(x)}$ has the following asymptotic expansion:

$$
B(x) \sim x^{\ell}+b_{-(\ell-1)} x^{\ell-1}+b_{-(\ell-2)} x^{\ell-2}+\cdots+b_{-1} x+b_{0}+\sum_{j=1}^{\infty} \frac{b_{j}}{x^{j}} \quad(x \rightarrow \infty)
$$

where

$$
\left\{\begin{align*}
& b_{-(\ell-1)}=-\frac{a_{\ell+1}}{a_{\ell}} \tag{2.2}\\
& b_{-(\ell-2)}=-\frac{a_{\ell+2}+a_{\ell+1} b_{-(\ell-1)}}{a_{\ell}} \\
& \vdots \\
&=-\frac{a_{2 \ell-1}+a_{2 \ell-2} b_{-(\ell-1)}+a_{2 \ell-3} b_{-(\ell-2)}+\cdots+a_{\ell+1} b_{-2}}{a_{\ell}} \\
& b_{-1} \\
& b_{0}=-\frac{a_{2 \ell}+a_{j+2 \ell-1} b_{-(\ell-1)}+a_{2 \ell-2} b_{-(\ell-2)}+\cdots+a_{\ell+1} b_{-1}}{a_{\ell}} \\
& b_{j}=-\frac{1}{a_{\ell}}\left(a_{j+2 \ell}+a_{j+2 \ell-1} b_{-(\ell-1)}+a_{j+2 \ell-2} b_{-(\ell-2)}+\cdots+a_{j+\ell+1} b_{-1}\right. \\
&\left.\quad+\sum_{k=1}^{j} a_{k+\ell} b_{j-k}\right) \quad(j \in \mathbb{N}) .
\end{align*}\right.
$$

Proof. We begin by considering

$$
\begin{align*}
\frac{a_{\ell}}{A(x)} & \sim x^{\ell}+\sum_{j=-(\ell-1)}^{\infty} \frac{b_{j}}{x^{j}} \\
& =x^{\ell}+b_{-(\ell-1)} x^{\ell-1}+b_{-(\ell-2)} x^{\ell-2}+\cdots+b_{-1} x+\sum_{j=0}^{\infty} \frac{b_{j}}{x^{j}} \quad(x \rightarrow \infty) \tag{2.3}
\end{align*}
$$

where $b_{j}(j \in\{-(\ell-1),-(\ell-2),-1,0\} \cup \mathbb{N})$ are real numbers to be determined.
Upon writing (2.3) as follows:

$$
\begin{gather*}
\sum_{j=\ell}^{\infty} \frac{a_{j}}{x^{j}}\left(x^{\ell}+b_{-(\ell-1)} x^{\ell-1}+b_{-(\ell-2)} x^{\ell-2}+\cdots+b_{-1} x+\sum_{k=0}^{\infty} \frac{b_{k}}{x^{k}}\right) \sim a_{\ell} \\
\sum_{j=\ell+1}^{\infty} \frac{a_{j}}{x^{j-\ell}}+\sum_{j=\ell}^{\infty} \frac{a_{j} b_{-(\ell-1)}}{x^{j-\ell+1}}+\sum_{j=\ell}^{\infty} \frac{a_{j} b_{-(\ell-2)}}{x^{j-\ell+2}}+\cdots+\sum_{j=\ell}^{\infty} \frac{a_{j} b_{-1}}{x^{j-1}} \sim-\sum_{j=0}^{\infty} \frac{a_{j+\ell}}{x^{j+\ell}} \sum_{k=0}^{\infty} \frac{b_{k}}{x^{k}} \\
\sum_{j=0}^{\infty} \frac{a_{j+\ell+1}}{x^{j+1}}+\sum_{j=0}^{\infty} \frac{a_{j+\ell} b_{-(\ell-1)}}{x^{j+1}}+\sum_{j=0}^{\infty} \frac{a_{j+\ell} b_{-(\ell-2)}}{x^{j+2}}+\cdots+\sum_{j=0}^{\infty} \frac{a_{j+\ell} b_{-1}}{x^{j+\ell-1}} \\
\sim-\sum_{j=0}^{\infty} \sum_{k=0}^{j} \frac{a_{k+\ell} b_{j-k}}{x^{j+\ell}} \tag{2.4}
\end{gather*}
$$

It is easy to see that

$$
\begin{aligned}
\sum_{j=0}^{\infty} \frac{a_{j+\ell+1}}{x^{j+1}} & =\frac{a_{\ell+1}}{x}+\frac{a_{\ell+2}}{x^{2}}+\cdots+\frac{a_{2 \ell-1}}{x^{\ell-1}}+\sum_{j=0}^{\infty} \frac{a_{j+2 \ell}}{x^{j+\ell}}, \\
\sum_{j=0}^{\infty} \frac{a_{j+\ell} b_{-(\ell-1)}}{x^{j+1}} & =\frac{a_{\ell} b_{-(\ell-1)}}{x}+\frac{a_{\ell+1} b_{-(\ell-1)}}{x^{2}}+\cdots+\frac{a_{2 \ell-2} b_{-(\ell-1)}}{x^{\ell-1}}+\sum_{j=0}^{\infty} \frac{a_{j+2 \ell-1} b_{-(\ell-1)}}{x^{j+\ell}}, \\
\sum_{j=0}^{\infty} \frac{a_{j+\ell} b_{-(\ell-2)}}{x^{j+2}}= & \frac{a_{\ell} b_{-(\ell-2)}}{x^{2}}+\cdots+\frac{a_{2 \ell-3} b_{-(\ell-2)}}{x^{\ell-1}}+\sum_{j=0}^{\infty} \frac{a_{j+2 \ell-2} b_{-(\ell-2)}}{x^{j+\ell}}, \\
& \vdots \\
\sum_{j=0}^{\infty} \frac{a_{j+\ell} b_{-1}}{x^{j+\ell-1}} & =\frac{a_{\ell} b_{-1}}{x^{\ell-1}}+\sum_{j=0}^{\infty} \frac{a_{j+\ell+1} b_{-1}}{x^{j+\ell}} .
\end{aligned}
$$

Adding these equations, we see that the left-hand side of (2.4) can be written as follows:

$$
\begin{align*}
& \sum_{j=0}^{\infty} \frac{a_{j+\ell+1}}{x^{j+1}}+\sum_{j=0}^{\infty} \frac{a_{j+\ell} b_{-(\ell-1)}}{x^{j+1}}+\sum_{j=0}^{\infty} \frac{a_{j+\ell} b_{-(\ell-2)}}{x^{j+2}}+\cdots+\sum_{j=0}^{\infty} \frac{a_{j+\ell} b_{-1}}{x^{j+\ell-1}} \\
&=\frac{a_{\ell+1}+a_{\ell} b_{-(\ell-1)}}{x}+\frac{a_{\ell+2}+a_{\ell+1} b_{-(\ell-1)}+a_{\ell} b_{-(\ell-2)}}{x^{2}} \\
& \quad+\cdots+\frac{a_{2 \ell-1}+a_{2 \ell-2} b_{-(\ell-1)}+a_{2 \ell-3} b_{-(\ell-2)}+\cdots+a_{\ell} b_{-1}}{x^{\ell-1}} \\
& \quad+\sum_{j=0}^{\infty} \frac{a_{j+2 \ell}+a_{j+2 \ell-1} b_{-(\ell-1)}+a_{j+2 \ell-2} b_{-(\ell-2)}+\cdots+a_{j+\ell+1} b_{-1}}{x^{j+\ell}} \tag{2.5}
\end{align*}
$$

Equating the coefficients of equal powers of x on the right-hand sides of (2.4) and (2.5), we get

$$
\begin{align*}
& a_{\ell+1}+a_{\ell} b_{-(\ell-1)}=0, \\
& a_{\ell+2}+a_{\ell+1} b_{-(\ell-1)}+a_{\ell} b_{-(\ell-2)}=0, \\
& \vdots \tag{2.6}\\
& a_{2 \ell-1}+a_{2 \ell-2} b_{-(\ell-1)}+a_{2 \ell-3} b_{-(\ell-2)}+\cdots+a_{\ell} b_{-1}=0
\end{align*}
$$

and

$$
\begin{equation*}
a_{j+2 \ell}+a_{j+2 \ell-1} b_{-(\ell-1)}+a_{j+2 \ell-2} b_{-(\ell-2)}+\cdots+a_{j+\ell+1} b_{-1}=-\sum_{k=0}^{j} a_{k+\ell} b_{j-k} . \tag{2.7}
\end{equation*}
$$

We now find from (2.6) that

$$
\begin{aligned}
b_{-(\ell-1)} & =-\frac{a_{\ell+1}}{a_{\ell}}, \\
b_{-(\ell-2)} & =-\frac{a_{\ell+2}+a_{\ell+1} b_{-(\ell-1)}}{a_{\ell}}, \\
& \vdots \\
b_{-1} & =-\frac{a_{2 \ell-1}+a_{2 \ell-2} b_{-(\ell-1)}+a_{2 \ell-3} b_{-(\ell-2)}+\cdots+a_{\ell+1} b_{-2}}{a_{\ell}} .
\end{aligned}
$$

By setting $j=0$, we deduce from (2.7) that

$$
b_{0}=-\frac{a_{2 \ell}+a_{j+2 \ell-1} b_{-(\ell-1)}+a_{2 \ell-2} b_{-(\ell-2)}+\cdots+a_{\ell+1} b_{-1}}{a_{\ell}} .
$$

Moreover, for $j \in \mathbb{N}$, we have

$$
a_{j+2 \ell}+a_{j+2 \ell-1} b_{-(\ell-1)}+a_{j+2 \ell-2} b_{-(\ell-2)}+\cdots+a_{j+\ell+1} b_{-1}=-a_{\ell} b_{j}-\sum_{k=1}^{j} a_{k+\ell} b_{j-k},
$$

which yields

$$
\begin{gathered}
b_{j}=-\frac{1}{a_{\ell}}\left(a_{j+2 \ell}+a_{j+2 \ell-1} b_{-(\ell-1)}+a_{j+2 \ell-2} b_{-(\ell-2)}+\cdots+a_{j+\ell+1} b_{-1}+\sum_{k=1}^{j} a_{k+\ell} b_{j-k}\right) \\
(j \in \mathbb{N}) .
\end{gathered}
$$

The proof of Theorem 1 is thus completed.
The choice $\ell=1,2,3$ in Theorem 1 yields Corollaries 1, 2 and 3, respectively.
Corollary 1. Let $a_{1} \neq 0$ and

$$
A_{1}(x) \sim \sum_{j=1}^{\infty} \frac{a_{j}}{x^{j}} \quad(x \rightarrow \infty)
$$

be a given asymptotic expansion. Define the function $B(x)$ by

$$
A_{1}(x)=\frac{a_{1}}{B(x)}
$$

Then the function $B(x)=\frac{a_{1}}{A_{1}(x)}$ has asymptotic expansion of the following form:

$$
B(x) \sim x+\sum_{j=0}^{\infty} \frac{b_{j}}{x^{j}} \quad(x \rightarrow \infty),
$$

where

$$
\begin{equation*}
b_{0}=-\frac{a_{2}}{a_{1}} \quad \text { and } \quad b_{j}=-\frac{1}{a_{1}}\left(a_{j+2}+\sum_{k=1}^{j} a_{k+1} b_{j-k}\right) \quad(j \in \mathbb{N}) . \tag{2.8}
\end{equation*}
$$

Remark 1. Corollary 1 provides a method to construct a continued-fraction approximation based upon a given asymptotic expansion. The details of this method are given below.

Let $a_{1} \neq 0$ and

$$
\begin{equation*}
A(x) \sim \sum_{j=1}^{\infty} \frac{a_{j}}{x^{j}} \quad(x \rightarrow \infty) \tag{2.9}
\end{equation*}
$$

be a given asymptotic expansion. Then the asymptotic expansion (2.9) can be transformed into the continued-fraction approximation of the form:

$$
\begin{equation*}
A(x) \approx \frac{a_{1}}{x+b_{0}+\frac{b_{1}}{x+c_{0}+\frac{c_{1}}{x+d_{0}+\ddots}}} \quad(x \rightarrow \infty), \tag{2.10}
\end{equation*}
$$

wherein the constants are given by the following recurrence relations:

$$
\left\{\begin{array}{lll}
b_{0}=-\frac{a_{2}}{a_{1}} & \text { and } & b_{j}=-\frac{1}{a_{1}}\left(a_{j+2}+\sum_{k=1}^{j} a_{k+1} b_{j-k}\right) \\
c_{0}=-\frac{b_{2}}{b_{1}} & \text { and } & c_{j}=-\frac{1}{b_{1}}\left(b_{j+2}+\sum_{k=1}^{j} b_{k+1} c_{j-k}\right) \tag{2.11}\\
d_{0}=-\frac{c_{2}}{c_{1}} & \text { and } & d_{j}=-\frac{1}{c_{1}}\left(c_{j+2}+\sum_{k=1}^{j} c_{k+1} d_{j-k}\right)
\end{array}\right.
$$

Clearly, since $a_{j} \Longrightarrow b_{j} \Longrightarrow c_{j} \Longrightarrow d_{j} \Longrightarrow \cdots$, the asymptotic expansion (2.9) is transformed into the continued-fraction approximation (2.10), and the constants in the right-hand side of (2.10) are determined by the system (2.11).

Corollary 2. Let $a_{2} \neq 0$ and

$$
\begin{equation*}
A_{2}(x) \sim \sum_{j=2}^{\infty} \frac{a_{j}}{x^{j}} \quad(x \rightarrow \infty) \tag{2.12}
\end{equation*}
$$

be a given asymptotic expansion. Define the function $B(x)$ by

$$
A_{2}(x)=\frac{a_{2}}{B(x)} .
$$

Then the function $B(x)=\frac{a_{2}}{A_{2}(x)}$ has asymptotic expansion of the following form:

$$
B(x) \sim x^{2}+b_{-1} x+b_{0}+\sum_{j=1}^{\infty} \frac{b_{j}}{x^{j}} \quad(x \rightarrow \infty),
$$

where

$$
\begin{align*}
& b_{-1}=-\frac{a_{3}}{a_{2}}, \quad b_{0}=\frac{-a_{2}^{5} a_{4}+a_{2}^{4} a_{3}^{2}}{a_{2}^{6}} \\
& \text { and } \quad b_{j}=-\frac{1}{a_{2}}\left(a_{j+4}+a_{j+3} b_{-1}+\sum_{k=1}^{j} a_{k+2} a_{j-k}\right) \quad(j \in \mathbb{N}) . \tag{2.13}
\end{align*}
$$

Corollary 3. Let $\mu_{3} \neq 0$ and

$$
\begin{equation*}
F(x) \sim \sum_{j=3}^{\infty} \frac{\mu_{j}}{x^{j}} \quad(x \rightarrow \infty) \tag{2.14}
\end{equation*}
$$

be a given asymptotic expansion. Define the function $G(x)$ by

$$
F(x)=\frac{\mu_{3}}{G(x)}
$$

Then the function $G(x)=\frac{\mu_{3}}{F(x)}$ has asymptotic expansion of the following form:

$$
G(x) \sim x^{3}+a_{-2} x^{2}+a_{-1} x+a_{0}+\sum_{j=1}^{\infty} \frac{a_{j}}{x^{j}} \quad(x \rightarrow \infty),
$$

where

$$
\begin{align*}
& a_{-2}=-\frac{\mu_{4}}{\mu_{3}}, \quad a_{-1}=-\frac{\mu_{3} \mu_{5}-\mu_{4}^{2}}{\mu_{3}^{2}}, \quad a_{0}=-\frac{\mu_{3}^{2} \mu_{6}-2 \mu_{3} \mu_{4} \mu_{5}+\mu_{4}^{3}}{\mu_{3}^{3}} \\
& \text { and } \quad a_{j}=-\frac{1}{\mu_{3}}\left(\mu_{j+6}+\mu_{j+5} a_{-2}+\mu_{j+4} a_{-1}+\sum_{k=1}^{j} \mu_{k+3} a_{j-k}\right) \quad(j \in \mathbb{N}) . \tag{2.15}
\end{align*}
$$

We next prove the following result.
Theorem 2. Let $a_{\ell} \neq 0 \quad(\ell \in \mathbb{N})$ and

$$
\begin{equation*}
A(x) \sim \sum_{j=\ell}^{\infty} \frac{a_{j}}{x^{2 j-1}} \quad(x \rightarrow \infty) \tag{2.16}
\end{equation*}
$$

be a given asymptotic expansion. Define the function $B(x)$ by

$$
A(x)=\frac{a_{\ell}}{B(x)}
$$

Then the function $B(x)=\frac{a_{\ell}}{A(x)}$ has asymptotic expansion of the following form:

$$
B(x) \sim x^{2 \ell-1}+b_{-(\ell-2)} x^{2 \ell-3}+b_{-(\ell-3)} x^{2 \ell-5}+\cdots+b_{-1} x^{3}+b_{0} x+\sum_{j=1}^{\infty} \frac{b_{j}}{x^{2 j-1}} \quad(x \rightarrow \infty)
$$

where

$$
\left\{\begin{align*}
& b_{-(\ell-2)}=-\frac{a_{\ell+1}}{a_{\ell}} \tag{2.17}\\
& b_{-(\ell-3)}=-\frac{a_{\ell+2}+a_{\ell+1} b_{-(\ell-2)}}{a_{\ell}} \\
& \vdots \\
& b_{-1} \quad=-\frac{a_{2 \ell-1}+a_{2 \ell-2} b_{-(\ell-1)}+a_{2 \ell-3} b_{-(\ell-2)}+\cdots+a_{\ell+1} b_{-2}}{a_{\ell}} \\
& b_{0} \quad-\frac{a_{2 \ell-2}+a_{2 \ell-3} b_{-(\ell-2)}+a_{2 \ell-4} b_{-(\ell-3)}+\cdots+a_{\ell+1} b_{-2}}{a_{\ell}} \\
& b_{j} \quad-\frac{1}{a_{\ell}\left(a_{j+2 \ell-1}+a_{j+2 \ell-2} b_{-(\ell-2)}+a_{j+2 \ell-3} b_{-(\ell-3)}+\cdots+a_{j+\ell+1} b_{-1}\right.} \\
&\left.\quad+\sum_{k=1}^{j} a_{k+\ell} b_{j-k}\right) \quad(j \in \mathbb{N}) .
\end{align*}\right.
$$

Proof. We first let

$$
\begin{align*}
\frac{a_{\ell}}{A(x)} & \sim x^{2 \ell-1}+\sum_{j=-(\ell-2)}^{\infty} \frac{b_{j}}{x^{2 j-1}} \\
& =x^{2 \ell-1}+b_{-(\ell-2)} x^{2 \ell-3}+b_{-(\ell-3)} x^{2 \ell-5}+\cdots+b_{-1} x^{3}+b_{0} x+\sum_{j=1}^{\infty} \frac{b_{j}}{x^{2 j-1}} \quad(x \rightarrow \infty), \tag{2.18}
\end{align*}
$$

where $b_{j}(j \in\{-(\ell-2),-(\ell-3),-1,0\} \cup \mathbb{N})$ are real numbers to be determined. Then, by writing (2.18) as follows:

$$
\begin{aligned}
& \quad \sum_{j=\ell}^{\infty} \frac{a_{j}}{x^{2 j-1}}\left(x^{2 \ell-1}+b_{-(\ell-2)} x^{2 \ell-3}+b_{-(\ell-3)} x^{2 \ell-5}+\cdots+b_{-1} x^{3}+\sum_{k=0}^{\infty} \frac{b_{k}}{x^{2 k-1}}\right) \sim a_{\ell}, \\
& \sum_{j=\ell+1}^{\infty} \frac{a_{j}}{x_{j}^{2 j-2 \ell}}+\sum_{j=\ell}^{\infty} \frac{a_{j} b_{-(\ell-2)}}{x^{2 j-2 \ell+2}}+\sum_{j=\ell}^{\infty} \frac{a_{j} b_{-(\ell-3)}}{x^{2 j-2 \ell+4}}+\cdots+\sum_{j=\ell}^{\infty} \frac{a_{j} b_{-1}}{x^{2 j-4}} \sim-\sum_{j=0}^{\infty} \frac{a_{j+\ell}}{x^{2(j+\ell)-1}} \sum_{k=0}^{\infty} \frac{b_{k}}{x^{2 k-1}},
\end{aligned}
$$

and

$$
\begin{align*}
& \sum_{j=0}^{\infty} \frac{a_{j+\ell+1}}{x^{2 j+2}}+\sum_{j=0}^{\infty} \frac{a_{j+\ell} b_{-(\ell-2)}}{x^{2 j+2}}+\sum_{j=0}^{\infty} \frac{a_{j+\ell} b_{-(\ell-3)}}{x^{2 j+4}}+\cdots+\sum_{j=0}^{\infty} \frac{a_{j+\ell} b_{-1}}{x^{2 j+2 \ell-4}} \\
& \quad \sim-\sum_{j=0}^{\infty} \sum_{k=0}^{j} \frac{a_{k+\ell} b_{j-k}}{x^{2 j+2 \ell-2}} . \tag{2.19}
\end{align*}
$$

It is easy to see that

$$
\begin{aligned}
& \sum_{j=0}^{\infty} \frac{a_{j+\ell+1}}{x^{2 j+2}}=\frac{a_{\ell+1}}{x^{2}}+\frac{a_{\ell+2}}{x^{4}}+\cdots+\frac{a_{2 \ell-2}}{x^{2 \ell-4}}+\sum_{j=0}^{\infty} \frac{a_{j+2 \ell-1}}{x^{2 j+2 \ell-2}}, \\
& \sum_{j=0}^{\infty} \frac{a_{j+\ell} b_{-(\ell-2)}}{x^{2 j+2}}=\frac{a_{\ell} b_{-(\ell-2)}}{x^{2}}+\frac{a_{\ell+1} b_{-(\ell-2)}}{x^{4}}+\cdots+\frac{a_{2 \ell-3} b_{-(\ell-2)}}{x^{2 \ell-4}}+\sum_{j=0}^{\infty} \frac{a_{j+2 \ell-2} b_{-(\ell-2)}}{x^{2 j+2 \ell-2}}, \\
& \sum_{j=0}^{\infty} \frac{a_{j+\ell} b_{-(\ell-3)}}{x^{2 j+4}}=\frac{a_{\ell} b_{-(\ell-3)}}{x^{4}}+\cdots+\frac{a_{2 \ell-4} b_{-(\ell-3)}}{x^{2 \ell-4}}+\sum_{j=0}^{\infty} \frac{a_{j+2 \ell-3} b_{-(\ell-3)}}{x^{2 j+2 \ell-2}}, \\
& \vdots \\
& \sum_{j=0}^{\infty} \frac{a_{j+\ell} b_{-1}}{x^{2 j+2 \ell-4}}=\frac{a_{\ell} b_{-1}}{x^{2 \ell-4}+\sum_{j=0}^{\infty} \frac{a_{j+\ell+1} b_{-1}}{x^{2 j+2 \ell-2}} .}
\end{aligned}
$$

Adding these equations, we see the left-hand side of (2.19) can be written as follows:

$$
\begin{align*}
\sum_{j=0}^{\infty} & \frac{a_{j+\ell+1}}{x^{2 j+2}}+\sum_{j=0}^{\infty} \frac{a_{j+\ell} b_{-(\ell-2)}}{x^{2 j+2}}+\sum_{j=0}^{\infty} \frac{a_{j+\ell} b_{-(\ell-3)}}{x^{2 j+4}}+\cdots+\sum_{j=0}^{\infty} \frac{a_{j+\ell} b_{-1}}{x^{2 j+2 \ell-4}} \\
= & \frac{a_{\ell+1}+a_{\ell} b_{-(\ell-2)}}{x^{2}}+\frac{a_{\ell+2}+a_{\ell+1} b_{-(\ell-2)}+a_{\ell} b_{-(\ell-3)}}{x^{4}} \\
& +\cdots+\frac{a_{2 \ell-2}+a_{2 \ell-3} b_{-(\ell-2)}+a_{2 \ell-4} b_{-(\ell-3)}+\cdots+a_{\ell} b_{-1}}{x^{2 \ell-4}} \\
& +\sum_{j=0}^{\infty} \frac{a_{j+2 \ell-1}+a_{j+2 \ell-2} b_{-(\ell-2)}+a_{j+2 \ell-3} b_{-(\ell-3)}+\cdots+a_{j+\ell+1} b_{-1}}{x^{2 j+2 \ell-2}} . \tag{2.20}
\end{align*}
$$

Equating the coefficients of equal powers of x on the right-hand sides of (2.19) and (2.20), we get

$$
\begin{align*}
& a_{\ell+1}+a_{\ell} b_{-(\ell-2)}=0, \\
& a_{\ell+2}+a_{\ell+1} b_{-(\ell-2)}+a_{\ell} b_{-(\ell-3)}=0, \\
& \vdots \tag{2.21}\\
& a_{2 \ell-2}+a_{2 \ell-3} b_{-(\ell-2)}+a_{2 \ell-4} b_{-(\ell-3)}+\cdots+a_{\ell+1} b_{-2}+a_{\ell} b_{-1}=0
\end{align*}
$$

and
$a_{j+2 \ell-1}+a_{j+2 \ell-2} b_{-(\ell-2)}+a_{j+2 \ell-3} b_{-(\ell-3)}+\cdots+a_{j+\ell+1} b_{-1}=-\sum_{k=0}^{j} a_{k+\ell} b_{j-k} \quad\left(j \in \mathbb{N}_{0}\right)$.

We now find from (2.21) that

$$
\begin{aligned}
b_{-(\ell-2)} & =-\frac{a_{\ell+1}}{a_{\ell}}, \\
b_{-(\ell-3)} & =-\frac{a_{\ell+2}+a_{\ell+1} b_{-(\ell-2)}}{a_{\ell}}, \\
& \vdots \\
b_{-1} & =-\frac{a_{2 \ell-2}+a_{2 \ell-3} b_{-(\ell-2)}+a_{2 \ell-4} b_{-(\ell-3)}+\cdots+a_{\ell+1} b_{-2}}{a_{\ell}} .
\end{aligned}
$$

For $j=0$, we obtain from (2.22) that

$$
b_{0}=-\frac{a_{2 \ell-1}+a_{2 \ell-2} b_{-(\ell-2)}+a_{2 \ell-3} b_{-(\ell-3)}+\cdots+a_{\ell+1} b_{-1}}{a_{\ell}}
$$

and, for $j \in \mathbb{N}$, we have

$$
a_{j+2 \ell-1}+a_{j+2 \ell-2} b_{-(\ell-2)}+a_{j+2 \ell-3} b_{-(\ell-3)}+\cdots+a_{j+\ell+1} b_{-1}=-a_{\ell} b_{j}-\sum_{k=1}^{j} a_{k+\ell} b_{j-k},
$$

which yields
$b_{j}=-\frac{1}{a_{\ell}}\left(a_{j+2 \ell-1}+a_{j+2 \ell-2} b_{-(\ell-2)}+a_{j+2 \ell-3} b_{-(\ell-3)}+\cdots+a_{j+\ell+1} b_{-1}+\sum_{k=1}^{j} a_{k+\ell} b_{j-k}\right)$
for $j \in \mathbb{N}$. The proof of Theorem 2 is thus completed.
Theorem 2 implies Corollaries 4 and 5 below.
Corollary 4. Let $a_{1} \neq 0$ and

$$
\begin{equation*}
A_{1}(x) \sim \sum_{j=1}^{\infty} \frac{a_{j}}{x^{2 j-1}} \quad(x \rightarrow \infty) \tag{2.23}
\end{equation*}
$$

be a given asymptotic expansion. Define the function $B(x)$ by

$$
A_{1}(x)=\frac{a_{1}}{B(x)} .
$$

Then the function $B(x)=\frac{a_{1}}{A_{1}(x)}$ has asymptotic expansion of the following form:

$$
B(x) \sim x+\sum_{j=1}^{\infty} \frac{b_{j}}{x^{2 j-1}} \quad(x \rightarrow \infty)
$$

where

$$
\begin{equation*}
b_{1}=-\frac{a_{2}}{a_{1}} \quad \text { and } \quad b_{j}=-\frac{1}{a_{1}}\left(a_{j+1}+\sum_{k=1}^{j-1} a_{k+1} b_{j-k}\right) \quad(j \in \mathbb{N} \backslash\{1\}) . \tag{2.24}
\end{equation*}
$$

Proof. We write the last line in (2.17) as follows:

$$
\begin{aligned}
b_{j}=-\frac{1}{a_{\ell}} & \left(a_{j+2 \ell-1}+a_{j+2 \ell-2} b_{-(\ell-2)}+a_{j+2 \ell-3} b_{-(\ell-3)}\right. \\
& \left.+\cdots+a_{j+\ell+1} b_{-1}+a_{j+\ell} b_{0}+\sum_{k=1}^{j-1} a_{k+\ell} b_{j-k}\right)
\end{aligned}
$$

for $j \in \mathbb{N}$, where an empty sum is understood to be zero. Choosing $\ell=1$ and noticing that

$$
b_{-(\ell-2)}=b_{-(\ell-3)}=\cdots=b_{-1}=b_{0}=0,
$$

we get

$$
b_{j}=-\frac{1}{a_{1}}\left(a_{j+1}+\sum_{k=1}^{j-1} a_{k+\ell} b_{j-k}\right) \quad(j \in \mathbb{N}),
$$

which gives the desired formula (2.24) asserted by Corollary 4.
Remark 2. Corollary 4 provides a method to convert the asymptotic expansion (2.23) into a continued fraction of the form:

$$
\begin{equation*}
A_{1}(x) \approx \frac{a_{1}}{x+\frac{b_{1}}{x+\frac{c_{1}}{x+\frac{d_{1}}{x+\ddots}}}} \quad(x \rightarrow \infty) \tag{2.25}
\end{equation*}
$$

where the constants in the right-hand side of (2.25) are given by the following recurrence relations:

$$
\left\{\begin{array}{rlrlrl}
b_{1}=-\frac{a_{2}}{a_{1}} & \text { and } & & b_{j} & =-\frac{1}{a_{1}}\left(a_{j+1}+\sum_{k=1}^{j-1} a_{k+1} b_{j-k}\right) \tag{2.26}\\
c_{1}= & -\frac{b_{2}}{b_{1}} & & \text { and } & & c_{j}=-\frac{1}{b_{1}}\left(b_{j+1}+\sum_{k=1}^{j-1} b_{k+1} c_{j-k}\right) \\
d_{1}= & -\frac{c_{2}}{c_{1}} & & \text { and } & & d_{j}=-\frac{1}{c_{1}}\left(c_{j+1}+\sum_{k=1}^{j-1} c_{k+1} d_{j-k}\right) \\
& \ldots & \ldots & & &
\end{array}\right.
$$

Clearly, since

$$
a_{j} \Longrightarrow b_{j} \Longrightarrow c_{j} \Longrightarrow d_{j} \Longrightarrow \cdots,
$$

the asymptotic expansion (2.23) is transformed into the continued-fraction approximation (2.25), and the constants in the right-hand side of (2.25) are determined by the system (2.26).

Corollary 5. Let $\lambda_{2} \neq 0$ and

$$
\begin{equation*}
F(x) \sim \sum_{j=2}^{\infty} \frac{\lambda_{j}}{x^{2 j-1}} \quad(x \rightarrow \infty) \tag{2.27}
\end{equation*}
$$

be a given asymptotic expansion. Define the function $G(x)$ by

$$
F(x)=\frac{\lambda_{2}}{G(x)} .
$$

Then the function $G(x)=\frac{\lambda_{2}}{F(x)}$ has asymptotic expansion of the following form:

$$
G(x) \sim x^{3}+a_{0} x+\sum_{j=1}^{\infty} \frac{a_{j}}{x^{2 j-1}} \quad(x \rightarrow \infty),
$$

where

$$
\begin{equation*}
a_{0}=-\frac{\lambda_{3}}{\lambda_{2}} \quad \text { and } \quad a_{j}=-\frac{1}{\lambda_{2}}\left(\lambda_{j+3}+\sum_{k=1}^{j} \lambda_{k+2} a_{j-k}\right) \quad(j \in \mathbb{N}) . \tag{2.28}
\end{equation*}
$$

3 Continued-Fraction Approximations for the Gamma Function

In this section, we develop the approximation formula (1.14) in order to derive various other continued-fraction approximations associate with the gamma function $\Gamma(x)$.

Let $r \neq 0$ be a given real number and $\ell \geqq 0$ be a given integer. Chen and Lin [9] proved that the gamma function $\Gamma(x)$ has the following asymptotic expansion:

$$
\begin{equation*}
\Gamma(x+1) \sim \sqrt{2 \pi x}\left(\frac{x}{e}\right)^{x}\left(1+\sum_{j=1}^{\infty} \frac{b_{j}(\ell, r)}{x^{j}}\right)^{x^{\ell} / r} \quad(x \rightarrow \infty) \tag{3.1}
\end{equation*}
$$

with the coefficients $b_{j}(\ell, r)(j \in \mathbb{N})$ given by

$$
\begin{equation*}
b_{j}(\ell, r)=\sum \frac{r^{k_{1}+k_{2}+\cdots+k_{j}}}{k_{1}!k_{2}!\cdots k_{j}!}\left(\frac{B_{2}}{1 \cdot 2}\right)^{k_{1}}\left(\frac{B_{3}}{2 \cdot 3}\right)^{k_{2}} \cdots\left(\frac{B_{j+1}}{j(j+1)}\right)^{k_{j}} \tag{3.2}
\end{equation*}
$$

where $\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ are the Bernoulli numbers, summed over all nonnegative integers k_{j} satisfying the following equation:

$$
(1+\ell) k_{1}+(2+\ell) k_{2}+\cdots+(j+\ell) k_{j}=j
$$

The choice $(\ell, r)=(0,12)$ in (3.1) yields

$$
\begin{align*}
A(x):= & \left(\frac{\Gamma(x+1)}{\sqrt{2 \pi x}\left(\frac{x}{e}\right)^{x}}\right)^{12}-1 \sim \sum_{j=1}^{\infty} \frac{a_{j}}{x^{j}} \\
=\frac{1}{x} & +\frac{1}{2 x^{2}}+\frac{2}{15 x^{3}}+\frac{1}{120 x^{4}}+\frac{1}{840 x^{5}}+\frac{149}{25200 x^{6}}-\frac{19}{6300 x^{7}}-\frac{131}{22400 x^{8}} \\
& +\frac{663799}{99792000 x^{9}}+\frac{12748781}{1397088000 x^{10}}-\frac{81764339}{4540536000 x^{11}} \\
& -\frac{23598827489}{1089728640000 x^{12}}+\cdots \quad(x \rightarrow \infty), \tag{3.3}
\end{align*}
$$

where the coefficients $a_{j} \equiv b_{j}(0,12)(j \in \mathbb{N})$ are given by

$$
\begin{equation*}
a_{j}=\sum \frac{12^{k_{1}+k_{2}+\cdots+k_{j}}}{k_{1}!k_{2}!\cdots k_{j}!}\left(\frac{B_{2}}{1 \cdot 2}\right)^{k_{1}}\left(\frac{B_{3}}{2 \cdot 3}\right)^{k_{2}} \cdots\left(\frac{B_{j+1}}{j(j+1)}\right)^{k_{j}}, \tag{3.4}
\end{equation*}
$$

summed over all nonnegative integers k_{j} satisfying the following equation:

$$
k_{1}+2 k_{2}+\cdots+j k_{j}=j .
$$

Based upon the asymptotic expansion (3.3) and by using the system (2.11), we develop the approximation formula (1.14) with a view to deriving a continued-fraction approximation given by Theorem 3.

Theorem 3. It is asserted that

$$
\begin{equation*}
\left.\Gamma(x+1) \sim \sqrt{2 \pi x}\left(\frac{x}{e}\right)^{x}\left(1+\frac{1}{x-\frac{1}{2}+\frac{\frac{7}{60}}{x+\frac{317}{2940}}}\right)^{x+\ddots}\right) \quad(x \rightarrow \infty) \tag{3.5}
\end{equation*}
$$

Proof. By Remark 1, we can convert the asymptotic expansion (3.3) into a continued-fraction approximation of the form:

$$
\begin{equation*}
A(x) \approx \frac{a_{1}}{x+b_{0}+\frac{b_{1}}{x+c_{0}+\frac{c_{1}}{x+d_{0}+\ddots}}} \quad(x \rightarrow \infty), \tag{3.6}
\end{equation*}
$$

where the constants in the right-hand side can be determined by using the system (2.11). Moreover, by noting that

$$
a_{1}=1, \quad a_{2}=\frac{1}{2}, \quad a_{3}=\frac{2}{15}, \quad a_{4}=\frac{1}{120}, \quad a_{5}=\frac{1}{840}, \quad a_{6}=\frac{149}{25200}, \quad \cdots,
$$

we find from the first recurrence relation in (2.11) that

$$
\begin{aligned}
& b_{0}=-\frac{a_{2}}{a_{1}}=-\frac{1}{2}, \\
& b_{1}=-\frac{a_{3}+a_{2} b_{0}}{a_{1}}=\frac{7}{60}, \\
& b_{2}=-\frac{a_{4}+a_{2} b_{1}+a_{3} b_{0}}{a_{1}}=0, \\
& b_{3}=-\frac{a_{5}+a_{2} b_{2}+a_{3} b_{1}+a_{4} b_{0}}{a_{1}}=-\frac{317}{25200}, \\
& b_{4}=-\frac{a_{6}+a_{2} b_{3}+a_{3} b_{2}+a_{4} b_{1}+a_{5} b_{0}}{a_{1}}=0, \quad \cdots .
\end{aligned}
$$

From the second recurrence relation in (2.11), we have

$$
\begin{aligned}
& c_{0}=-\frac{b_{2}}{b_{1}}=0, \\
& c_{1}=-\frac{b_{3}+b_{2} c_{0}}{b_{1}}=\frac{317}{2940}, \\
& c_{2}=-\frac{b_{4}+b_{2} c_{1}+b_{3} c_{0}}{b_{1}}=0, \quad \cdots .
\end{aligned}
$$

Continuing the above process, we get

$$
d_{0}=-\frac{c_{2}}{c_{1}}=0, \quad \cdots .
$$

We see that (3.6) can be written as (3.5). The proof of Theorem 3 is thus completed.
Remark 3. Based upon the asymptotic expansion (3.3), following the same method as was used in the proof of Theorem 3, we find that

$$
\begin{equation*}
\left(\frac{\Gamma(x+1)}{\sqrt{2 \pi x}\left(\frac{x}{e}\right)^{x}}\right)^{12} \approx 1+\frac{1}{x-\frac{1}{2}+\frac{\frac{7}{60}}{x+\frac{\frac{317}{290}}{x+\frac{30397}{62132}}}} \tag{3.7}
\end{equation*}
$$

as $x \rightarrow \infty$. Moreover, based upon the continued-fraction approximation (3.7), we can find new inequalities for the gamma function $\Gamma(x)$. For example, we find for $n \geqq 1$ that

$$
\begin{equation*}
1+\frac{1}{n-\frac{1}{2}+\frac{\frac{7}{60}}{n+\frac{\frac{317}{2940}}{n+\frac{\frac{30397}{62132}}{n}}}}<\left(\frac{\Gamma(n+1)}{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}}\right)^{12}<1+\frac{1}{n-\frac{1}{2}+\frac{\frac{7}{60}}{n+\frac{317}{n}}} \tag{3.8}
\end{equation*}
$$

As $n \rightarrow \infty$, the following approximation formulas hold true:

$$
\begin{align*}
& \Gamma(n+1) \sim \rho_{n}:=\sqrt{\pi}\left(\frac{n}{e}\right)^{n}\left(8 n^{3}+4 n^{2}+n+\frac{1}{30}\right)^{1 / 6} \quad \text { (Ramanujan's formula) } \tag{3.9}\\
& \Gamma(n+1) \sim \kappa_{n}:= \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\left(1+\frac{1}{n-\frac{1}{2}}\right)^{\frac{1}{12}}\left(1+\frac{1}{\left(n-\frac{1}{2}\right)^{3}}\right)^{-\frac{7}{720}} \\
& \cdot\left(1+\frac{1}{\left(n-\frac{1}{2}\right)^{4}}\right)^{\frac{7}{480}} \quad \text { (Mortici-Srivastava formula [25]) } \tag{3.10}
\end{align*}
$$

and

$$
\begin{equation*}
\Gamma(n+1) \sim \nu_{n}:=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\left(1+\frac{1}{n-\frac{1}{2}+\frac{\frac{7}{60}}{n+\frac{317}{2940}}}\right)^{\frac{1}{12}} \quad \text { (New formula). } \tag{3.11}
\end{equation*}
$$

It is observed from the following Table that, among the approximation formulas (3.9), (3.10) and (3.11), for $n \in \mathbb{N}$, the formula (3.11) is believe to be the best one.

Table. Comparison among approximation formulas (3.9), (3.10) and (3.11)

n	$\frac{\rho_{n}-n!}{n!}$	$\frac{\kappa_{n}-n!}{n!}$	$\frac{\nu_{n}-n!}{n!}$
1	2.833×10^{-4}	3.091×10^{-2}	2.160×10^{-4}
10	8.587×10^{-8}	1.822×10^{-7}	5.047×10^{-11}
100	9.451×10^{-12}	1.512×10^{-12}	5.127×10^{-18}
1000	9.538×10^{-16}	1.486×10^{-17}	5.128×10^{-25}
10000	9.547×10^{-20}	1.483×10^{-22}	5.128×10^{-32}

Recently, Mortici and Srivastava [25, Theorem 2] proved, as $x \rightarrow \infty$, that

$$
\begin{align*}
\Gamma(x+1) \sim & \sqrt{2 \pi x}\left(\frac{x}{e}\right)^{x}\left(1+\frac{1}{x-\frac{1}{2}}\right)^{\frac{1}{12}} \exp \left(\sum_{i=1}^{\infty} \frac{\lambda_{i}}{x^{2 i-1}}\right) \\
= & \sqrt{2 \pi x}\left(\frac{x}{e}\right)^{x}\left(1+\frac{1}{x-\frac{1}{2}}\right)^{\frac{1}{12}} \exp \left(-\frac{7}{720 x^{3}}-\frac{1}{4032 x^{5}}-\frac{1}{1280 x^{7}}\right. \\
& +\frac{245}{304128 x^{9}}-\frac{32287}{16773120 x^{11}}+\frac{105}{16384 x^{13}}-\frac{7407701}{250675200 x^{15}} \\
& \left.+\frac{169109795}{941359104 x^{17}}-\frac{401519531}{288358400 x^{19}}+\cdots\right), \tag{3.12}
\end{align*}
$$

where

$$
\begin{equation*}
\lambda_{i}=\frac{B_{2 i}}{2 i(2 i-1)}-\frac{1}{12(2 i-1)}-\frac{1}{12} \sum_{j=1}^{2 i-2} \frac{1}{j 2^{2 i-j-1}}\binom{-j}{2 i-j-1} \quad(i \in \mathbb{N}) . \tag{3.13}
\end{equation*}
$$

We convert the asymptotic expansion (3.12) into a continued fraction given by Theorem 4 below.

Theorem 4. For $x \rightarrow \infty$, it is asserted that

$$
\Gamma(x+1) \approx \sqrt{2 \pi x}\left(\frac{x}{e}\right)^{x}\left(1+\frac{1}{x-\frac{1}{2}}\right)^{\frac{1}{12}}
$$

Proof. Let us put

$$
\begin{equation*}
F(x)=\ln \left(\frac{\Gamma(x+1)}{\sqrt{2 \pi x}\left(\frac{x}{e}\right)^{x}\left(1+\frac{1}{x-\frac{1}{2}}\right)^{\frac{1}{12}}}\right) . \tag{3.15}
\end{equation*}
$$

Then, by noting that $\lambda_{1}=0$, we have

$$
\begin{equation*}
F(x) \sim \sum_{i=2}^{\infty} \frac{\lambda_{i}}{x^{2 i-1}} \quad(x \rightarrow \infty) \tag{3.16}
\end{equation*}
$$

where λ_{i} are given in (3.13).
We now define the function $G(x)$ by

$$
\begin{equation*}
F(x)=\frac{\lambda_{2}}{G(x)} \quad\left(\lambda_{2}=-\frac{7}{720}\right) . \tag{3.17}
\end{equation*}
$$

By Corollary 5, we find for $x \rightarrow \infty$ that

$$
\begin{equation*}
G(x)=\frac{\lambda_{2}}{F(x)} \sim x^{3}-\frac{5}{196} x+A_{1}(x), \tag{3.18}
\end{equation*}
$$

where

$$
\begin{align*}
A_{1}(x)=\sum_{j=1}^{\infty} \frac{a_{j}}{x_{j}^{2 j-1}}= & -\frac{1531}{19208 x}+\frac{2700395}{31059336 x^{3}}-\frac{31009745857}{158278376256 x^{5}}+\frac{6779851492025}{10340853915392 x^{7}} \\
& -\frac{51752493558906075839}{17055583996812641280 x^{9}}+\frac{78309631785485666443399}{4234332986942018408448 x^{11}} \\
& -\frac{7742687957195958707976251459}{53945402253641314523627520 x^{13}}+\cdots, \tag{3.19}
\end{align*}
$$

and the coefficients a_{j} in (3.19) can be calculated by the following recurrence relation:

$$
a_{0}=-\frac{\lambda_{3}}{\lambda_{2}}, \quad a_{j}=-\frac{1}{\lambda_{2}}\left(\lambda_{j+3}+\sum_{k=1}^{j} \lambda_{k+2} a_{j-k}\right) \quad(j \in \mathbb{N})
$$

By Remark 2, the asymptotic expansion (3.19) can be transformed into the following continuedfraction approximation:

$$
\begin{equation*}
A_{1}(x) \approx \frac{a_{1}}{x+\frac{b_{1}}{x+\frac{c_{1}}{x+\frac{d_{1}}{x+\ddots}}}} \quad(x \rightarrow \infty) \tag{3.20}
\end{equation*}
$$

where the constants in the right-hand side can be determined by using the system (2.26).
We see from (3.19) that

$$
\begin{aligned}
& a_{1}=-\frac{1531}{19208}, \quad a_{2}=\frac{2700395}{31059336}, \quad a_{3}=-\frac{31009745857}{158278376256}, \\
& a_{4}=\frac{6779851492025}{10340853915392}, \quad a_{5}=-\frac{51752493558906075839}{17055583996812641280}, \cdots .
\end{aligned}
$$

From the first recurrence relation in (2.26), we have

$$
\begin{aligned}
& b_{1}=-\frac{a_{2}}{a_{1}}=\frac{2700395}{2475627}, \\
& b_{2}=-\frac{a_{3}+a_{2} b_{1}}{a_{1}}=-\frac{336661200211}{265467647016}, \\
& b_{3}=-\frac{a_{4}+a_{2} b_{2}+a_{3} b_{1}}{a_{1}}=\frac{223241534903487835}{53648887720757472}, \\
& b_{4}=-\frac{a_{5}+a_{2} b_{3}+a_{3} b_{2}+a_{4} b_{1}}{a_{1}}=-\frac{256864633480533312861196423}{11980422174075967529723520}, \cdots .
\end{aligned}
$$

Also, from the second recurrence relation in (2.26), we get

$$
\begin{aligned}
& c_{1}=-\frac{b_{2}}{b_{1}}=\frac{16496398810339}{14188933884840}, \\
& c_{2}=-\frac{b_{3}+b_{2} c_{1}}{b_{1}}=-\frac{194269584893463401}{78871712215566400}, \cdots .
\end{aligned}
$$

Continuing the above process, it is seen that

$$
d_{1}=-\frac{c_{2}}{c_{1}}=\frac{4087914301362953523}{1929557042068438120}, \quad \cdots .
$$

We thus find for $x \rightarrow \infty$ that

$$
\begin{align*}
& A_{1}(x) \approx \frac{-\frac{1531}{19208}}{x+\frac{\frac{2770395}{24567}}{x+\frac{\frac{16496398810339}{14188933884840}}{x+\frac{40789143013293523}{1929557042068438120}}}} . \tag{3.21}\\
& x+\ddots .
\end{align*}
$$

From (3.17), (3.18) and (3.21), we obtain the desired result (3.14). The proof of Theorem 4 is thus completed.

Remark 4. By applying a lemma of Mortici [23,24], You [32, Theorem 1] proved for $n \rightarrow \infty$ that

$$
\begin{align*}
\Gamma(n+1) \approx & \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\left(1+\frac{1}{n-\frac{1}{2}}\right)^{\frac{1}{12}} \\
& \cdot \exp \binom{\frac{1}{n} \frac{-\frac{7}{720}}{n^{2}-\frac{5}{196}+\frac{1531}{19208}}}{n^{2}+\frac{2700395}{2475627}+\frac{-\frac{336661200211}{265467647016}}{n+\frac{4559496990915}{1388500719857988}+\ddots}} . \tag{3.22}
\end{align*}
$$

We find that

$$
\begin{align*}
& \frac{-\frac{7}{720}}{n^{3}-\frac{5}{196} n+\frac{-\frac{1531}{19208}}{n+\frac{\frac{2700395}{2475627}}{n+\frac{\frac{16496398810339}{14188933884840}}{n+\frac{4087914301362953523}{1929557042068438120}}}}} \tag{3.23}
\end{align*}
$$

This development seems to indicate that the formula (3.14) is equivalent to the formula (3.22).
By Lemma 1, we obtain from (3.12) for $x \rightarrow \infty$ that

$$
\begin{align*}
F(x):= & \frac{\Gamma(x+1)}{\sqrt{2 \pi x}\left(\frac{x}{e}\right)^{x}\left(1+\frac{1}{x-\frac{1}{2}}\right)^{\frac{1}{12}}-1} \\
\sim & -\frac{7}{720 x^{3}}-\frac{1}{4032 x^{5}}+\frac{49}{1036800 x^{6}}-\frac{1}{1280 x^{7}}+\frac{1}{414720 x^{8}}+\frac{19841227}{24634368000 x^{9}} \\
& +\frac{6199}{812851200 x^{10}}-\frac{104610517}{54344908800 x^{11}}-\frac{3793207123}{496628858880000 x^{12}}+\cdots . \tag{3.24}
\end{align*}
$$

Let us now define the function $G(x)$ by

$$
\begin{equation*}
F(x)=\frac{-\frac{7}{720}}{G(x)} . \tag{3.25}
\end{equation*}
$$

Then, by Corollary 3 , we find for $x \rightarrow \infty$ that

$$
\begin{equation*}
G(x)=\frac{-\frac{7}{720}}{F(x)} \sim x^{3}-\frac{5}{196} x+\frac{7}{1440}+A_{2}(x), \tag{3.26}
\end{equation*}
$$

where

$$
\begin{align*}
A_{2}(x)=- & \frac{1531}{19208 x}+\frac{700005796811}{8050579891200 x^{3}}-\frac{803771788246897}{4102575512555520 x^{5}} \\
& \quad+\frac{292889867213204249}{446724889144934400 x^{7}}-\frac{217310837296831874706659910341}{71617079425976153240371200000 x^{9}}+\cdots . \tag{3.27}
\end{align*}
$$

The asymptotic expansion (3.27) can be transformed into the continued-fraction approximation of the form:

$$
\begin{equation*}
A_{2}(x) \approx \frac{-\frac{1531}{19208}}{x+\frac{\frac{70005796811}{64168251800}}{x+\frac{138514249066626639988523}{119170597422441942748800}}} \underset{x+\ddots}{ } \quad(x \rightarrow \infty), \tag{3.28}
\end{equation*}
$$

where the constants in the right-hand side are determined by using the system (2.26).
From (3.25), (3.26) and (3.28), we obtain Theorem 5 below, which converts the asymptotic expansion (3.24) into a continued fraction.

Theorem 5. For $x \rightarrow \infty$, the following asymptotic formula holds true:

$$
\begin{align*}
\Gamma(x+1) \sim & \sqrt{2 \pi x}\left(\frac{x}{e}\right)^{x}\left(1+\frac{1}{x-\frac{1}{2}}\right)^{\frac{1}{12}} \\
& \binom{1+\frac{-\frac{7}{720}}{x^{3}-\frac{5}{196} x+\frac{7}{1440}+\frac{-1531}{19208}}}{x+\frac{\frac{7000599611}{6416258400}}{x+\frac{\frac{13551424966626639988523}{1191705974224194274800}}{x+\ddots}}} . \tag{3.29}
\end{align*}
$$

4 Psi (or Digamma) Function and the Euler-Mascheroni Constant

In this section, we first establish a continued-fraction approximation for the psi (or digamma) function $\psi(x)$. Based upon the obtained result, we the present the higher-order estimates for the Euler-Mascheroni constant γ.

The function $\psi\left(x+\frac{1}{2}\right)$ is known to have the following asymptotic formula (see [21, p. 33]):

$$
\begin{equation*}
\psi\left(x+\frac{1}{2}\right) \sim \ln x-\sum_{k=0}^{\infty} \frac{B_{2 k+2}\left(\frac{1}{2}\right)}{(2 k+2) x^{2 k+2}} \quad(x \rightarrow \infty) \tag{4.1}
\end{equation*}
$$

where $\left\{B_{n}(x)\right\}_{n \in \mathbb{N}_{0}}$ denotes the Bernoulli polynomials defined by the following generating function:

$$
\begin{equation*}
\frac{t e^{x t}}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!} \quad(|t|<2 \pi) . \tag{4.2}
\end{equation*}
$$

In terms of the Bernoulli numbers $\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$, that is, $\left\{B_{n}(0)\right\}_{n \in \mathbb{N}_{0}}$, it is known that (see, for example, [1, p. 805])

$$
\begin{equation*}
B_{n}\left(\frac{1}{2}\right)=-\left(1-\frac{1}{2^{n-1}}\right) B_{n} \quad\left(n \in \mathbb{N}_{0}\right) \tag{4.3}
\end{equation*}
$$

the expansion formula (4.1) can be written as follows:

$$
\begin{equation*}
\psi\left(x+\frac{1}{2}\right) \sim \ln x+\sum_{k=1}^{\infty}\left(1-\frac{1}{2^{2 k-1}}\right)\left(\frac{B_{2 k}}{2 k}\right) x^{2 k} \quad(x \rightarrow \infty) . \tag{4.4}
\end{equation*}
$$

By Lemma 1, we have

$$
\begin{align*}
e^{\psi\left(x+\frac{1}{2}\right)} & \sim x \exp \left[\sum_{k=1}^{\infty}\left(1-\frac{1}{2^{2 k-1}}\right)\left(\frac{B_{2 k}}{2 k}\right) x^{2 k}\right] \\
& \sim x \sum_{n=0}^{\infty} \frac{a_{n}}{x^{2 n}}=x+\sum_{n=1}^{\infty} \frac{a_{n}}{x^{2 n-1}} \quad(x \rightarrow \infty) \tag{4.5}
\end{align*}
$$

where

$$
\begin{equation*}
a_{0}=1 \quad \text { and } \quad a_{n}=\frac{1}{n} \sum_{k=1}^{n} k\left(1-\frac{1}{2^{2 k-1}}\right)\left(\frac{B_{2 k}}{2 k}\right) a_{n-k} \quad(n \in \mathbb{N}) . \tag{4.6}
\end{equation*}
$$

We are thus led to the following asymptotic formula:

$$
\begin{align*}
e^{\psi\left(x+\frac{1}{2}\right)}-x \sim & \sum_{n=1}^{\infty} \frac{a_{n}}{x^{2 n-1}} \\
= & \frac{1}{24 x}-\frac{37}{5760 x^{3}}+\frac{10313}{2903040 x^{5}}-\frac{5509121}{1393459200 x^{7}} \\
& \quad+\frac{2709398569}{367873228800 x^{9}}-\frac{499769010050743}{24103053950976000 x^{11}}+\cdots \tag{4.7}
\end{align*}
$$

as $x \rightarrow \infty$.
Theorem 6 transforms the asymptotic expansion (4.7) into a continued fraction of the form (4.8).

Theorem 6. For $x \rightarrow \infty$, it is asserted that

$$
\begin{equation*}
e^{\psi\left(x+\frac{1}{2}\right)}-x \approx \frac{a_{1}}{x+\frac{b_{1}}{x+\frac{c_{1}}{x+\frac{d_{1}}{x+\ddots}}}}, \tag{4.8}
\end{equation*}
$$

where

$$
a_{1}=\frac{1}{24}, \quad b_{1}=\frac{37}{240}, \quad c_{1}=\frac{74381}{186480}, \quad d_{1}=\frac{2153427637}{2774113776}, \cdots .
$$

Proof. Let the function $A(x)$ be given by

$$
A(x)=e^{\psi\left(x+\frac{1}{2}\right)}-x .
$$

It follows from (4.4) that

$$
\begin{equation*}
A(x) \sim \sum_{j=1}^{\infty} \frac{a_{j}}{x^{2 j-1}} \quad(x \rightarrow \infty) \tag{4.9}
\end{equation*}
$$

where the coefficients $a_{j}(j \in \mathbb{N})$ are given in (4.6). By Remark 2 , the asymptotic expansion (4.9) can be transformed into the continued-fraction approximation of the form

$$
\begin{equation*}
A(x) \approx \frac{a_{1}}{x+\frac{b_{1}}{x+\frac{c_{1}}{x+\frac{d_{1}}{x+\ddots}}}} \quad x \rightarrow \infty \tag{4.10}
\end{equation*}
$$

where the constants in the right-hand side can be determined using the system (2.26).
We see from (4.7) that
$a_{1}=\frac{1}{24}, \quad a_{2}=-\frac{37}{5760 x}, \quad a_{3}=\frac{10313}{2903040}, \quad a_{4}=-\frac{5509121}{1393459200}, \quad a_{5}=\frac{2709398569}{367873228800}, \cdots$.
We obtain from the first recurrence relation in (2.26) that

$$
\begin{aligned}
& b_{1}=-\frac{a_{2}}{a_{1}}=\frac{37}{240}, \\
& b_{2}=-\frac{a_{3}+a_{2} b_{1}}{a_{1}}=-\frac{74381}{1209600}, \\
& b_{3}=-\frac{a_{4}+a_{2} b_{2}+a_{3} b_{1}}{a_{1}}=\frac{499469}{6912000}, \\
& b_{4}=-\frac{a_{5}+a_{2} b_{3}+a_{3} b_{2}+a_{4} b_{1}}{a_{1}}=-\frac{2345759788879}{16094453760000}, \cdots .
\end{aligned}
$$

Moreover, from the second recurrence relation in (2.26), we get

$$
\begin{aligned}
& c_{1}=-\frac{b_{2}}{b_{1}}=\frac{74381}{186480}, \\
& c_{2}=-\frac{b_{3}+b_{2} c_{1}}{b_{1}}=-\frac{2153427637}{6954958080}, \cdots
\end{aligned}
$$

Continuing the above process, we have

$$
d_{1}=-\frac{c_{2}}{c_{1}}=\frac{2153427637}{2774113776}, \quad \cdots
$$

We thus have completed the proof of Theorem 6.
As $x \rightarrow \infty$, the equation (4.8) can be written as follows:

$$
\psi\left(x+\frac{1}{2}\right) \approx \ln \left(x+\frac{}{x+\frac{\frac{1}{24}}{x+\frac{\frac{37}{240}}{\frac{74381}{186480}}} x+\frac{215327637}{2774113776}} \begin{array}{l}
x+\ddots \tag{4.11}
\end{array}\right) .
$$

Now, upon setting $x=n+\frac{1}{2}$ in (4.11), we find for $n \rightarrow \infty$ that

$$
\begin{equation*}
\gamma \approx H_{n}-\ln \left(n+\frac{1}{2}+\frac{\frac{1}{24}}{n+\frac{1}{2}+\frac{\frac{37}{240}}{n+\frac{1}{2}+\frac{\frac{74381}{186480}}{n+\frac{1}{2}+\frac{\frac{2153477377}{2774113776}}{n+\frac{1}{2}+\ddots}}}}\right) . \tag{4.12}
\end{equation*}
$$

By changing the logarithmic term in (1.2), we are going now to derive a higher-order estimate for the Euler-Mascheroni constant γ. Indeed, if we let

$$
\begin{equation*}
U_{n}=H_{n}-\ln \left(n+\frac{1}{2}+\frac{\frac{1}{24}}{n+\frac{1}{2}+\frac{\frac{37}{240}}{n+\frac{1}{2}}}\right), \tag{4.13}
\end{equation*}
$$

by using the Maple software, we obtain

$$
\begin{equation*}
U_{n}-\gamma=\frac{74381}{29030400 n^{6}}+O\left(\frac{1}{n^{7}}\right) \quad(n \rightarrow \infty) \tag{4.14}
\end{equation*}
$$

Motivated by (4.14), we establish Theorem 7 below, which provides the higher-order estimate for the Euler-Mascheroni constant γ. Remarkably, the convergence of the sequence U_{n} to γ is faster than that of the sequence Y_{n} defined by (1.8).
Theorem 7. For $n \geqq 1$, we have

$$
\begin{equation*}
\frac{74381}{29030400\left(n+\frac{63}{100}\right)^{6}}<U_{n}-\gamma<\frac{74381}{29030400\left(n+\frac{1}{2}\right)^{6}} . \tag{4.15}
\end{equation*}
$$

Proof. In order to prove (4.15), it suffices to show that

$$
f(n)>0 \quad \text { and } \quad g(n)<0 \quad(n \in \mathbb{N}),
$$

where

$$
f(x)=\psi(x+1)-\ln \left(x+\frac{1}{2}+\frac{\frac{1}{24}}{x+\frac{1}{2}+\frac{\frac{37}{240}}{x+\frac{1}{2}}}\right)-\frac{74381}{29030400\left(n+\frac{63}{100}\right)^{6}}
$$

and

$$
g(x)=\psi(x+1)-\ln \left(x+\frac{1}{2}+\frac{\frac{1}{24}}{x+\frac{1}{2}+\frac{\frac{37}{240}}{x+\frac{1}{2}}}\right)-\frac{74381}{29030400\left(n+\frac{1}{2}\right)^{6}} .
$$

Differentiating $f(x)$ and using the right-hand side of (1.18), we have

$$
\begin{aligned}
f^{\prime}(x)= & \psi^{\prime}(x+1)-\frac{2\left(57600 x^{4}+115200 x^{3}+101760 x^{2}+44160 x+9179\right)}{\left(240 x^{2}+240 x+97\right)\left(480 x^{3}+720 x^{2}+454 x+107\right)}+\frac{74381}{4838400\left(x+\frac{63}{100}\right)^{7}} \\
< & \frac{1}{x}-\frac{1}{2 x^{2}}+\frac{1}{6 x^{3}}-\frac{1}{30 x^{5}}+\frac{1}{42 x^{7}}-\frac{1}{30 x^{9}}+\frac{5}{66 x^{11}} \\
& -\frac{2\left(57600 x^{4}+115200 x^{3}+101760 x^{2}+44160 x+9179\right)}{\left(240 x^{2}+240 x+97\right)\left(480 x^{3}+720 x^{2}+454 x+107\right)}+\frac{74381}{4838400\left(x+\frac{63}{100}\right)^{7}} \\
= & -\frac{f_{1}(x-3)}{2970 x^{11}(100 x+63)^{7}\left(240 x^{2}+240 x+97\right)\left(480 x^{3}+720 x^{2}+454 x+107\right)},
\end{aligned}
$$

where

$$
\begin{aligned}
f_{1}(x) & =2595290749847364886436366082+20099909043227097376167706083 x \\
& +57640582879801692383134513530 x^{2}+93299887267720070931978816744 x^{3} \\
& +99888564914785863082055344320 x^{4}+76518511193633369306361441372 x^{5} \\
& +43795552166475427284343650801 x^{6}+19181471436764520289478294094 x^{7} \\
& +6501543576796264038230012670 x^{8}+1708061605083425665456126695 x^{9} \\
& +345203867549102161486735500 x^{10}+52716866090761185950050000 x^{11} \\
& +5888228135878079600000000 x^{12}+454068335914132500000000 x^{13} \\
& +21613250671650000000000 x^{14}+478641735000000000000 x^{15} .
\end{aligned}
$$

Hence, clearly, $f^{\prime}(x)<0$ for $x \geqq 3$, and we have

$$
f(x)>\lim _{t \rightarrow \infty} f(t)=0 \quad(x \geqq 3)
$$

Direct computations yield

$$
f(1)=0.00000006339 \cdots \quad \text { and } \quad f(2)=0.0000007538 \cdots
$$

Consequently, the inequality $f(n)>0$ holds true for all $n \in \mathbb{N}$.

Next, upon differentiating $g(x)$ and using the left-hand side of (1.18), we have

$$
\begin{aligned}
g^{\prime}(x)= & \psi^{\prime}(x+1)-\frac{2\left(57600 x^{4}+115200 x^{3}+101760 x^{2}+44160 x+9179\right)}{\left(240 x^{2}+240 x+97\right)\left(480 x^{3}+720 x^{2}+454 x+107\right)}+\frac{74381}{4838400\left(x+\frac{1}{2}\right)^{7}} \\
> & \frac{1}{x}-\frac{1}{2 x^{2}}+\frac{1}{6 x^{3}}-\frac{1}{30 x^{5}}+\frac{1}{42 x^{7}}-\frac{1}{30 x^{9}} \\
& -\frac{2\left(57600 x^{4}+115200 x^{3}+101760 x^{2}+44160 x+9179\right)}{\left(240 x^{2}+240 x+97\right)\left(480 x^{3}+720 x^{2}+454 x+107\right)}+\frac{74381}{4838400\left(x+\frac{1}{2}\right)^{7}} \\
= & \frac{g_{1}(x-3)}{37800 x^{9}(2 x+1)^{6}\left(480 x^{3}+720 x^{2}+454 x+107\right)\left(240 x^{2}+240 x+97\right)},
\end{aligned}
$$

where

$$
\begin{aligned}
g_{1}(x) & =83188275652737+2081335933362051 x+5696424067987728 x^{2} \\
& +7331238869573304 x^{3}+5659377310564002 x^{4}+2882512211350014 x^{5} \\
& +1009870638085332 x^{6}+246216780083736 x^{7}+41230462609413 x^{8} \\
& +4537072471519 x^{9}+296215637760 x^{10}+8712224640 x^{11} .
\end{aligned}
$$

Hence, the inequality $g^{\prime}(x)>0$ for $x \geqq 3$, and we have

$$
g(x)<\lim _{t \rightarrow \infty} g(t)=0 \quad(x \geqq 3) .
$$

Direct computations would yield

$$
g(1)=-0.0000882 \cdots \quad \text { and } \quad g(2)=-0.000001998 \cdots
$$

Hence, clearly, the inequality $g(n)<0$ holds true for all $n \in \mathbb{N}$. The proof of Theorem 7 is thus completed.

Remark 5. For $n \in \mathbb{N}$, the following higher-order approximation holds true:

$$
\begin{equation*}
\frac{2913008718640511}{1149236702517657600\left(n+\frac{4}{5}\right)^{10}}<I_{n}-\gamma<\frac{2913008718640511}{1149236702517657600\left(n+\frac{1}{2}\right)^{10}}, \tag{4.16}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{n}=H_{n}-\ln \left(n+\frac{1}{2}+\frac{\frac{1}{24}}{n+\frac{1}{2}+\frac{\frac{37}{240}}{n+\frac{1}{2}+\frac{\frac{74381}{186480}}{n+\frac{1}{2}+\frac{2153472637}{274113776}} n+\frac{1}{2}}}\right) . \tag{4.17}
\end{equation*}
$$

Following the same method as was used in the proof of Theorem 7, we can prove (4.16). Here we omit the proof.

5 Concluding Remarks and Open Problems

In our present investigation, we have provided a potentially useful method in order to construct a continued-fraction approximation based upon a given asymptotic expansion. As applications of the method which we have developed here, we have successfully established a number of continued-fraction approximations for the gamma and the digamma (or psi) functions.

We choose to conclude our paper by presenting some closely-related open problems.
I. The Alzer-Martins Inequalities. It is known, for $r>0$ and $n \in \mathbb{N}$, that

$$
\begin{equation*}
\frac{n}{n+1}<\left(\frac{\frac{1}{n} \sum_{i=1}^{n} i^{r}}{\frac{1}{n+1} \sum_{i=1}^{n+1} i^{r}}\right)^{1 / r}<\frac{\sqrt[n]{n!}}{\sqrt[n+1]{(n+1)!}} \tag{5.1}
\end{equation*}
$$

(I.1) In the year 1988, while investigating a problem on Lorentz sequence spaces, Martins [22] published the right-hand inequality in (5.1), namely,

$$
\left(\frac{\frac{1}{n} \sum_{i=1}^{n} i^{r}}{\frac{1}{n+1} \sum_{i=1}^{n+1} i^{r}}\right)^{\frac{1}{r}}<\frac{\sqrt[n]{n!}}{\sqrt[n+1]{(n+1)!}} \quad(r>0) \quad \text { (Martins inequality). }
$$

(I.2) The left-hand inequality in (5.1) was proved in 1993 by Alzer [3], namely,

$$
\frac{n}{n+1}<\left(\frac{\frac{1}{n} \sum_{i=1}^{n} i^{r}}{\frac{1}{n+1} \sum_{i=1}^{n+1} i^{r}}\right)^{\frac{1}{r}} \quad(r>0) \quad \text { (Alzer inequality). }
$$

(I.3) In the year 1994, Alzer [4] showed that, if $r<0$, the Martins inequality is reversed, that is,

$$
\left(\frac{\frac{1}{n} \sum_{i=1}^{n} i^{r}}{\frac{1}{n+1} \sum_{i=1}^{n+1} i^{r}}\right)^{\frac{1}{r}}>\frac{\sqrt[n]{n!}}{\sqrt[n+1]{(n+1)!}} \quad(r<0) \quad \text { (Reversed Martins inequality) }
$$

(I.4) In the year 2005, Chen and Qi [11] proved that the Alzer inequality is valid for all real numbers r, that is,

$$
\frac{n}{n+1}<\left(\frac{\frac{1}{n} \sum_{i=1}^{n} i^{r}}{\frac{1}{n+1} \sum_{i=1}^{n+1} i^{r}}\right)^{\frac{1}{r}} \quad(r \in \mathbb{R} \backslash\{0\}) \quad \text { (Extended Alzer inequality). }
$$

We note here that

$$
\lim _{r \rightarrow 0}\left(\frac{\frac{1}{n} \sum_{i=1}^{n} i^{r}}{\frac{1}{n+1} \sum_{i=1}^{n+1} i^{r}}\right)^{\frac{1}{r}}=\frac{\sqrt[n]{n!}}{\sqrt[n+1]{(n+1)!}}
$$

The inequality (5.1) has indeed attracted much interest of from many mathematicians and has motivated a large number of research papers concerning its new proofs as well as its various extensions, generalizations and improvements. See also [2] for some historical notes.

The Chen-Qi Conjecture. Chen and Qi [11] posed the following conjecture:
For any given natural number n, the function $f(r)$ given by

$$
f(r)= \begin{cases}\left(\frac{\frac{1}{n} \sum_{i=1}^{n} i^{r}}{\frac{\frac{1}{n+1} \sum_{i=1}^{n+1} i^{r}}{n}}\right)^{\frac{1}{r}} & (r \neq 0) \\ \frac{\sqrt[n]{n!}}{\sqrt[n+1]{(n+1)!}} & (r=0)\end{cases}
$$

is strictly decreasing on $(-\infty, \infty)$.
Remark 6. If the Chen-Qi conjecture can be proved, then we obtain a unified treatment of the results (I.1) to (I.4).

Upon differentiation, we get

$$
r^{2} \frac{f^{\prime}(r)}{f(r)}=x_{n+1}-x_{n},
$$

where

$$
\begin{equation*}
x_{n}=\ln \left(\frac{1}{n} \sum_{j=1}^{n} j^{r}\right)-\frac{\sum_{j=1}^{n} j^{r} \ln \left(j^{r}\right)}{\sum_{j=1}^{n} j^{r}} . \tag{5.2}
\end{equation*}
$$

Thus, in order to prove the Chen-Qi conjecture (that is, $f^{\prime}(r)<0$), it suffices to show the following Open Problem.

Open Problem 2. Prove that, for any given $r \in \mathbb{R}$, the sequence $\left(x_{n}\right)$, defined by (5.2), is strictly decreasing.
II. Infinite Product Formulas. We begin by recalling, among several useful equivalent forms (see [30, Section 1.1]), the following familiar Weierstrass canonical product form of the Gamma function $\Gamma(z)$ (see, for example, [1, p. 255, Entry (6.1.3)]; see also [30, p. 1, Eq. (2)]):

$$
\begin{equation*}
\frac{1}{\Gamma(z)}=z e^{\gamma z} \prod_{n=1}^{\infty}\left\{e^{-\frac{z}{n}}\left(1+\frac{z}{n}\right)\right\} \tag{5.3}
\end{equation*}
$$

where γ denotes the Euler-Mascheroni constant.
In the year 2013, Chen and Choi [7] proved the following theorem.
Theorem 8 (see [7]). Let

$$
\begin{equation*}
\mathcal{A}(p, q)=\prod_{j=1}^{\infty}\left\{e^{-\frac{p}{j}}\left(1+\frac{p}{j}+\frac{q}{j^{2}}\right)\right\} \quad(p, q \in \mathbb{C} ; \Re(p)>0) . \tag{5.4}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathcal{A}(p, q)=\frac{e^{-p \gamma}}{\Gamma\left(1+\frac{1}{2} p-\frac{1}{2} \sqrt{p^{2}-4 q}\right) \Gamma\left(1+\frac{1}{2} p+\frac{1}{2} \sqrt{p^{2}-4 q}\right)} \quad(p, q \in \mathbb{C}) \tag{5.5}
\end{equation*}
$$

Remark 7. Upon setting $q=0$ and replacing p by z in (5.5), we get

$$
\begin{equation*}
\mathcal{A}(z, 0)=\prod_{j=1}^{\infty}\left\{e^{-\frac{z}{j}}\left(1+\frac{z}{j}\right)\right\}=\frac{e^{-z \gamma}}{\Gamma(z+1)} . \tag{5.6}
\end{equation*}
$$

which, in view of the following recurrence relation:

$$
\Gamma(z+1)=z \Gamma(z),
$$

is seen to be equivalent to the Weierstrass canonical product form (5.3) of the Gamma function. Obviously, therefore, the Choi-Srivastava product formula (5.5) can be looked upon as a generalization of the Weierstrass canonical product form (5.3) of the Gamma function.

In light of the well-known Γ-function integral given by

$$
\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} \mathrm{~d} t \quad(\Re(z)>0)
$$

we propose the following Open Problem.
Open Problem 3. Find an explicit integral expression for $\mathcal{A}(p, q)$ or $\frac{1}{\mathcal{A}(p, q)}$, where $\mathcal{A}(p, q)$ is given by (5.4).

References

[1] M. Abramowitz and I. A. Stegun (Editors), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series, Vol. 55, National Bureau of Standards, Washington, D.C., 1964; Reprinted by Dover Publications, New York, 1965 (see also [27]).
[2] S. Abramovich, J. Barić, M. Matić and J. Pečarić, On Van de Lune-Alzer's inequality, J. Math. Inequal. 1 (2007), 563-587.
[3] H. Alzer, On an inequality of H. Minc and L. Sathre, J. Math. Anal. Appl. 179 (1993), 396-402.
[4] H. Alzer, Refinement of an inequality of G. Bennett, Discrete Math. 135 (1994), 39-46.
[5] H. Alzer, On some inequalities for the gamma and psi functions, Math. Comput. 66 (1997), 373-389.
[6] C.-P. Chen and J. Choi, Unified treatment of several asymptotic expansions concerning some mathematical constants, Appl. Math. Comput. 305 (2017), 348-363.
[7] C.-P. Chen and J. Choi, Two infinite product formulas with two parameters, Integral Transforms Spec. Funct. 24 (2013), 357-363.
[8] C.-P. Chen, N. Elezović and L. Vukšić, Asymptotic formulae associated with the Wallis power function and digamma function, J. Class. Anal. 2 (2013), 151-166.
[9] C.-P. Chen and L. Lin, Remarks on asymptotic expansions for the gamma function, Appl. Math. Lett. 25 (2012), 2322-2326.
[10] C.-P. Chen and C. Mortici, New sequence converging towards the Euler-Mascheroni constant, Comput. Math. Appl. 64 (2012), 391-398.
[11] C.-P. Chen and F. Qi, Extension of an inequality of H. Alzer for negative powers, Tamkang J. Math. 36 (2005), 69-72.
[12] C.-P. Chen, H. M. Srivastava, L. Li and S. Manyama, Inequalities and monotonicity properties for the psi (or digamma) function and estimates for the Euler-Mascheroni constant, Integral Transforms Spec. Funct. 22 (2011), 681-693.
[13] C.-P. Chen and Q. Wang, Asymptotic expansions and continued fraction approximations for the harmonic number, RGMIA Res. Rep. Coll. 22 (2019), Article ID 6, 1-18 [https : //rgmia. org/v22.php].
[14] T. P. Dence and J. B. Dence, A survey of Euler's constant, Math. Mag. 82 (2009), 255-265.
[15] D. W. DeTemple, A quicker convergence to Euler's constant, Amer. Math. Monthly 100 (1993), 468-470.
[16] D. W. DeTemple, The non-integer property of sums of reciprocals of consecutive integers, Math. Gaz. 75 (1991), 193-194.
[17] I. Gavrea and M. Ivan, A solution to an open problem on the Euler-Mascheroni constant, Appl. Math. Comput. 224 (2013), 54-57.
[18] I. Gavrea and M. Ivan, Optimal rate of convergence for sequences of a prescribed form, J. Math. Anal. Appl. 402 (2013), 35-43.
[19] J. Havil, Gamma: Exploring Euler's Constant, Princeton University Press, Princeton, New Jersey, 2003.
[20] L. Lin, Asymptotic formulas associated with psi function with applications, J. Math. Anal. Appl. 405 (2013), 52-56.
[21] Y. L. Luke, The Special Functions and Their Approximations, Vol. I, Mathematics in Science and Engineering, Vols. 53-I and 53-II, A Series of Monographs and Textbooks, Academic Press, New York and London, 1969.
[22] J. S. Martins, Arithmetic and geometric means: An application to Lorentz sequence spaces, Math. Nachr. 139 (1988), 281-288.
[23] C. Mortici, Product approximations via asymptotic integration, Amer. Math. Monthly 117 (2010), 434-441.
[24] C. Mortici, New improvements of the Stirling formula, Appl. Math. Comput. 217 (2010), 699-704.
[25] C. Mortici and H. M. Srivastava, A product approximation of the gamma function, Numer. Algorithms 69 (2015), 595-610.
[26] T. Negoi, A faster convergence to the constant of Euler, Gazeta Matematică Ser. A 15 (1997), 111-113 (in Romanian).
[27] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark (Editors), NIST Handbook of Mathematical Functions [With 1 CD-ROM (Windows, Macintosh and UNIX)], U. S. Department of Commerce, National Institute of Standards and Technology, Washington, D. C., 2010; Cambridge University Press, Cambridge, London and New York, 2010 (see also [1]).
[28] P. J. Rippon, Convergence with pictures, Amer. Math. Monthly 93 (1986), 476-478.
[29] J. Sándor and L. Debnath, On certain inequalities involving the constant e and their applications, J. Math. Anal. Appl. 249 (2000), 569-582.
[30] H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001.
[31] S.-J. Yang, On an open problem of Chen and Mortici concerning the Euler-Mascheroni constant, J. Math. Anal. Appl. 396 (2012), 689-693.
[32] X. You, Continued fraction approximation and inequality of the gamma function, Results Math. 73 (2018), Article ID 20, 1-8 [https://doi.org/10.1007/ s00025-018-0797-6].
[33] R. M. Young, Euler's constant, Math. Gaz. 75 (1991), 187-190.

