
SOME NEW PROPERTIES OF LOG-CONVEX FUNCTIONS
DEFINED ON CONVEX SUBSETS IN LINEAR SPACES

SILVESTRU SEVER DRAGOMIR1;2

Abstract. For a Lebesgue integrable function w : [0; 1]! [0;1) we consider
the symmetric functions

Jf;w;r (x; y) :=

R 1
0 f

r ((1� t)x+ ty) fr (tx+ (1� t) y)w (t) dt
fr (x) fr (y)

and

Mf;w;r (x; y) :=

R 1
0 f

r ((1� t)x+ ty) fr (tx+ (1� t) y)w (t) dt

f2r
�
x+y
2

�
where f : C ! (0;1) is a log-convex function de�ned on the convex subset C
of a linear space X and r > 0:

In this paper we show among others that Jf;w;r is Schur concave andMf;w;r

is Schur convex on C � C: Some examples for log-convex functions of a real
variable are also given.

1. Introduction

A function f : I ! (0;1) is said to be log-convex or multiplicatively convex
if log f is convex, or, equivalently, if for all x; y 2 I and t 2 [0; 1] one has the
inequality:

(1.1) f (tx+ (1� t) y) � [f (x)]t [f (y)]1�t :

We note that if f and g are convex and g is increasing, then g � f is convex;
moreover, since f = exp (log f) ; it follows that a log-convex function is convex, but
the converse may not necessarily be true. This follows directly from (1.1) because,
by the arithmetic-geometric mean inequality, we have

[f (x)]
t
[f (y)]

1�t � tf (x) + (1� t) f (y)

for all x; y 2 I and t 2 [0; 1] :
Let us recall the Hermite-Hadamard inequality

(1.2) f

�
a+ b

2

�
� 1

b� a

Z b

a

f (x) dx � f (a) + f (b)

2
;

where f : I � R! R is a convex function on the interval I; a; b 2 I and a < b:
For related results, see [13] and [9].
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2 S. S. DRAGOMIR

Note that if we apply the above inequality for the log-convex functions f : I !
(0;1) ; we have that

(1.3) ln

�
f

�
a+ b

2

��
� 1

b� a

Z b

a

ln f (x) dx � ln f (a) + ln f (b)

2
;

from which we get

(1.4) f

�
a+ b

2

�
� exp

"
1

b� a

Z b

a

ln f (x) dx

#
�
p
f (a) f (b)

that is an inequality of Hermite-Hadamard�s type for log-convex functions.
By using simple properties of log-convex functions Dragomir and Mond proved

in 1998 the following result [11].

Theorem 1. Let f : I ! (0;1) be a log-convex mapping on I and a; b 2 I with
a < b: Then one has the inequality:

(1.5) f

�
a+ b

2

�
� 1

b� a

Z b

a

p
f (x) f (a+ b� x)dx �

p
f (a) f (b):

The inequality between the �rst and second term in (1.5) may be improved as
follows [11]. A di¤erent upper bound for the middle term in (1.5) can be also
provided.

Theorem 2. Let f : I ! (0;1) be a log-convex mapping on I and a; b 2 I with
a < b: Then one has the inequalities:

f

�
a+ b

2

�
� exp

"
1

b� a

Z b

a

ln f (x) dx

#
(1.6)

� 1

b� a

Z b

a

p
f (x) f (a+ b� x)dx

� 1

b� a

Z b

a

f (x) dx � L (f (a) ; f (b)) ;

where L (p; q) is the logarithmic mean of the strictly positive real numbers p; q; i.e.,

L (p; q) :=
p� q

ln p� ln q if p 6= q and L (p; p) := p:

The last inequality in (1.6) was obtained in a di¤erent context in [14].
As shown in [15], the following result also holds:

Theorem 3. Let f : I ! (0;1) be a log-convex mapping on I and a; b 2 I with
a < b: Then one has the inequalities:

(1.7) f

�
a+ b

2

�
�
 

1

b� a

Z b

a

p
f (x)dx

!2
� 1

b� a

Z b

a

f (x) dx:

We de�ne the p-logarithmic mean as

Lp (a; b) :=

8><>:
h
bp+1�ap+1
(p+1)(b�a)

i 1
p

;with a 6= b

a; if a = b

for p 6= 0;�1 and a; b > 0:
In the recent work [8] we generalized the inequality (1.6) as follows:
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Theorem 4. Let f : [a; b] ! (0;1) be a log-convex function on [a; b] : Then for
any p > 0 we have the inequality

f

�
a+ b

2

�
� exp

"
1

b� a

Z b

a

ln f (x) dx

#
(1.8)

�
 

1

b� a

Z b

a

fp (x) fp (a+ b� x) dx
! 1

2p

�
 

1

b� a

Z b

a

f2p (x) dx

! 1
2p

�

8<: [L2p�1 (f (a) ; f (b))]
1� 1

2p [L (f (a) ; f (b))]
1
2p ; p 6= 1

2 ;

L (f (a) ; f (b)) ; p = 1
2 :

If p 2
�
0; 12
�
; then we have

f

�
a+ b

2

�
� exp

"
1

b� a

Z b

a

ln f (x) dx

#
(1.9)

�
 

1

b� a

Z b

a

fp (x) fp (a+ b� x) dx
! 1

2p

�
 

1

b� a

Z b

a

f2p (x) dx

! 1
2p

� 1

b� a

Z b

a

f (x) dx:

Remark 1. If we take in (1.8) p = 1; then we get

f

�
a+ b

2

�
� exp

"
1

b� a

Z b

a

ln f (x) dx

#
(1.10)

�
 

1

b� a

Z b

a

f (x) f (a+ b� x) dx
! 1

2

�
 

1

b� a

Z b

a

f2 (x) dx

! 1
2

� [A (f (a) ; f (b))]
1
2 [L (f (a) ; f (b))]

1
2 :

If we take p = 1
4 in (1.9), then we get

f

�
a+ b

2

�
� exp

"
1

b� a

Z b

a

ln f (x) dx

#
(1.11)

�
 

1

b� a

Z b

a

4
p
f (x) f (a+ b� x) dx

!2

�
 

1

b� a

Z b

a

p
f (x)dx

!2
� 1

b� a

Z b

a

f (x) dx:
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This improves the inequality (1.7).

Motivated by the above results, in this paper we study among others the Schur
convexity of some functions associated to a log-convex function on C: Some exam-
ples for log-convex functions of a real variable are also given.

2. Log Convex Functions on Convex Sets in Linear Spaces

We consider the function f : C ! R de�ned on the convex subset C of the linear
space X and for each (x; y) 2 C2 := C � C we introduce the auxiliary function
'(x;y) : [0; 1]! R de�ned by

'(x;y) (t) := f ((1� t)x+ ty) :
It is well known that the function f is convex on C if and only if for each (x; y) 2 C2
the auxiliary function '(x;y) is convex on [0; 1] :
By utilising the classical Hermite-Hadamard inequality for the convex function

'(x;y) on [0; 1] we then have

(2.1) f

�
x+ y

2

�
�
Z 1

0

f ((1� t)x+ ty) dt � f (x) + f (y)

2

for all (x; y) 2 C2:
We say that the function f : C ! (0;1) is log-convex on C if

(2.2) f (tx+ (1� t) y) � [f (x)]t [f (y)]1�t

for all vectors x; y 2 C and t 2 [0; 1] : By taking the log in (2.2) we deduce that f
is log-convex on C if ln f is convex on C:

Lemma 1. Consider the function f : C ! (0;1) : The function f is log-convex
on C if and only if for all (x; y) 2 C2 the auxiliary function '(x;y) is log-convex on
[0; 1] :

Proof. Assume that f is log-convex on C and (x; y) 2 C2: Let �; � > 0 with
�+ � = 1 and t1; t2 2 [0; 1] then

'(x;y) (�t1 + �t2) = f ((�t1 + �t2)x+ (1� �t1 � �t2) y)
= f ((�t1 + �t2)x+ (�+ � � �t1 � �t2) y)
= f (� [t1x+ (1� t1) y] + � [t2x+ (1� t2) y])

� [f (t1x+ (1� t1) y)]� [f (t2x+ (1� t2) y)]�

=
h
'(x;y) (t1)

i� h
'(x;y) (t2)

i�
;

which shows that '(x;y) is log-convex on [0; 1] :
Let (x; y) 2 C2 and t 2 [0; 1] ; then by the log-convexity of '(x;y) we have

f (tx+ (1� t) y) = '(x;y) (t) = '(x;y) (t � 1 + (1� t) � 0)

�
h
'(x;y) (1)

it h
'(x;y) (0)

i1�t
= [f (x)]

t
[f (y)]

1�t
;

which proves the log-convexity of f on C: �
By utilising Theorem 2 and 4 for the auxiliary function '(x;y) we can state the

following result for log-convex functions de�ned on the convex set C of the linear
space X:
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Theorem 5. Let f : C ! (0;1) be a log-convex function on C and (x; y) 2 C2;
then

f

�
x+ y

2

�
� exp

�Z 1

0

ln f (tx+ (1� t) y) dt
�

(2.3)

�
Z 1

0

p
f (tx+ (1� t) y) f ((1� t)x+ ty)dt

�
Z 1

0

f (tx+ (1� t) y) � L (f (x) ; f (y)) ;

where L (�; �) is the logarithmic mean.
For any p > 0 we have the inequality

f

�
x+ y

2

�
� exp

�Z 1

0

ln f (tx+ (1� t) y) dt
�

(2.4)

�
�Z 1

0

fp (tx+ (1� t) y) fp ((1� t)x+ ty) dt
� 1

2p

�
�Z 1

0

f2p (tx+ (1� t) y) dt
� 1

2p

�

8<: [L2p�1 (f (x) ; f (y))]
1� 1

2p [L (f (x) ; f (y))]
1
2p ; p 6= 1

2 ;

L (f (x) ; f (y)) ; p = 1
2 ;

where Lr (�; �) is the r-logarithmic mean.
If p 2

�
0; 12
�
; then we have

f

�
x+ y

2

�
� exp

�Z 1

0

ln f (tx+ (1� t) y) dt
�

(2.5)

�
�Z 1

0

f2p (tx+ (1� t) y) dt
� 1

2p

�
�Z 1

0

f2p (tx+ (1� t) y) dx
� 1

2p

�
Z 1

0

f (tx+ (1� t) y) dt:

Now, for t 2 [0; 1] we de�ne the function St : C2 ! (0;1) by
Sf;t (x; y) = f (tx+ (1� t) y) :

Lemma 2. If the function f : C ! (0;1) is a log-convex function on C and
t 2 (0; 1) ; then Sf;t is log-convex on C2:

Proof. Let �; � > 0 with �+ � = 1 and (x; y) ; (u; v) 2 C2. Then
Sf;t (� (x; y) + � (u; v)) = Sf;t (�x+ �u; �y + �v)

= f (t (�x+ �u) + (1� t) (�y + �v))
= f (� [tx+ (1� t) y] + � [tu+ (1� t) v])

� [f (tx+ (1� t) y)]� [f (tu+ (1� t) v)]�

= [Sf;t (x; y)]
�
[Sf;t (u; v)]

�
;

which shows that Sf;t is log-convex on C2: �
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For for t 2 [0; 1] we de�ne the function Tf;t : C2 ! (0;1) by

Tf;t (x; y) =
Sf;t (x; y) + Sf;1�t (x; y)

2
=
f (tx+ (1� t) y) + f ((1� t)x+ ty)

2
:

We observe that Tf;t is symmetric on C2; namely Tf;t (x; y) = Tf;t (y; x) for all
(x; y) 2 C2:

Theorem 6. If the function f : C ! (0;1) is a log-convex function on C and
t 2 (0; 1) ; then Tf;t is log-convex on C2:

Proof. Let �; � > 0 with �+ � = 1 and (x; y) ; (u; v) 2 C2. Then by Lemma 2 we
have for t 2 (0; 1) that

Sf;t (� (x; y) + � (u; v)) � [Sf;t (x; y)]� [Sf;t (u; v)]�

and
Sf;1�t (� (x; y) + � (u; v)) � [Sf;1�t (x; y)]� [Sf;1�t (u; v)]� :

If we add these two inequalities we get

Sf;t (� (x; y) + � (u; v)) + Sf;1�t (� (x; y) + � (u; v))(2.6)

� [Sf;t (x; y)]� [Sf;t (u; v)]� + [Sf;1�t (x; y)]� [Sf;1�t (u; v)]� :

If we use the Hölder�s type inequality

ab+ cd � (ap + cp)1=p (bq + dq)1=q ;

where p; q > 1 with 1
p +

1
q = 1; then we get for

a = [Sf;t (x; y)]
�
; b = [Sf;t (u; v)]

�
; c = [Sf;1�t (x; y)]

�
; d = [Sf;1�t (u; v)]

�

and p = 1
� ; q =

1
� that

[Sf;t (x; y)]
�
[Sf;t (u; v)]

�
+ [Sf;1�t (x; y)]

�
[Sf;1�t (u; v)]

�(2.7)

�
h
([Sf;t (x; y)]

�
)
1=�

+ ([Sf;1�t (x; y)]
�
)
1=�
i�

�
��
[Sf;t (u; v)]

�
�1=�

+
�
[Sf;1�t (u; v)]

�
�1=���

= [Sf;t (x; y) + Sf;1�t (x; y)]
�
[Sf;t (u; v) + Sf;1�t (u; v)]

�
:

By making use of (2.6) and (2.7) we get

2Tf;t (� (x; y) + � (u; v)) � [2Tf;t (x; y)]� [2Tf;t (u; v)]� = 2 [Tf;t (x; y)]� [Tf;t (u; v)]� ;

which proves the fact that Tf;t is log-convex on C2: �

For a Lebesgue integrable function w : [0; 1]! [0;1) and a log-convex function
f : C ! (0;1) we consider the function

Sf;w (x; y) =

Z 1

0

Sf;t (x; y)w (t) dt =

Z 1

0

f (tx+ (1� t) y)w (t) dt:

Theorem 7. If the function f : C ! (0;1) is a log-convex function on C and
w : [0; 1] ! [0;1) a Lebesgue integrable function on [0; 1], then Sf;w is log-convex
on C2:
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Proof. Let �; � > 0 with �+ � = 1 and (x; y) ; (u; v) 2 C2: Then, by Lemma 2 we
have

Sf;w (� (x; y) + � (u; v)) =

Z 1

0

Sf;t (� (x; y) + � (u; v))w (t) dt

�
Z 1

0

[Sf;t (x; y)]
�
[Sf;t (u; v)]

�
w (t) dt:

By Hölder�s weighted integral inequality for p = 1
� ; q =

1
� we haveZ 1

0

[Sf;t (x; y)]
�
[Sf;t (u; v)]

�
w (t) dt

�
�Z 1

0

([Sf;t (x; y)]
�
)
1=�

w (t) dt

���Z 1

0

�
[Sf;t (u; v)]

�
�1=�

w (t) dt

��
=

�Z 1

0

Sf;t (x; y)w (t) dt

���Z 1

0

Sf;t (u; v)w (t) dt

��
= [Sf;w (x; y)]

�
[Sf;w (u; v)]

�
;

which proves the log-convexity of Sf;w on C2: �

We denote by [x; y] the closed segment de�ned by f(1� s)x+ sy, s 2 [0; 1]g :We
also de�ne the functional

	g;t (x; y) := (1� t) g (x) + tg (y)� g ((1� t)x+ ty) � 0

where x; y 2 C; x 6= y and t 2 [0; 1] :
In [5] we obtained among others the following result :

Lemma 3. Let g : C � X ! R be a convex function on the convex set C. Then
for each x; y 2 C and z 2 [x; y] we have

(2.8) (0 �)	g;t (x; z) + 	g;t (z; y) � 	g;t (x; y)

for each t 2 [0; 1] ; i.e., the functional 	g;t (�; �) is superadditive as a function of
interval.
If z; u 2 [x; y] ; then

(2.9) (0 �)	g;t (z; u) � 	g;t (x; y)

for each t 2 [0; 1] ; i.e., the functional 	g;t (�; �) is nondecreasing as a function of
interval.

For a log-convex function f : C ! (0;1) and for x; y 2 C; x 6= y and t 2 [0; 1]
we consider the function �f;t : C2 ! [1;1) de�ned by

(2.10) �f;t (x; y) :=
[f (x)]

1�t
[f (y)]

t

f ((1� t)x+ ty) � 1:

We observe that

	ln f;t (x; y) := (1� t) ln f (x) + t ln f (y)� ln f ((1� t)x+ ty) = ln�f;t (x; y)

for x; y 2 C; x 6= y and t 2 [0; 1] :
We have:
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Theorem 8. Let f : C ! (0;1) be a log-convex function. Then for each x; y 2 C
and z 2 [x; y] we have
(2.11) (1 �)�f;t (x; z)�f;t (z; y) � �f;t (x; y)
for each t 2 [0; 1] ; i.e., the functional �f;t (�; �) is supermultiplicative as a function
of interval.
If z; u 2 [x; y] ; then

(2.12) (1 �)�f;t (z; u) � �f;t (x; y)
for each t 2 [0; 1] ; i.e., the functional �f;t (�; �) is nondecreasing as a function of
interval.

For a log-convex function f : C ! (0;1) and for x; y 2 C; x 6= y and t 2 [0; 1]
we also consider the function 
f;t : C2 ! [1;1) de�ned by


f;t (x; y) := �f;t (x; y)�f;1�t (x; y) =
f (x) f (y)

f ((1� t)x+ ty) f (tx+ (1� t) y) :

Corollary 1. Let f : C ! (0;1) be a log-convex function. Then for each x; y 2 C;
x 6= y and z 2 [x; y] we have
(2.13) (1 �) 
f;t (x; z) 
f;t (z; y) � 
f;t (x; y)
for each t 2 [0; 1] :
If z; u 2 [x; y] ; then

(2.14) (1 �) 
f;t (z; u) � 
f;t (x; y)
for each t 2 [0; 1] :

The proof follows by Theorem 8 written for t and 1 � t and multiplying the
obtained inequalities.

3. Schur Convexity

For any x = (x1; :::; xn) 2 Rn, let x[1] � ::: � x[n] denote the components of x in
decreasing order, and let x# =

�
x[1]; :::; x[n]

�
denote the decreasing rearrangement

of x. For x; y 2 Rn, x � y if, by de�nition,8<:
Pk

i=1 x[i] �
Pk

i=1 y[i]; k = 1; :::; n� 1;Pn
i=1 x[i] =

Pn
i=1 y[i]:

When x � y, x is said to be majorized by y (y majorizes x). This notation and
terminology was introduced by Hardy, Littlewood and Pólya in 1934.
A real-valued function � de�ned on a set A � Rn is said to be Schur-convex on

A if

(3.1) x � y on A ) � (x) � � (y) :
If, in addition, � (x) < � (y) whenever x � y but x is not a permutation of y, then
� is said to be strictly Schur-convex on A. If A = Rn, then � is simply said to be
Schur-convex or strictly Schur-convex.
For fundamental properties of Schur convexity see the monograph [16] and the

references therein. For some recent results, see [1]-[3] and [17]-[19].
The following result is known in the literature as Schur-Ostrowski theorem [16,

p. 84]:
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Theorem 9. Let I � R be an open interval and let � : In ! R be continuously
di¤erentiable. Necessary and su¢ cient conditions for � to be Schur-convex on In

are

(3.2) � is symmetric on In;

and for all i 6= j, with i; j 2 f1; :::; ng ;

(3.3) (zi � zj)
�
@�(z)

@xi
� @�(z)

@xj

�
� 0 for all z 2 In;

where @�
@xk

denotes the partial derivative of � with respect to its k-th argument.

Let A � Rn be a set with the following properties:
(i) A is symmetric in the sense that x 2 A ) x� 2 A for all permutations � of

the coordinates.
(ii) A is convex and has a nonempty interior.
We have the following result, [16, p. 85].

Theorem 10. If � is continuously di¤erentiable on the interior of A and contin-
uous on A, then necessary and su¢ cient conditions for � to be Schur-convex on A
are

(3.4) � is symmetric on A
and

(3.5) (z1 � z2)
�
@�(z)

@x1
� @�(z)

@x2

�
� 0 for all z 2 A:

Another interesting characterization of Schur convex functions � on A was ob-
tained by C. St¾epniak in [20]:

Theorem 11. Let � be any function de�ned on a symmetric convex set A in Rn.
Then the function � is Schur convex on A if and only if

(3.6) � (x1; :::; xi; :::; xj ; :::; xn) = � (x1; :::; xj ; :::; xi; :::; xn)

for all (x1; :::; xn) 2 A and 1 � i < j � n and
(3.7) � (�x1 + (1� �)x2; �x2 + (1� �)x1; x3; :::; xn) � � (x1; :::; xn)
for all (x1; :::; xn) 2 A and for all � 2 (0; 1) ;

It is well known that any symmetric convex function de�ned on a symmetric
convex set A is Schur convex, [16, p. 97]. If the function � : A ! R is symmetric
and quasi-convex, namely

� (�u+ (1� �) v) � max f� (u) ; � (v)g
for all � 2 [0; 1] and u; v 2 A, a symmetric convex set, then � is Schur convex on
A [16, p. 98].
Let X be a linear space and G � X2 := X �X a convex set. We say that G is

symmetric if (x; y) 2 G implies that (y; x) 2 G: If C � X is a convex subset of X;
then the Cartesian product G := C2 := C � C is convex and symmetric in X2:
Motivated by the characterization result of St¾epniak above, we say that a func-

tion � : G ! R will be called Schur convex on the convex and symmetric set
G � X2 if

(3.8) � (s (x; y) + (1� s) (y; x)) � � (x; y)
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for all (x; y) 2 G and for all s 2 [0; 1] :
If G = C2; then we recapture the general concept of Schur convexity introduced

by Burai and Makó in 2016, [1].
We say that the function � : G ! R is symmetric on G if � (x; y) = � (y; x) for

all (x; y) 2 G.
If � : G ! R is Schur convex on the convex and symmetric set G � X2; then

� is symmetric on G: Indeed, if (x; y) 2 G; then by (3.8) we get for s = 0 that
� (y; x) � � (x; y) : If we replace x with y then we also get � (x; y) � � (y; x) which
shows that � (x; y) = � (y; x) for all (x; y) 2 G:
For a function f : C ! (0;1) and t 2 [0; 1] we de�ne the associated symmetric

functions Tf;t : C2 ! (0;1) and Mf;t : C
2 ! (0;1) by

(3.9) Tf;t (x; y) :=
f (x) f (y)

f ((1� t)x+ ty) f (tx+ (1� t) y)

and

(3.10) Mf;t (x; y) :=
f ((1� t)x+ ty) f (tx+ (1� t) y)

f2
�
x+y
2

� :

Theorem 12. Let f : C ! (0;1) be a log-convex function and t 2 [0; 1]. The
functions Tf;t and Mf;t are Schur convex on C2:

Proof. Let (x; y) 2 C2 and s 2 [0; 1], t 2 [0; 1] : Then

Tf;t (s (x; y) + (1� s) (y; x))(3.11)

= Tf;t (sx+ (1� s) y; sy + (1� s)x)

=
f ((1� s)x+ sy)

f ((1� t) ((1� s)x+ sy) + t (sx+ (1� s) y))

� f (sx+ (1� s) y)
f (t ((1� s)x+ sy) + (1� t) (sx+ (1� s) y)) :

If we take u = (1� s)x+ sy; v = sx+ (1� s) y in (2.14), then we get

f ((1� s)x+ sy)
f ((1� t) ((1� s)x+ sy) + t (sx+ (1� s) y))(3.12)

� f (sx+ (1� s) y)
f (t ((1� s)x+ sy) + (1� t) (sx+ (1� s) y))

� f (x) f (y)

f ((1� t)x+ ty) f (tx+ (1� t) y) = Tf;t (x; y) :

Therefore, by (3.11) and (3.12) we get

Tf;t (s (x; y) + (1� s) (y; x)) � Tf;t (x; y) ;

for all (x; y) 2 C2 and s 2 [0; 1], t 2 [0; 1] ; which shows that Tf;t is Schur convex.
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Let (x; y) 2 C2 and s 2 [0; 1], t 2 [0; 1] : Then
Mf;t (s (x; y) + (1� s) (y; x))(3.13)

=Mf;t (sx+ (1� s) y; sy + (1� s)x)

=
f ((1� t) (sx+ (1� s) y) + t (sy + (1� s)x))

f
�
sx+(1�s)y+y+sy+(1�s)x

2

�
� f (t (sx+ (1� s) y) + (1� t) (sy + (1� s)x))

f
�
sx+(1�s)y+y+sy+(1�s)x

2

�
=
f (s ((1� t)x+ ty) + (1� s) ((1� t) y + tx))

f
�
x+y
2

�
� f (s ((1� t) y + tx) + (1� s) ((1� t)x+ ty))

f
�
x+y
2

� :

By the log-convexity of f we have

f (s ((1� t)x+ ty) + (1� s) ((1� t) y + tx))(3.14)

� [f ((1� t)x+ ty)]s [f ((1� t) y + tx)]1�s

and

f (s ((1� t) y + tx) + (1� s) ((1� t)x+ ty))(3.15)

� [f ((1� t) y + tx)]s [f ((1� t)x+ ty)]1�s

for all (x; y) 2 C2 and s 2 [0; 1] :
If we multiply (3.14) with (3.15) we get

f (s ((1� t)x+ ty) + (1� s) ((1� t) y + tx))
f
�
x+y
2

�(3.16)

� f (s ((1� t) y + tx) + (1� s) ((1� t)x+ ty))
f
�
x+y
2

�
� f ((1� t)x+ ty) f ((1� t) y + tx)

f2
�
x+y
2

� =Mf;t (x; y) :

By making use of (3.13) and (3.16) we deduce that

Mf;t (s (x; y) + (1� s) (y; x)) �Mf;t (x; y) ;

which shows that Mf;t is Schur convex. �

Remark 2. We observe that the function

Jf;t (x; y) :=
f ((1� t)x+ ty) f (tx+ (1� t) y)

f (x) f (y)

is Schur concave, namely

Jf;t (s (x; y) + (1� s) (y; x)) � Jf;t (x; y)
provided f : C ! (0;1) is a log-convex function and t 2 [0; 1].
If r > 0; then the function Jrf;t is a Schur concave function and M

r
f;t is a Schur

convex function on C2; provided f : C ! (0;1) is a log-convex function and
t 2 [0; 1].
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Theorem 13. Let f : C ! (0;1) be a log-convex function, r > 0 and w : [0; 1]!
[0;1) a Lebesgue integrable function. Then Jf;w;r is Schur concave on C2 and
Mf;w;r is Schur convex on C2:

Proof. Let (x; y) 2 C2 and s 2 [0; 1] : Then

Jf;w;r (s (x; y) + (1� s) (y; x)) =
Z 1

0

Jrf;t (s (x; y) + (1� s) (y; x))w (t) dt

�
Z 1

0

Jrf;t (x; y)w (t) dt = Jf;w;r (x; y)

and

Mf;w;r (s (x; y) + (1� s) (y; x)) =
Z 1

0

Mr
f;t (s (x; y) + (1� s) (y; x))w (t) dt

�
Z 1

0

Mr
f;t (x; y)w (t) dt =Mf;w;r (x; y) ;

which proves the desired results. �

For a logarithmic convex function f de�ned on the interval I, by changing the
variable u = (1� t)x+ ty; t 2 [0; 1] ; (x; y) 2 I2; y 6= x; we have

(3.17) Jf;w;r (x; y) =

8><>:
R y
x
fr(u)fr(x+y�u)w(u�xy�x )du

(y�x)fr(x)fr(y) ; (x; y) 2 I2; y 6= x;

1; (x; y) 2 I2; y = x

and

(3.18) Mf;w;r (x; y) =

8><>:
R y
x
fr(u)fr(x+y�u)w(u�xy�x )du

(y�x)f2r( x+y2 )
; (x; y) 2 I2; y 6= x;

1; (x; y) 2 I2; y = x

for a Lebesgue integrable function w : [0; 1]! [0;1) and r > 0:
In particular, for w � 1 we put

(3.19) Jf;r (x; y) =

8><>:
R y
x
fr(u)fr(x+y�u)du
(y�x)fr(x)fr(y) ; (x; y) 2 I2; y 6= x;

1; (x; y) 2 I2; y = x

and

(3.20) Mf;r (x; y) =

8><>:
R y
x
fr(u)fr(x+y�u)du
(y�x)f2r( x+y2 )

; (x; y) 2 I2; y 6= x;

1; (x; y) 2 I2; y = x:

Corollary 2. Let f : I ! (0;1) be a log-convex function on I; r > 0 and w :
[0; 1] ! [0;1) a Lebesgue integrable function. Then Jf;w;r de�ned by (3.17) is
Schur concave on I2 and Mf;w;r de�ned by (3.18) is Schur convex on I2:
In particular, Jf;r de�ned by (3.19) is Schur concave on I2 and Mf;r de�ned by

(3.20) is Schur convex on I2:
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Further, if w : [0; 1]! [0;1) is symmetric on [0; 1] ; namely w (1� t) = w (t) for
all t 2 [0; 1] : In this situation

Sg;w (x; y) =

Z 1

0

g (tx+ (1� t) y)w (t) dt

is symmetric on C2:
Indeed, we have

Sg;w (y; x) =

Z 1

0

g (ty + (1� t)x)w (t) dt =
Z 1

0

g ((1� s) y + sx)w (1� s) ds

=

Z 1

0

g (sx+ (1� s) y)w (s) ds = Sg;w (x; y)

for all (x; y) 2 C2:

Theorem 14. Let f : C ! (0;1) be a log-convex function, r > 0 and w : [0; 1]!
[0;1) a Lebesgue integrable symmetric function. Then Sf;w;r is Schur convex on
C2; where

Sf;w;r (x; y) =

Z 1

0

fr (tx+ (1� t) y)w (t) dt:

Proof. Observe that

Sf;w;r (x; y) =

Z 1

0

Sfr;t (x; y)w (t) dt = Sfr;w (x; y) :

Since fr is log-convex, f being log-convex on C; hence by Theorem 7 we get that
Sf;w;r is log-convex on C2: Therefore, for (x; y) 2 C2; s 2 [0; 1] we get

Sf;w;r (s (x; y) + (1� s) (y; x)) � [Sf;w;r (x; y)]s [Sf;w;r (y; x)]1�r

= [Sf;w;r (x; y)]
s
[Sf;w;r (x; y)]

1�r
= Sf;w;r (x; y) ;

which proves that Sf;w;r is Schur convex on C2: �

In the case when f is log-convex on the interval I; r > 0 and w : [0; 1]! [0;1)
a Lebesgue integrable symmetric function, then

Sf;w;r (x; y) =

8><>:
1

y�x
R 1
0
fr (u)w

�
u�x
y�x

�
du; (x; y) 2 I2; y 6= x;

fr (x)
R 1
0
w (t) dt; (x; y) 2 I2; y = x

is Schur convex on I2:
For w (t) =

��t� 1
2

�� and w (t) = t (1� t) we can consider the functions
Sf;j�� 1

2 j;r (x; y) =

8><>:
1

(y�x)2
R 1
0
fr (u)

��u� x+y
2

�� dt; (x; y) 2 I2; y 6= x;
1
4f

r (x) ; (x; y) 2 I2; y = x
and

Sf;�(1��);r (x; y) =

8><>:
1

(y�x)3
R 1
0
fr (u) (y � u) (u� x) dt; (x; y) 2 I2; y 6= x;

1
6f

r (x) ; (x; y) 2 I2; y = x:
Therefore we conclude that Sf;j�� 1

2 j;r and Sf;�(1��);r are Schur convex on I provided
f is log-convex on the interval I and r > 0:
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