SOME NEW PROPERTIES OF LOG-CONVEX FUNCTIONS
DEFINED ON CONVEX SUBSETS IN LINEAR SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. For a Lebesgue integrable function w : [0,1] — [0, c0) we consider
the symmetric functions

i (o) A ) fr e+ Ay w(t)dt
fror S04 7 (@) (W)

and
Jo T (A=t ty) 7 (tz+ (1 =) y) w (1) dt
z+y
()
where f: C — (0,00) is a log-convex function defined on the convex subset C'
of a linear space X and r > 0.
In this paper we show among others that Jy ,, ;- is Schur concave and My

is Schur convex on C x C. Some examples for log-convex functions of a real
variable are also given.

Mf,w,r (ac,y) =

1. INTRODUCTION

A function f : I — (0,00) is said to be log-convex or multiplicatively convex
if log f is convex, or, equivalently, if for all z, y € I and ¢ € [0, 1] one has the
inequality:

(L.1) fla+ =ty <[f @) [f @]

We note that if f and g are convex and g is increasing, then g o f is convex;
moreover, since f = exp (log f), it follows that a log-convex function is convex, but
the converse may not necessarily be true. This follows directly from (1.1) because,
by the arithmetic-geometric mean inequality, we have

F@T [f@I " <tf @)+ (1= f(y)

for all z,y € I and ¢t € [0,1].
Let us recall the Hermite-Hadamard inequality

(12) (45 <5 [ rwa < L0,

where f: 1 CR — R is a convex function on the interval I, a,b € I and a < b.
For related results, see [13] and [9].
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Note that if we apply the above inequality for the log-convex functions f: I —
(0,00) , we have that

(1.3) 1np<a+b>}Sbialﬂnf@ﬁmglnfwr+mf@)

2 2 ’
from which we get

(1.4) f (“‘2”)> < exp

L mf(x)dx] < VT@T0)

that is an inequality of Hermite-Hadamard’s type for log-convex functions.
By using simple properties of log-convex functions Dragomir and Mond proved
in 1998 the following result [11].

Theorem 1. Let f: I — (0,00) be a log-convex mapping on I and a,b € I with
a < b. Then one has the inequality:

b
w5 (*57) <50 [ VI@ @i o < V@0,

The inequality between the first and second term in (1.5) may be improved as
follows [11]. A different upper bound for the middle term in (1.5) can be also
provided.

Theorem 2. Let f : I — (0,00) be a log-convexr mapping on I and a, b € I with
a < b. Then one has the inequalities:

b
(1.6) f(a;—b) < exp [b—la,/a lnf(x)dx]
1 b
< [ Vi@t o
b—a J,
1 b
< [ f@dr< L@, ),
where L (p, q) is the logarithmic mean of the strictly positive real numbers p, q, i.e.,
pP—q .
L = L = p.
(p,q) mp_mq#p#qmw (p,p) :=p

The last inequality in (1.6) was obtained in a different context in [14].
As shown in [15], the following result also holds:

Theorem 3. Let f: I — (0,00) be a log-convex mapping on I and a, b € I with
a < b. Then one has the inequalities:

(1.7) f(a;b>§<b1a/ab\/mdw>2§bla/abf(x)dx-

We define the p-logarithmic mean as

[M]% with a # b
Ly (a,b) := (p+1)(b—a)

a, ifa=">

for p#0,—1 and a, b > 0.
In the recent work [8] we generalized the inequality (1.6) as follows:
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Theorem 4. Let f : [a,b] — (0,00) be a log-convez function on [a,b]. Then for
any p > 0 we have the inequality

(1.8) f(“‘;[)) < exp [bia/:lnf(x)dx]

< (bia/abf%(x)dxy

{ [Lop—1 (f (@), f O))' "% [L(f (a), f (0)]% , p#

L(f(a)af(b))7 p:%~
Ifpe (O, %) , then we have

(1.9) f(a;b><e><p[bi /1Hf() ]
g(bfa/abfwmw(wbz)dxy
< <b1a/abf2p<w)d:c);p < bla/abfu)dm-

Remark 1. If we take in (1.8) p =1, then we get

(1.10) f(a;b><exp[bi /lnf() 1
_(_a/f 0t b a)d )
g(bla/abf2<w>dx>2

<[A(f (@), O [L(f (@), f(B))2 .

If we take p = % in (1.9), then we get

(1.11) f(a;rb>§exp [bi /hlf()
< /\/f fla+b—2x)d )2
s(bfa/a de) sﬁ/ f(2)d

<

N

=
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This improves the inequality (1.7).

Motivated by the above results, in this paper we study among others the Schur
convexity of some functions associated to a log-convex function on C. Some exam-
ples for log-convex functions of a real variable are also given.

2. Loc CoNVEX FUNCTIONS ON CONVEX SETS IN LINEAR SPACES

We consider the function f : C' — R defined on the convex subset C' of the linear
space X and for each (z,y) € C? := C x C we introduce the auxiliary function
Pay * 10,1] — R defined by

Py ()= 1=tz +ty).

It is well known that the function f is convex on C if and only if for each (x,y) € C?
the auxiliary function ¢, ,) is convex on [0,1].

By utilising the classical Hermite-Hadamard inequality for the convex function
P(a,y) o0 [0,1] we then have

(2.1) f(xgy)s[;ﬂuwz+wwusf@)“””

2
for all (x,y) € C2.
We say that the function f: C' — (0,00) is log-convex on C' if
(22) fltw+ 1=ty <[f @] [f@]™
for all vectors z, y € C and t € [0,1]. By taking the log in (2.2) we deduce that f

is log-convex on C'if In f is convex on C.

Lemma 1. Consider the function f : C — (0,00). The function f is log-convex
on C if and only if for all (x,y) € C? the auwiliary function P(z,y) 18 log-convex on
[0,1].
Proof. Assume that f is log-convex on C and (z,y) € C2%. Let a, 8 > 0 with
a+ B =1and t, ty € [0,1] then
Play) (a1 + Bt2) = [ ((at1 + Bta) x + (1 — aty — Bt2) y)
= f((at1 + Bt2) z + (a+ B — at1 — Bta) y)
=flaftiz+ (1 —t1)yl+ Btz + (1 - t2) y])
< [f (e + (1= t) ) [f (baw + (1~ t2) )]

= {Wx,y) (tl)r [wz,y) (t2)}5’

which shows that ¢, , is log-convex on [0, 1] .
Let (z,y) € C? and t € [0, 1], then by the log-convexity of P(a,y) We have

< [ D] [pen @] =@ IO,
which proves the log-convexity of f on C. O

By utilising Theorem 2 and 4 for the auxiliary function P(z,y) We can state the
following result for log-convex functions defined on the convex set C' of the linear
space X.
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Theorem 5. Let f : C — (0,00) be a log-convex function on C and (z,y) € C?,
then

Tty

(2.3) f< y )geprOl1nf(m+(1—t)y)dt

1
g/o VIt =09 [ (Dt iy

g/ fltz+ (1 -ty <L(f(x),f W),
0

where L (+,-) is the logarithmic mean.
For any p > 0 we have the inequality

(2.4) f< ) < exp {/Ollnf(t:ch(lt)y)dt}

r+y
2

€
2p

< (/Olf”(twr(l—t)y)f”((l—t)x+ty)dt)

<([ Prasra-opa)
{ [Lop1 (f (@), F @))% [L(f (2), f (w)]% . p# %
L(f(x)vf(y))v p:%a

where L, (-,-) is the r-logarithmic mean.
Ifpe (O, %) , then we have

> < exp {/Ollnf(t:ch(lt)y)dt}
< </01f2p(tx+(1—t)y)dt>;p

< (/Olf%(tﬁu—t)y)dx);p g/olf(ta:—i—(l—t)y)dt.

Now, for ¢ € [0,1] we define the function S; : C? — (0, 00) by
Spe(zy) = ftz+ (1 —-1)y).

Lemma 2. If the function f : C — (0,00) is a log-convex function on C and
t €(0,1), then Sy, is log-convex on C2.

Proof. Let o, 3> 0 with a + 3 =1 and (z,y), (u,v) € C?. Then
St (a(z,y) + B (u,v)) = Sps (ax + Pu, ay + fv)
= f(t(az + pu) + (1 - 1) (ay + Bv))
=flafte+ (1 —t)y] +Btu+ (1 —t)v])
<[f e+ 1=y [f tu+ (1 —t)v)’
=[S (2, 9)]" [Sp (w,0))7,

which shows that Sy is log-convex on C2. O

<

Tty

(25 f( !
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For for ¢t € [0, 1] we define the function Ty, : C* — (0, 00) by

_ Spe(@y) + Spa(@y) _ flla+(A—-t)y)+ f((L-t)z+1y)
Ty (.’L‘, y) = = :
2 2
We observe that T is symmetric on C?, namely Ty, (z,y) = Tj+ (y,z) for all

(z,y) € C.

Theorem 6. If the function f : C — (0,00) is a log-convez function on C and
t €(0,1), then Ty, is log-convex on C2.

Proof. Let o, 3> 0 with o+ 8 =1 and (x,%), (u,v) € C?. Then by Lemma 2 we
have for t € (0,1) that

St (@ (@) + 8 (,0)) < [Sp.e (2,9)]" [Sp.e ()
and
St (@ (@) + 6 (u0) < [Spae (2.9))" [Spar (u,0))”.
If we add these two inequalities we get

(2.6) Spa(a(z,y) + B (u,0)) + Spa—t (a(2,) + B (u,v))
< [Spe (2, 9] [Spa (w,0)]” + [Spame (2, 9)]" [Spa—t (u )] .

If we use the Holder’s type inequality
ab+ cd < (a? + )P (b4 + d9)M9,
where p, ¢ > 1 with % + % =1, then we get for
a=[Sps (@))%, b=[Sr (W), e=[Sp1(z,9)]", d=[Sr1 (u,0))°
andp:é,q:%that
(2.7) (S g4 (2, 9)]* [Spa (w0, 0))7 + [Spae (2, 9] [Spa-e (u, )]
<[54 ()™ + (870 )]

({1550 o)+ (ispac o) ]

= [Sp (@.y) + Spame (@) [Spe (u,0) + Spame (w,0)]”.
By making use of (2.6) and (2.7) we get
2Ty (o (2,y) + B (u,0)) < [2Tf,e (2, 9)]* 277 (w,0))” = 2 [Tr (2, 9)]* [Trs (u, )],
which proves the fact that T is log-convex on C2. ]

For a Lebesgue integrable function w : [0,1] — [0, 00) and a log-convex function
f:C — (0,00) we consider the function

1 1
SnM%y%:L @ﬁmwwv@dr:[;fum+ufwywvmdt

Theorem 7. If the function f : C — (0,00) is a log-convex function on C and
w : [0,1] — [0,00) a Lebesgue integrable function on [0,1], then S, is log-convex
on C2.
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Proof. Let a, 8> 0 with a+ 3 =1 and (z,y), (u,v) € C2. Then, by Lemma 2 we
have

St (0 (2,9) + B (u,0)) = / Spe (o (,y) + B (u,0)) w (£) dt

< / (S (2 )] [Sp0 (0, 0)% w0 (£) .

By Holder’s weighted integral inequality for p = é, q= % we have

/ (5 (o)) (S (w0) w0 (0) i
< ([ tsratenr = wira) ([ (iseewor) wwan)
_ (/Olsm (@) w (£) dt>a (/Olsm (u, 0) w (£) dt)ﬁ

= [Sfw (@, 9)]" [Sp (u,0))7

which proves the log-convexity of Sy, on C2. (]

[

B

We denote by [z, y] the closed segment defined by {(1 — s) z + sy, s € [0,1]} . We
also define the functional

Vyi(z,y)=1—-t)g(x)+tg(y) —g((1—t)z+ty) >0

where z, y € C, z #y and t € [0,1].
In [5] we obtained among others the following result :

Lemma 3. Let g : C C X — R be a convex function on the convex set C'. Then
for each x, y € C and z € [z,y] we have

(2.8) (0 <) Wyp(2,2) + Wy (2,y) < Wy (2,9)

for each t € [0,1], i.e., the functional ¥y, (-,-) is superadditive as a function of
interval.
If z, u € [x,y], then
(29) (0 S) \Ilg,t (Z, u) < \Ilg,t (.’E, y)
for each t € [0,1], i.e., the functional ¥4 (-,-) is nondecreasing as a function of

interval.

For a log-convex function f : C' — (0,00) and for x, y € C, z # y and t € [0,1]
we consider the function IIf; : C? — [1,00) defined by

F @I [ @)
(et~

(2.10) IOy (z,y) :=
‘We observe that

Uinfe (2,9) = (L= ) Inf () +tIn f (y) —In f (1 =)z + ty) = Indlz; (2, y)

forz,ye C,z#yandtel0,1].
We have:
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Theorem 8. Let f: C — (0,00) be a log-convex function. Then for each x,y € C
and z € [z,y] we have

(2.11) (1 ) Mpy (x,2) Mpe (2,y) < Ilpyt (2, y)
for each t € [0,1], i.e., the functional I, (-,-) is supermultiplicative as a function
of interval.

If z, u € [x,y], then
(2.12) (1<) Uy (z,u) < gy (2, y)
for each t € [0,1], i.e., the functional Il (-,-) is nondecreasing as a function of
interval.

For a log-convex function f : C — (0,00) and for x, y € C,  # y and t € [0,1]
we also consider the function Qf;: C? — [1,00) defined by

f(z)f(y)
1=tz +ty) fllz+ (1 —1)y)

Corollary 1. Let f : C — (0,00) be a log-convex: function. Then for each z,y € C,
x #y and z € [x,y] we have

(2.13) (1<) Q4 (2,2) Qs (2,y) < Qp i (2, y)

for each t € ]0,1].
If z, u € [z,y], then

(2.14) (1<) Qe (z,u) < Qe (2, y)
for each t € ]0,1].

Qi (zy) =y (2,y) Up1 (2, y) = 7

The proof follows by Theorem 8 written for ¢ and 1 — ¢ and multiplying the
obtained inequalities.

3. SCHUR CONVEXITY

For any © = (21, ...,x,) € R", let x;1) > ... > x},) denote the components of x in
decreasing order, and let x| = (;E[l], ...,m[n}) denote the decreasing rearrangement
of z. For x, y € R™, © < y if, by definition,

k k
Dic1 T S i Yy k=1,.,n =1

2o i) = i Yl
When z < y, = is said to be majorized by y (y majorizes x). This notation and
terminology was introduced by Hardy, Littlewood and Pdélya in 1934.
A real-valued function ¢ defined on a set A C R™ is said to be Schur-conver on
A if
(3.1) r<yon A= ¢(x) <o(y).

If, in addition, ¢ (z) < ¢ (y) whenever x < y but z is not a permutation of y, then
¢ is said to be strictly Schur-convexr on A. If A = R™, then ¢ is simply said to be
Schur-convex or strictly Schur-convex.

For fundamental properties of Schur convexity see the monograph [16] and the
references therein. For some recent results, see [1]-[3] and [17]-[19].

The following result is known in the literature as Schur-Ostrowski theorem [16,
p. 84]:
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Theorem 9. Let I C R be an open interval and let ¢ : I™ — R be continuously
differentiable. Necessary and sufficient conditions for ¢ to be Schur-convex on I™
are

(3.2) ¢ is symmetric on 1",

and for all i # j, with i, j € {1,...,n},

(3.3) (zi — 25) [3253(32) - 8;;(2)} >0 forall z€ I,
i j
0o

where Dy denotes the partial derivative of ¢ with respect to its k-th argument.

Let A C R™ be a set with the following properties:

(i) A is symmetric in the sense that x € A = zII € A for all permutations II of
the coordinates.

(ii) A is convex and has a nonempty interior.

We have the following result, [16, p. 85].

Theorem 10. If ¢ is continuously differentiable on the interior of A and contin-
wous on A, then necessary and sufficient conditions for ¢ to be Schur-convex on A
are

(3.4) ¢ is symmetric on A

and
(35) (-0 | ) - 20E)

Another interesting characterization of Schur convex functions ¢ on A was ob-
tained by C. Stepniak in [20]:

]zﬂforallzefl.

Theorem 11. Let ¢ be any function defined on a symmetric convex set A in R™.
Then the function ¢ is Schur conver on A if and only if

(3.6) O(T1,y ey Tiy ey Ty oy T) = G (X1, ooy Ty ooy Ty oy Ty
forall (z1,...,2n) € Aand 1 <i<j<n and

(3.7) dp(Ax1+ (1 =N, Axa+ (1 =N 1,23, ..., @) < P (21, ..., 2n)
for all (z1,...,xz,) € A and for all A € (0,1),

It is well known that any symmetric convex function defined on a symmetric
convex set A is Schur convex, [16, p. 97]. If the function ¢ : A — R is symmetric
and quasi-convex, namely

¢ (au+ (1 —a)v) <max{¢(u),d(v)}
for all @ € [0,1] and u, v € A, a symmetric convex set, then ¢ is Schur convex on
A [16, p. 98].

Let X be a linear space and G C X2 := X x X a convex set. We say that G is
symmetric if (z,y) € G implies that (y,z) € G. If C C X is a convex subset of X,
then the Cartesian product G := C? := C x C is convex and symmetric in X?2.

Motivated by the characterization result of Stepniak above, we say that a func-

tion ¢ : G — R will be called Schur convex on the convex and symmetric set
GcCX?%if

(3.8) ¢ (s(x,y)+ (1—s)(y,2) < ¢ (2,9)
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for all (z,y) € G and for all s € [0,1].

If G = C?, then we recapture the general concept of Schur convexity introduced
by Burai and Maké in 2016, [1].

We say that the function ¢ : G — R is symmetric on G if ¢ (z,y) = ¢ (y,x) for
all (z,y) € G.

If ¢ : G — R is Schur conver on the convex and symmetric set G C X2, then
¢ is symmetric on G. Indeed, if (z,y) € G, then by (3.8) we get for s = 0 that
o (y,z) < ¢ (z,y) . If we replace z with y then we also get ¢ (x,y) < ¢ (y,x) which
shows that ¢ (z,y) = ¢ (y,z) for all (z,y) € G.

For a function f : C' — (0,00) and ¢ € [0,1] we define the associated symmetric
functions T : C? — (0,00) and My, : C? — (0,00) by

— f(@) f(y)
(3.9) Ty (,y) = f(A=taz+ty) fltz+(1—1t)y)
and
(8.10) My () = L0020 S (2 (L= 0)y)

12 (554

Theorem 12. Let f : C — (0,00) be a log-convex function and t € [0,1]. The
functions Ty and My are Schur convex on C2.

Proof. Let (z,y) € C? and s € [0,1], ¢ € [0,1]. Then

(3.11) Ty (s(z,y) + (1 =) (y, @)
=T (sz+(1—9)y,sy+ (1 —s)x)
f((A—s)z+sy)
A=) ((L=s)z+sy)+t(sz+(1—3s)y))
flsz+(1-s)y)
fE((l=s)z+sy)+(1—1)(sz+(1-5)y))

X

If we take u = (1 — s)z + sy, v = sz + (1 — s) y in (2.14), then we get

f((1=s)z+sy)
FA=t)((1=s)z+sy)+t(sz+(1—s)y))
flsz+(1—5s)y)
fFR((L=s)z+sy)+ 1 —1t)(sz+(1—-35)y))
f()f(y)
T f(A=t)z+ty) ftz+(1-1t)y)

(3.12)

X

= Tf,t (.’b, y) :
Therefore, by (3.11) and (3.12) we get

Tf,t (S (ZL',y) + (1 - 8) (y,a:)) S Tf,t (xay) )

for all (z,y) € C? and s € [0,1], t € [0,1], which shows that T, is Schur convex.
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Let (z,y) € C? and s € [0,1], t € [0,1]. Then
(3.13) My (s (z,y) + (1 =) (y, 7))
= My (sz+ (1 —s)y,sy+ (1 —s)z)
_ A=t (sz+ (A =5)y) +t(sy+ (1 —s)x))
f (sx-‘r(l s)y+y+sy+(1 s)x

><f(t(Sl"Jr(l—S)) (1—t)(sy+ (1 —s)z))
—t

f (saH— y+y+sy+ —s)x

_fE(=tr+iy)+ (1 —s)(A-Dy+tr))
f(x+y)

A=y +tn)+ (1 —s) (1-t)z+1ty)
f(z+y) '

By the log-convexity of f we have

(3.14) fs((I=t)z+ty)+(1—s)((1—-1)y+tx))
< -ta+w) [F(A—t)y+ta)] "

and

(3.15) fs(l=t)y+te)+ (1 —s)((1—-t)x+ty))
<=y + )" [f (1 =tz +ty)]

for all (z,y) € C? and s € [0, 1].
If we multiply (3.14) with (3.15) we get

(3.16) f(s((l—t)x+ty)f42£y—) ) (1 —t)y +tx))
=
Sty ttr)+ (L s) (-t +ty))
75
< f((lt)erfiy()Ierg()lt)ertz) My (o).

By making use of (3.13) and (3.16) we deduce that

My (s ($7y) + (1 - S) (y,x)) < My (x,y) )
which shows that My, is Schur convex. O
Remark 2. We observe that the function

S(A-t)x+ty) fltz+(1-1)y)
f(x) f(y)

Jf,t (‘T7 y) =

is Schur concave, namely

Jra(s(@y)+ (1 =) (y,2) = T (2,9)
provided [ : C — (0,00) is a log-convex function and t € [0, 1].
If r >0, then the function Ji , is a Schur concave function and M, is a Schur

convex function on C?, provided f : C — (0,00) is a log-convex function and
€ [0,1].
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Theorem 13. Let f : C — (0,00) be a log-convex function, r >0 and w : [0,1] —
[0,00) a Lebesgue integrable function. Then Jj. , is Schur concave on C? and
My, is Schur convex on C2.

Proof. Let (z,y) € C? and s € [0,1]. Then
i (5 (@9) + (1= 5) (9, 2)) = / T3 (5 (2,y) + (1 5) (g, 2) w (¢) dt

1
> / J5 (@) w () dt = Jp oy (2,9)
0

and

1
My (s (2,9) + (1— 8) (3.2)) = / MY (s (2,y) + (1 — 3) () w (8)

1
< [ M7 e Ot = My (@),
0
which proves the desired results. O

For a logarithmic convex function f defined on the interval I, by changing the
variable u = (1 —t)z + ty, t € [0,1], (x,y) € I?, y # x, we have

ST (ty—u)w( =2 )du 9
=) (@) () , (vy) €1%, y#ua,

(3.17) Jtwr (z,y) =
L, (z,y)el* y=x

and

S2 () M (ety—w)w( =5 )du
(y_w)fzr(#()y ) ) (l‘,y) € 127 Yy 7& Zz,

(3.18) My oy (z,y) =
1, (z,y)€el? y==x

for a Lebesgue integrable function w : [0,1] — [0, 00) and 7 > 0.
In particular, for w = 1 we put

Y F7(u) £ (o ty—u)d
fw (y_(:;))fr((z)fyr(;)) “7 (l‘,y) € 12’ Y # €T,

(3.19) T (2yy) =
17 (%y) 6 12, y =T
and
S fT () fT (e 4y —u)du 2
(3-20) My, (z,y) v-—orEm) 0 @Y ED, y#,
’ for ) -

L, (z,y) el y=u.

Corollary 2. Let f : I — (0,00) be a log-convex function on I, r > 0 and w :
[0,1] — [0,00) a Lebesgue integrable function. Then J¢., , defined by (3.17) is
Schur concave on I? and My, defined by (5.18) is Schur convex on 1.

In particular, Jg, defined by (3.19) is Schur concave on I? and My, defined by
(3.20) is Schur convex on I*.
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Further, if w : [0,1] — [0, 00) is symmetric on [0, 1], namely w (1 — ) = w (¢) for
all t € [0,1]. In this situation

1
Sg,m,y):/o gtz + (1 - t)y)w(t)dt

is symmetric on C2.
Indeed, we have

1 1
ng}(y’z):/o g(ter(lft):r)w(t)dt:/o g(1—9s)y+szx)w(l—s)ds

:/0 g(sz+(1=s)y)w(s)ds = Sy (z,y)

for all (z,y) € C%.

Theorem 14. Let f : C — (0,00) be a log-convez function, r >0 and w : [0,1] —
[0,00) a Lebesgue integrable symmetric function. Then S, s Schur convex on
C?, where

Stwr (2,9) =/0 [T tx+ (1 —t)y)w(t)dt.

Proof. Observe that

1
Sf,wﬂ' (l',y) = / Sf’",t (.Z‘,y)ZU(t) dt = Sf’",w (.’If,y)
0
Since f" is log-convex, f being log-convex on C, hence by Theorem 7 we get that
Stw,r is log-convex on C2. Therefore, for (z,y) € C?, s € [0,1] we get
St (5 (2,9) + (1= 8) (4,2)) < [Spwr (2,9)]" [Swr (4 2)]

=[St @) [Spwr (@, 9)] ™" = S (@,9),

which proves that Sy ., is Schur convex on C2. O

In the case when f is log-convex on the interval I, » > 0 and w : [0,1] — [0, 00)
a Lebesgue integrable symmetric function, then

Sl fr@w (82 du, (@) € 12y £ o,
Stawr (2,y) =
I (z) fol w(t)dt, (zv,y)€I? y=x

is Schur convezx on I2.
For w (t) = [t — 3| and w () = ¢ (1 — t) we can consider the functions

1, T
o Jo 1MW) [u— =2 dt, (z,y) € 1P,y # 2,
Sf7|‘_% Na (1’,@/) = and
ifr@j)’ (.’E,y)EIz, y=x

1 .
ﬁfo fT (’LL) (y_u) (’LL—.’L‘)dt, ($7y) € 127 Yy 7é$,
Sty (#,y) =
%fr (x), (x,y)€I? y=u.
Therefore we conclude that Sf || and Sy .(1—.), are Schur convex on I provided

f is log-convex on the interval I and r > 0.
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