
SOME NEW PROPERTIES OF AH -CONVEX FUNCTIONS
DEFINED ON CONVEX SUBSETS IN LINEAR SPACES

SILVESTRU SEVER DRAGOMIR1;2

Abstract. For a Lebesgue integrable function p : [0; 1]! [0;1) we consider
the symmetric functions

�f;p (x; y) =

Z 1

0

�p (t) dt

f ((1� t)x+ ty)
� f (x) + f (y)

2f (x) f (y)

Z 1

0
p (t) dt

and

�f;p (x; y) :=
1

f
�
x+y
2

� Z 1

0
p (t) dt�

Z 1

0

�p (t) dt

f ((1� t)x+ ty)
;

where f : C ! (0;1) is a AH -convex function de�ned on the convex subset
C of a linear space X and �p (t) := 1

2
[p (t) + p (1� t)] ; t 2 [0; 1] :

In this paper we show among others that �f;p and �f;p are Schur convex
on C � C: Some examples for AH -convex functions of a real variable are also
given.

1. Introduction

The following inequality holds for any convex function f de�ned on R

(1.1) f

�
a+ b

2

�
� 1

b� a

Z b

a

f(x)dx � f(a) + f(b)

2
; a; b 2 R, a < b:

It was �rstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [14]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite�s result.
E. F. Beckenbach, a leading expert on the history and the theory of convex

functions, wrote that this inequality was proven by J. Hadamard in 1893 [1]. In
1974, D. S. Mitrinovíc found Hermite�s note in Mathesis [14]. Since (1.1) was
known as Hadamard�s inequality, the inequality is now commonly referred as the
Hermite-Hadamard inequality.
For related results, see [12] and [9].
Let X be a vector space over the real or complex number �eld K and x; y 2

X; x 6= y. De�ne the segment

[x; y] := f(1� t)x+ ty; t 2 [0; 1]g:
We consider the function f : [x; y]! R and the associated function

g(x; y) : [0; 1]! R; g(x; y)(t) := f [(1� t)x+ ty]; t 2 [0; 1]:
Note that f is convex on [x; y] if and only if g(x; y) is convex on [0; 1].
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2 S. S. DRAGOMIR

For any convex function de�ned on a segment [x; y] � X, we have the Hermite-
Hadamard integral inequality (see [5, p. 2], [6, p. 2])

(1.2) f

�
x+ y

2

�
�
Z 1

0

f [(1� t)x+ ty]dt � f(x) + f(y)

2
;

which can be derived from the classical Hermite-Hadamard inequality (1.1) for the
convex function g(x; y) : [0; 1]! R.
Let X be a linear space and C a convex subset in X: A function f : C ! Rn f0g

is called AH -convex (concave) on the convex set C if the following inequality holds

(AH) f ((1� �)x+ �y) � (�) 1

(1� �) 1
f(x) + �

1
f(y)

=
f (x) f (y)

(1� �) f (y) + �f (x)

for any x; y 2 C and � 2 [0; 1] :
An important case which provides many examples is that one in which the func-

tion is assumed to be positive for any x 2 C: In that situation the inequality (AH)
is equivalent to

(1� �) 1

f (x)
+ �

1

f (y)
� (�) 1

f ((1� �)x+ �y)
for any x; y 2 C and � 2 [0; 1] :
Therefore we can state the following fact:

Criterion 1. Let X be a linear space and C a convex subset in X: The function
f : C ! (0;1) is AH-convex (concave) on C if and only if 1f is concave (convex)
on C in the usual sense.

If we apply the Hermite-Hadamard inequality (1.2) for the function 1
f then we

state the following result:

Proposition 1. Let X be a linear space and C a convex subset in X: If the function
f : C ! (0;1) is AH-convex (concave) on C; then

(1.3)
f (x) + f (y)

2f (x) f (y)
� (�)

Z 1

0

d�

f ((1� �)x+ �y) � (�)
1

f
�
x+y
2

�
for any x; y 2 C:

Motivated by the above results, in this paper we establish some new Hermite-
Hadamard type inequalities for AH -convex (concave) functions, �rst in the general
setting of linear spaces and then in the particular case of functions of a real variable.
Some examples for special means are provided as well.
Recently we obtained following results for AH -convex de�ned on convex subsets

in linear spaces [8]:

Theorem 1. Let X be a linear space and C a convex subset in X: If the function
f : C ! (0;1) is AH-convex (concave) on C; then for any x; y 2 C we have

(1.4)
Z 1

0

f ((1� �)x+ �y) d� � (�) G
2 (f (x) ; f (y))

L (f (x) ; f (y))
;

where the Logarithmic mean of positive numbers a; b is de�ned as

L (a; b) :=

8<:
b�a

ln b�ln a if a 6= b

a if a = b;
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and the geometric mean is G =
p
ab:

Remark 1. Using the following well known inequalities

H (a; b) � G (a; b) � L (a; b)

we have

(1.5)
Z 1

0

f ((1� �)x+ �y) d� � G2 (f (x) ; f (y))

L (f (x) ; f (y))
� G (f (x) ; f (y))

for any x; y 2 C, provided that f : C ! (0;1) is AH-convex.
If f : C ! (0;1) is AH-concave, thenZ 1

0

f ((1� �)x+ �y) d� � G2 (f (x) ; f (y))

L (f (x) ; f (y))
(1.6)

� G (f (x) ; f (y))

L (f (x) ; f (y))
H (f (x) ; f (y))

for any x; y 2 C:

Theorem 2. Let X be a linear space and C a convex subset in X: If the function
f : C ! (0;1) is AH-convex (concave) on C; then for any x; y 2 C we have

(1.7) f

�
x+ y

2

�
� (�)

R 1
0
f ((1� �)x+ �y) f (�x+ (1� �) y) d�R 1

0
f ((1� �)x+ �y) d�

:

Remark 2. By the Cauchy-Bunyakovsky-Schwarz integral inequality we haveZ 1

0

f ((1� �)x+ �y) f (�x+ (1� �) y) d�(1.8)

�
�Z 1

0

f2 ((1� �)x+ �y) d�
Z 1

0

f2 (�x+ (1� �) y) d�
�1=2

=

Z 1

0

f2 ((1� �)x+ �y) d�

for any x; y 2 C:
If the function f : C ! (0;1) is AH-convex on C; then we have

f

�
x+ y

2

�
�
R 1
0
f ((1� �)x+ �y) f (�x+ (1� �) y) d�R 1

0
f ((1� �)x+ �y) d�

(1.9)

�
R 1
0
f2 ((1� �)x+ �y) d�R 1

0
f ((1� �)x+ �y) d�

:

If the function  x;y (t) = f ((1� t)x+ ty) ; for some given x; y 2 C with x 6= y;
is monotonic nondecreasing on [0; 1] ; then �x;y (t) = f (tx+ (1� t) y) is monotonic
nonincreasing on [0; 1] and by µCeby�ev�s inequality for monotonic opposite functions
we haveZ 1

0

f ((1� �)x+ �y) f (�x+ (1� �) y) d� �
�Z 1

0

f ((1� �)x+ �y) d�
�2

:
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So, for some given x; y 2 C with x 6= y;  x;y (t) = f ((1� t)x+ ty) is monotonic
nondecreasing (nonincreasing) on [0; 1] and if the function f : C ! (0;1) is AH-
convex on C; then we have

f

�
x+ y

2

�
�
R 1
0
f ((1� �)x+ �y) f (�x+ (1� �) y) d�R 1

0
f ((1� �)x+ �y) d�

(1.10)

�
Z 1

0

f ((1� �)x+ �y) d�:

If (X; k�k) is a normed space, then the function g : X ! [0;1); g (x) = kxkp ;
p � 1 is convex and then the function f : C � X ! (0;1) ; f (x) = 1

kxkp is
AH -concave on any convex subset of X which does not contain f0g :
Utilising (1.4) we have

(1.11)
Z 1

0

d�

k(1� �)x+ �ykp �
1

L (kxkp ; kykp) ;

for any linearly independent x; y 2 X and p � 1:
Making use of (1.7) we also have

(1.12)
Z 1

0

d�

k(1� �)x+ �ykp �
x+ y2

p Z 1

0

d�

k(1� �)x+ �ykp k�x+ (1� �) ykp

for any linearly independent x; y 2 X and p � 1:

2. More on AH -Convex Functions

We consider the function f : C ! R de�ned on the convex subset C of the linear
space X and for each (x; y) 2 C2 := C � C we introduce the auxiliary function
'(x;y) : [0; 1]! R de�ned by

(2.1) '(x;y) (t) := f ((1� t)x+ ty) :

It is well known that the function f is convex on C if and only if for each (x; y) 2 C2
the auxiliary function '(x;y) is convex on [0; 1] :

Lemma 1. Consider the function f : C ! (0;1) : The function f is AH-convex
on C if and only if for all (x; y) 2 C2 the auxiliary function '(x;y) is AH-convex
on [0; 1] :

Proof. Assume that f is AH -convex on C and (x; y) 2 C2: Let �; � > 0 with
�+ � = 1 and t1; t2 2 [0; 1] then

'(x;y) (�t1 + �t2) = f ((�t1 + �t2)x+ (1� �t1 � �t2) y)
= f ((�t1 + �t2)x+ (�+ � � �t1 � �t2) y)
= f (� [t1x+ (1� t1) y] + � [t2x+ (1� t2) y])

� 1
�

f(t1x+(1�t1)y) +
�

f(t2x+(1�t2)y)

=
1

�
'(x;y)(t1)

+ �
'(x;y)(t2)

;

which shows that '(x;y) is AH -convex on [0; 1] :
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Let (x; y) 2 C2 and t 2 [0; 1] ; then by the log-convexity of '(x;y) we have

f (tx+ (1� t) y) = '(x;y) (t) = '(x;y) (t � 1 + (1� t) � 0)

� 1
t

'(x;y)(1)
+ 1�t

'(x;y)(0)

=
1

t
f(x) +

1�t
f(y)

;

which proves the AH -convexity of f on C: �

Now, for t 2 [0; 1] we de�ne the function St : C2 ! (0;1) by
(2.2) Sf;t (x; y) = f (tx+ (1� t) y) :

Lemma 2. If f : C ! (0;1) is a AH-convex function on C and t 2 (0; 1) ; then
Sf;t is AH-convex on C2:

Proof. Let �; � > 0 with �+ � = 1 and (x; y) ; (u; v) 2 C2. Then
Sf;t (� (x; y) + � (u; v)) = Sf;t (�x+ �u; �y + �v)

= f (t (�x+ �u) + (1� t) (�y + �v))
= f (� [tx+ (1� t) y] + � [tu+ (1� t) v])

� 1
�

f(tx+(1�t)y) +
�

f(tu+(1�t)v)

=
1

�
Sf;t(x;y)

+ �
Sf;t(u;v)

;

which shows that Sf;t is AH -convex on C2: �

Lemma 3. The function � : (0;1)2 ! (0;1) ; de�ned by

(2.3) � (x; y) =
xy

x+ y
=

1
1
x +

1
y

is concave on (0;1)2 :

Proof. The �rst partial derivatives are

@� (x; y)

@x
=
y (x+ y)� xy
(x+ y)

2 =
y2

(x+ y)
2

and
@� (x; y)

@y
=
x (x+ y)� xy
(x+ y)

2 =
x2

(x+ y)
2

for x; y > 0:
The second partial derivatives are

@2� (x; y)

@x2
= y2

@

@x

h
(x+ y)

�2
i
= �2y2 (x+ y)�3 = �2 y2

(x+ y)
3 ;

@2� (x; y)

@y@x
=

@

@y

"
y2

(x+ y)
2

#
=
2y (x+ y)

2 � 2y2 (x+ y)
(x+ y)

4

= 2
yx+ y2 � y2

(x+ y)
3 = 2

xy

(x+ y)
3
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and
@2� (x; y)

@y2
= x2

@

@y

�
(x+ y)

�2
�
= �2x2 (x+ y)�3 = �2 x2

(x+ y)
3

and the Hessian is 0B@ �2 y2

(x+y)3
2 xy
(x+y)3

2 xy
(x+y)3

�2 x2

(x+y)3

1CA
for x; y > 0:
We have

�2 y2

(x+ y)
3 < 0 and

�������
�2 y2

(x+y)3
2 xy
(x+y)3

2 xy
(x+y)3

�2 x2

(x+y)3

������� = 0
for x; y > 0; which shows that the Hessian is negative semide�nite and therefore
the function � is globally concave on (0;1)2 : �

Corollary 1. Let � 2 (0; 1) and consider the function (the �-Harmonic mean)

(2.4) �� (x; y) =
1

1��
x + �

y

=
xy

�x+ (1� �) y

for x; y > 0: The function �� is concave on (0;1)
2
:

In particular, the Harmonic mean

�1=2 (x; y) =
2xy

x+ y

is concave on (0;1)2 :

Proof. Observe that

�� (x; y) =
1

� (1� �)
�x (1� �) y
�x+ (1� �) y =

1

� (1� �)� (�x; (1� �) y) :

Let (x; y) ; (u; v) 2 (0;1)2 and �; � > 0 with �+ � = 1: Then
�� [� (x; y) + � (u; v)] = �� (�x+ �u; �y + �v)

=
1

� (1� �)� (� (�x+ �u) ; (1� �) (�y + �v))

=
1

� (1� �)� (��x+ ��u; � (1� �) y + � (1� �) v)

=
1

� (1� �)� [� (�x; (1� �) y) + � (�u; (1� �) v)]

by the concavity of �

� 1

� (1� �) [�� (�x; (1� �) y) + �� (�u; (1� �) v)]

= �
1

� (1� �)� (�x; (1� �) y) + �
1

� (1� �)� (�u; (1� �) v)

= ��� (x; y) + ��� (u; v) ;

which shows that �� is globally concave on (0;1)
2
: �
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Lemma 4. Let g : (0;1)2 ! (0;1) be a concave function on (0;1)2and x; y;
w : [a; b] � R! (0;1) be Lebesgue integrable on [a; b] : Then we have

1R b
a
w (t) dt

Z b

a

w (t) g (x (t) ; y (t)) dt(2.5)

� g

 R b
a
x (s)w (s) dsR b
a
w (s) ds

;

R b
a
y (s)w (s) dsR b
a
w (s) ds

!
:

Proof. Since g is concave on (0;1)2 then for all (x; y) ; (u; v) 2 (0;1)2 we have
the gradient inequality

g (x; y)� g (u; v) � @g (u; v)

@x
(x� u) + @g (u; v)

@y
(y � v) :

If we take in this inequality

u =

R b
a
x (s)w (s) dsR b
a
w (s) ds

; v =

R b
a
y (s)w (s) dsR b
a
w (s) ds

we get

g (x (t) ; y (t))� g
 R b

a
x (s)w (s) dsR b
a
w (s) ds

;

R b
a
y (s)w (s) dsR b
a
w (s) ds

!

� @g

@x

 R b
a
x (s)w (s) dsR b
a
w (s) ds

;

R b
a
y (s)w (s) dsR b
a
w (s) ds

! 
x (t)�

R b
a
x (s)w (s) dsR b
a
w (s) ds

!

+
@g

@y

 R b
a
x (s)w (s) dsR b
a
w (s) ds

;

R b
a
y (s)w (s) dsR b
a
w (s) ds

! 
y (t)�

R b
a
y (s)w (s) dsR b
a
w (s) ds

!
for all t 2 [a; b] :
If we multiply this inequality by w (t) > 0 and integrate over t 2 [a; b] we getZ b

a

w (t) g (x (t) ; y (t)) dt� g
 R b

a
x (s)w (s) dsR b
a
w (s) ds

;

R b
a
y (s)w (s) dsR b
a
w (s) ds

!Z b

a

w (t) dt � 0

that is equivalent to (2.5). �
We have the following integral inequality for harmonic mean:

Corollary 2. Let x; y; w : [a; b] � R ! (0;1) be Lebesgue integrable on [a; b] :
Then we have

(2.6)
1R b

a
w (t) dt

Z b

a

w (t)
1��
x(t) +

�
y(t)

dt � 1
(1��)

R b
a
w(s)dsR b

a
x(s)w(s)ds

+
�
R b
a
w(s)dsR b

a
y(s)w(s)ds

or,

(2.7)
Z b

a

w (t)
1��
x(t) +

�
y(t)

dt � 1
1��R b

a
x(s)w(s)ds

+ �R b
a
y(s)w(s)ds

or, equivalently,

(2.8)
Z b

a

y (t)x (t)w (t)

(1� �) y (t) + �x (t)dt �
R b
a
y (s)w (s) ds

R b
a
x (s)w (s) dsR b

a
[(1� �) y (s) + �x (s)]w (s) ds

:
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We de�ne now the following function Sf;p : C2 ! R;

Sf;p (x; y) =

Z 1

0

Sf;t (x; y) p (t) dt =

Z 1

0

f (tx+ (1� t) y) p (t) dt

for a Lebesgue integrable function p : [0; 1]! (0;1) ; and provided that the integral
exists.

Theorem 3. If f : C ! (0;1) is a AH-convex function on C and p : [0; 1] !
(0;1) is Lebesgue integrable on [0; 1] ; then Sf;p is a AH-convex function on C2.

Proof. Let �; � > 0 with �+ � = 1 and (x; y) ; (u; v) 2 C2. Then by Lemma 2 we
have

Sf;p (� (x; y) + � (u; v)) =

Z 1

0

Sf;t (� (x; y) + � (u; v)) p (t) dt(2.9)

�
Z 1

0

p (t) dt
�

Sf;t(x;y)
+ �

Sf;t(u;v)

:

By Corollary 2 we also haveZ 1

0

p (t) dt
�

Sf;t(x;y)
+ �

Sf;t(u;v)

� 1
�R b

a
Sf;s(x;y)p(s)ds

+ �R b
a
Sf;s(u;v)p(s)ds

(2.10)

=
1

�
Sf;p(x;y)

+ �
Sf;p(u;v)

:

By (2.9) and (2.10) we get

Sf;p (� (x; y) + � (u; v)) �
1

�
Sf;p(x;y)

+ �
Sf;p(u;v)

;

which shows that Sf;p is a AH -convex function on C2: �

For for t 2 [0; 1] we de�ne the function Tf;t : C2 ! (0;1) by

Tf;t (x; y) =
Sf;t (x; y) + Sf;1�t (x; y)

2
(2.11)

=
f (tx+ (1� t) y) + f ((1� t)x+ ty)

2
:

We observe that Tf;t is symmetric on C2; namely Tf;t (x; y) = Tf;t (y; x) for all
(x; y) 2 C2:

Lemma 5. If f : C ! (0;1) is a AH-convex function on C and t 2 (0; 1) ; then
Tf;t is AH-convex on C2:
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Proof. Let �; � > 0 with � + � = 1 and (x; y) ; (u; v) 2 C2. Then by the AH -
convexity of Sf;t and Sf;1�t; with t 2 (0; 1) ; we get

Tf;t (� (x; y) + � (u; v))(2.12)

=
1

2
[Sf;t (� (x; y) + � (u; v)) + Sf;1�t (� (x; y) + � (u; v))]

� 1

2

"
1

�
Sf;t(x;y)

+ �
Sf;t(u;v)

+
1

�
Sf;1�t(x;y)

+ �
Sf;1�t(u;v)

#

=
1

2

�
�� (Sf;t (x; y) ; Sf;t (u; v)) + �� (Sf;1�t (x; y) ; Sf;1�t (u; v))

�
:

By the global concavity of �� (see Corollary 1), we have

1

2

�
�� (Sf;t (x; y) ; Sf;t (u; v)) + �� (Sf;1�t (x; y) ; Sf;1�t (u; v))

�
(2.13)

� ��

�
Sf;t (x; y) + Sf;1�t (x; y)

2
;
Sf;t (u; v) + Sf;1�t (u; v)

2

�
=

1
�

Sf;t(x;y)+Sf;1�t(x;y)
2

+ �
Sf;t(u;v)+Sf;1�t(u;v)

2

=
1

�
Tf;t(x;y)

+ �
Tf;t(u;v)

:

By utilising the inequalities (2.12) and (2.13) we get

Tf;t (� (x; y) + � (u; v)) �
1

�
Tf;t(x;y)

+ �
Tf;t(u;v)

for �; � > 0 with � + � = 1 and (x; y) ; (u; v) 2 C2; which shows that Tf;t is
AH -convex on C2: �

We de�ne now the following function Tf;p : C2 ! R;

Tf;p (x; y) =

Z 1

0

Tf;t (x; y) p (t) dt =

Z 1

0

Sf;t (x; y) + Sf;1�t (x; y)

2
p (t) dt(2.14)

=

Z 1

0

f (tx+ (1� t) y) + f ((1� t)x+ ty)
2

p (t) dt

=

Z 1

0

f (tx+ (1� t) y) �p (t) dt = Sf;�p (x; y)

for a Lebesgue integrable function p : [0; 1]! (0;1) ; where �p (t) = 1
2 [p (t) + p (1� t)]

and provided that the integral exists.
We have:

Theorem 4. If f : C ! (0;1) is a AH-convex function on C and p : [0; 1] !
(0;1) is Lebesgue integrable on [0; 1] ; then Tf;p is symmetric and AH-convex func-
tion on C2.
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We have

Tf;p (y; x) =

Z 1

0

f (ty + (1� t)x) �p (t) dt =
Z 1

0

f ((1� s) y + sx) �p (1� s) ds

=

Z 1

0

f ((1� s) y + sx) �p (s) ds = Tf;p (x; y) ;

for all (x; y) 2 C2:
The AH -convexity of Tf;p follows by the identity (2.14) and by Theorem 3.

3. Schur Convexity

For any x = (x1; :::; xn) 2 Rn, let x[1] � ::: � x[n] denote the components of x in
decreasing order, and let x# =

�
x[1]; :::; x[n]

�
denote the decreasing rearrangement

of x. For x; y 2 Rn, x � y if, by de�nition,8<:
Pk

i=1 x[i] �
Pk

i=1 y[i]; k = 1; :::; n� 1;Pn
i=1 x[i] =

Pn
i=1 y[i]:

When x � y, x is said to be majorized by y (y majorizes x). This notation and
terminology was introduced by Hardy, Littlewood and Pólya in 1934.
A real-valued function � de�ned on a set A � Rn is said to be Schur-convex on

A if

(3.1) x � y on A ) � (x) � � (y) :

If, in addition, � (x) < � (y) whenever x � y but x is not a permutation of y, then
� is said to be strictly Schur-convex on A. If A = Rn, then � is simply said to be
Schur-convex or strictly Schur-convex.
For fundamental properties of Schur convexity see the monograph [13] and the

references therein. For some recent results, see [2]-[4] and [15]-[17].
The following result is known in the literature as Schur-Ostrowski theorem [13,

p. 84]:

Theorem 5. Let I � R be an open interval and let � : In ! R be continuously
di¤erentiable. Necessary and su¢ cient conditions for � to be Schur-convex on In

are

(3.2) � is symmetric on In;

and for all i 6= j, with i; j 2 f1; :::; ng ;

(3.3) (zi � zj)
�
@�(z)

@xi
� @�(z)

@xj

�
� 0 for all z 2 In;

where @�
@xk

denotes the partial derivative of � with respect to its k-th argument.

Let A � Rn be a set with the following properties:
(i) A is symmetric in the sense that x 2 A ) x� 2 A for all permutations � of

the coordinates.
(ii) A is convex and has a nonempty interior.
We have the following result, [13, p. 85].
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Theorem 6. If � is continuously di¤erentiable on the interior of A and continuous
on A, then necessary and su¢ cient conditions for � to be Schur-convex on A are

(3.4) � is symmetric on A

and

(3.5) (z1 � z2)
�
@�(z)

@x1
� @�(z)

@x2

�
� 0 for all z 2 A:

Another interesting characterization of Schur convex functions � on A was ob-
tained by C. St¾epniak in [18]:

Theorem 7. Let � be any function de�ned on a symmetric convex set A in Rn.
Then the function � is Schur convex on A if and only if

(3.6) � (x1; :::; xi; :::; xj ; :::; xn) = � (x1; :::; xj ; :::; xi; :::; xn)

for all (x1; :::; xn) 2 A and 1 � i < j � n and

(3.7) � (�x1 + (1� �)x2; �x2 + (1� �)x1; x3; :::; xn) � � (x1; :::; xn)

for all (x1; :::; xn) 2 A and for all � 2 (0; 1) ;

It is well known that any symmetric convex function de�ned on a symmetric
convex set A is Schur convex, [13, p. 97]. If the function � : A ! R is symmetric
and quasi-convex, namely

� (�u+ (1� �) v) � max f� (u) ; � (v)g

for all � 2 [0; 1] and u; v 2 A, a symmetric convex set, then � is Schur convex on
A [13, p. 98].
Let X be a linear space and G � X2 := X �X a convex set. We say that G is

symmetric if (x; y) 2 G implies that (y; x) 2 G: If C � X is a convex subset of X;
then the Cartesian product G := C2 := C � C is convex and symmetric in X2:
Motivated by the characterization result of St¾epniak above, we say that a func-

tion � : G ! R will be called Schur convex on the convex and symmetric set
G � X2 if

(3.8) � (s (x; y) + (1� s) (y; x)) � � (x; y)

for all (x; y) 2 G and for all s 2 [0; 1] :
If G = C2; then we recapture the general concept of Schur convexity introduced

by Burai and Makó in 2016, [2].
We say that the function � : G ! R is symmetric on G if � (x; y) = � (y; x) for

all (x; y) 2 G.
If � : G ! R is Schur convex on the convex and symmetric set G � X2; then

� is symmetric on G: Indeed, if (x; y) 2 G; then by (3.8) we get for s = 0 that
� (y; x) � � (x; y) : If we replace x with y then we also get � (x; y) � � (y; x) which
shows that � (x; y) = � (y; x) for all (x; y) 2 G:
We denote by [x; y] the closed segment de�ned by f(1� s)x+ sy, s 2 [0; 1]g :We

also de�ne the functional

	g;t (x; y) := (1� t) g (x) + tg (y)� g ((1� t)x+ ty) � 0

where x; y 2 C; x 6= y and t 2 [0; 1] :
In [7] we obtained among others the following result :
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Lemma 6. Let g : C � X ! R be a convex function on the convex set C. Then
for each x; y 2 C and z 2 [x; y] we have

(3.9) (0 �)	g;t (x; z) + 	g;t (z; y) � 	g;t (x; y)

for each t 2 [0; 1] ; i.e., the functional 	g;t (�; �) is superadditive as a function of
interval.
If z; u 2 [x; y] ; then

(3.10) (0 �)	g;t (z; u) � 	g;t (x; y)

for each t 2 [0; 1] ; i.e., the functional 	g;t (�; �) is nondecreasing as a function of
interval.

For a AH -convex function f : C ! (0;1) and for x; y 2 C; x 6= y and t 2 [0; 1]
we consider the function �f;t : C2 ! [1;1) de�ned by

�f;t (x; y) :=
1

f ((1� t)x+ ty) �
1� t
f (x)

� t

f (y)
� 0:

We observe that

	� 1
f ;t
(x; y) = �f;t (x; y)

for x; y 2 C; x 6= y and t 2 [0; 1] :
We have:

Theorem 8. Let f : C � X ! R be a convex function on the convex set C. Then
for each x; y 2 C; x 6= y and z 2 [x; y] we have

(3.11) (0 �) �f;t (x; z) + �f;t (z; y) � �f;t (x; y)

for each t 2 [0; 1] ; i.e., the functional �f;t (�; �) is superadditive as a function of
interval.
If z; u 2 [x; y] ; then

(3.12) (0 �) �f;t (z; u) � �f;t (x; y)

for each t 2 [0; 1] ; i.e., the functional �f;t (�; �) is nondecreasing as a function of
interval.

The proof follows by Lemma 6 by observing that if f is AH-convex on C; then
� 1
f is convex on C:
For a AH -convex function f : C ! (0;1) and for x; y 2 C; x 6= y and t 2 [0; 1]

we consider the function �f;t : C2 ! [1;1) de�ned by

�f;t (x; y) := �f;t (x; y) + �f;1�t (x; y)(3.13)

=
1

f ((1� t)x+ ty) +
1

f (tx+ (1� t) y) �
1

f (x)
� 1

f (y)
:

Corollary 3. Let f : C � X ! R be a convex function on the convex set C. Then
for each x; y 2 C; x 6= y and z 2 [x; y] we have

(3.14) (0 �)�f;t (x; z) + �f;t (z; y) � �f;t (x; y)

for each t 2 [0; 1] ; i.e., the functional �f;t (�; �) is superadditive as a function of
interval.
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Theorem 9. If z; u 2 [x; y] ; then

(3.15) (0 �)�f;t (z; u) � �f;t (x; y)

for each t 2 [0; 1] ; i.e., the functional �f;t (�; �) is nondecreasing as a function of
interval.

For a AH -convex function f : C ! (0;1) and for x; y 2 C; x 6= y and t 2 [0; 1]
we consider the function �f;t : C2 ! [1;1) de�ned by

(3.16) �f;t (x; y) :=
2

f
�
x+y
2

� � 1

f ((1� t)x+ ty) �
1

f (tx+ (1� t) y) :

Theorem 10. Let f : C ! (0;1) be a AH-convex function and t 2 [0; 1]. The
functions �f;t and �f;t are Schur convex on C2:

Proof. Let (x; y) 2 C2 and s 2 [0; 1], t 2 [0; 1] : Then

�f;t (s (x; y) + (1� s) (y; x))(3.17)

= �f;t (sx+ (1� s) y; sy + (1� s)x)

=
1

f ((1� t) (sx+ (1� s) y) + t (sy + (1� s)x))

+
1

f (t (sx+ (1� s) y) + (1� t) (sy + (1� s)x))

� 1

f (sx+ (1� s) y) �
1

f (sy + (1� s)x) :

If we take u = (1� s)x+ sy; v = sx+ (1� s) y in (3.15), then we get

1

f ((1� t) (sx+ (1� s) y) + t (sy + (1� s)x))(3.18)

+
1

f (t (sx+ (1� s) y) + (1� t) (sy + (1� s)x))

� 1

f (sx+ (1� s) y) �
1

f (sy + (1� s)x)

� 1

f ((1� t)x+ ty) +
1

f (tx+ (1� t) y) �
1

f (x)
� 1

f (y)

= �f;t (x; y) :

Therefore, by (3.17) and (3.18) we get

�f;t (s (x; y) + (1� s) (y; x)) � �f;t (x; y) ;

(x; y) 2 C2 and s 2 [0; 1], t 2 [0; 1] ; which shows that �f;t is Schur convex.
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Let (x; y) 2 C2 and s 2 [0; 1], t 2 [0; 1] : Then
�f;t (s (x; y) + (1� s) (y; x))(3.19)

= �f;t (sx+ (1� s) y; sy + (1� s)x)

=
2

f
�
x+y
2

�
� 1

f ((1� t) (sx+ (1� s) y) + t (sy + (1� s)x))

� 1

f (t (sx+ (1� s) y) + (1� t) (sy + (1� s)x))

=
2

f
�
x+y
2

�
� 1

f (s ((1� t)x+ ty) + (1� s) ((1� t) y + tx))

� 1

f (s ((1� t) y + tx) + (1� s) ((1� t)x+ ty)) :

By the AH -convexity of f we have
1

f (s ((1� t)x+ ty) + (1� s) ((1� t) y + tx))

� s

f ((1� t)x+ ty) +
1� s

f ((1� t) y + tx)
and

1

f (s ((1� t) y + tx) + (1� s) ((1� t)x+ ty))

� s

f ((1� t) y+) tx +
1� s

f ((1� t)x+ ty) :

If we add these two inequalities we get
1

f (s ((1� t)x+ ty) + (1� s) ((1� t) y + tx))

+
1

f (s ((1� t) y + tx) + (1� s) ((1� t)x+ ty))

� 1

f ((1� t) y+) tx +
1

f ((1� t) y + tx) :

This implies that
2

f
�
x+y
2

�(3.20)

� 1

f (s ((1� t)x+ ty) + (1� s) ((1� t) y + tx))

� 1

f (s ((1� t) y + tx) + (1� s) ((1� t)x+ ty))

� 2

f
�
x+y
2

� � 1

f ((1� t) y+) tx +
1

f ((1� t) y + tx)
= �f;t (x; y)
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for all (x; y) 2 C2 and s 2 [0; 1], t 2 [0; 1] :
Using (3.19) and (3.20) we deduce that

�f;t (s (x; y) + (1� s) (y; x)) � �f;t (x; y)

for all (x; y) 2 C2 and s 2 [0; 1] ; which shows that �f;t is Schur convex. �

Reconsider the function Tf;p : C2 ! R; de�ned by (2.14)

Tf;p (x; y) =

Z 1

0

f (tx+ (1� t) y) �p (t) dt = Sf;�p (x; y)

for a Lebesgue integrable function p : [0; 1]! (0;1) ; where �p (t) = 1
2 [p (t) + p (1� t)]

and provided that the integral exists.

Theorem 11. Let f : C ! (0;1) be a AH-convex function and p : [0; 1]! (0;1)
a Lebesgue integrable function, then Tf;p is Schur convex on C2:

Proof. Let (x; y) 2 C2 and s 2 [0; 1]. Then by Theorem 4 we have that

Tf;p (s (x; y) + (1� s) (y; x)) �
1

s
Tf;p(x;y)

+ 1�s
Tf;p(y;x)

=
1

s
Tf;p(x;y)

+ 1�s
Tf;p(x;y)

= Tf;p (x; y) ;

which shows that Tf;p is Schur convex on C2: �

We can also consider the function �f;p : C2 ! R; de�ned by

�f;p (x; y) :=
1

2

Z 1

0

�f;t (x; y) p (t) dt(3.21)

=
1

2

Z 1

0

�
1

f ((1� t)x+ ty) +
1

f (tx+ (1� t) y)

�
p (t) dt

� f (x) + f (y)

2f (x) f (y)

Z 1

0

p (t) dt

=

Z 1

0

�p (t) dt

f ((1� t)x+ ty) �
f (x) + f (y)

2f (x) f (y)

Z 1

0

p (t) dt

and the function �f;p : C2 ! R; de�ned by

�f;p (x; y) :=
1

2

Z 1

0

�f;t (x; y) p (t) dt(3.22)

=
1

f
�
x+y
2

� Z 1

0

p (t) dt

� 1
2

Z 1

0

p (t)

�
1

f ((1� t)x+ ty) +
1

f (tx+ (1� t) y)

�
dt

=
1

f
�
x+y
2

� Z 1

0

p (t) dt�
Z 1

0

�p (t) dt

f ((1� t)x+ ty) :

Theorem 12. Let f : C ! (0;1) be a AH-convex function and p : [0; 1]! (0;1)
a Lebesgue integrable function, then �f;p and �f;p are Schur convex on C2:
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Proof. Let (x; y) 2 C2 and s 2 [0; 1] : Then by Theorem 10 we have

�f;p (s (x; y) + (1� s) (y; x)) =
1

2

Z 1

0

�f;t (s (x; y) + (1� s) (y; x)) p (t) dt

� 1

2

Z 1

0

�f;t (x; y)w (t) dt = �f;p (x; y) ;

which proves the Schur convexity of �f;p:
The proof for the function �f;p is similar. �

For a AH -convex function f de�ned on the interval I, by changing the variable
u = (1� t)x+ ty; t 2 [0; 1] ; (x; y) 2 I2; y 6= x; we have

Tf;p (x; y) =
1

2

1

y � x

Z y

x

f (u)

�
p

�
u� x
y � x

�
+ p

�
y � u
y � x

��
du;(3.23)

Tf;p (x; x) := f (x)

Z 1

0

p (t) dt;

�f;p (x; y) =
1

2

1

y � x

Z y

x

1

f (u)

�
p

�
u� x
y � x

�
+ p

�
y � u
y � x

��
du(3.24)

� f (x) + f (y)

2f (x) f (y)

Z 1

0

p (t) dt;

�f;p (x; x) := 0;

and

�f;p (x; y) =
1

f
�
x+y
2

� Z 1

0

p (t) dt(3.25)

� 1
2

1

y � x

Z y

x

1

f (u)

�
p

�
u� x
y � x

�
+ p

�
y � u
y � x

��
du;

�f;p (x; x) := 0;

where p : [0; 1]! (0;1) is a Lebesgue integrable function.
For p � 1 in (3.23)-(3.25) we get

(3.26) Tf (x; y) =

8<:
1

y�x
R y
x
f (u) du; (x; y) 2 I2; y 6= x

f (x) ; (x; y) 2 I2; y = x;

;

(3.27) �f (x; y) =

8<:
1

y�x
R y
x

du
f(u) �

f(x)+f(y)
2f(x)f(y) ; (x; y) 2 I

2; y 6= x

0; (x; y) 2 I2; y = x;

and

(3.28) �f (x; y) =

8><>:
1

f( x+y2 )
� 1

y�x
R y
x

du
f(u) ; (x; y) 2 I

2; y 6= x

0; (x; y) 2 I2; y = x;

:
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For pm (t) =
��t� 1

2

�� ; t 2 [0; 1] ; we have
(3.29) Tf;pm (x; y) =

8><>:
1

(y�x)2
R 1
0
f (u)

��u� x+y
2

�� du; (x; y) 2 I2; y 6= x

1
4f (x) ; (x; y) 2 I

2; y = x;

;

�f;pm (x; y)(3.30)

=

8<:
1

(y�x)2
R y
x

��u� x+y
2

�� du
f(u) �

f(x)+f(y)
8f(x)f(y) ; (x; y) 2 I

2; y 6= x

0; (x; y) 2 I2; y = x;

and

�f;pm (x; y)(3.31)

=

8><>:
1

4f( x+y2 )
� 1

(y�x)2
R y
x

��u� x+y
2

�� du
f(u) ; (x; y) 2 I

2; y 6= x

0; (x; y) 2 I2; y = x:

Finally, we can state the following result that provides many example of Schur
convex functions on I2 originating from AH -convex functions on the interval I:

Proposition 2. Let f : I ! (0;1) be a AH-convex function on the interval I and
p : [0; 1]! (0;1) a Lebesgue integrable function. Then Tf;p; �f;p and �f;p de�ned
by (3.23)-(3.25) are Schur convex on I2: In particular, the functions Tf ; �f and
�f de�ned by (3.26)-(3.28) are Schur convex on I2 and the functions Tf;pm ; �f;pm
and �f;pm de�ned by (3.29)-(3.31) are also Schur convex on I2:
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