SOME NEW PROPERTIES OF AH-CONVEX FUNCTIONS
DEFINED ON CONVEX SUBSETS IN LINEAR SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. For a Lebesgue integrable function p : [0,1] — [0,00) we consider
the symmetric functions

t)dt f@+f) [t
At (my) = /f 1—t>w+ty) 2f(w)f(y)/op(t)dt

1
Ofp (z,y) = f(zﬂ /p(t /f((l—tx—f—ty)

where f: C — (0,00) is a AH-convex function defined on the convex subset
C of a linear space X and p(t) := % p@)+p(1—1¢),tel0,1].

In this paper we show among others that Ay, and Oy, are Schur convex
on C x C. Some examples for A H-convex functions of a real variable are also
given.

and

1. INTRODUCTION

The following inequality holds for any convex function f defined on R

b
(1.1) f(“;b)gbia/a fayte < OO o her o,

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [14]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of convex
functions, wrote that this inequality was proven by J. Hadamard in 1893 [1]. In
1974, D. S. Mitrinovi¢ found Hermite’s note in Mathesis [14]. Since (1.1) was
known as Hadamard’s inequality, the inequality is now commonly referred as the
Hermite-Hadamard inequality.

For related results, see [12] and [9].

Let X be a vector space over the real or complex number field K and z,y €
X, x # y. Define the segment

[w,y] = {(1 - t).%‘ +ty, te [07 1]}

We consider the function f : [z,y] — R and the associated function

g(z,y) : [0,1] = R, g(x,y)(t) := f[(1 =)z +ty], t € [0,1].

Note that f is convex on [z,y] if and only if g(z,y) is convex on [0, 1].
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For any convex function defined on a segment [z,y] C X, we have the Hermite-
Hadamard integral inequality (see [5, p. 2], [6, p. 2])

1
(1.2) f("”;y) < [ 0= ne -+ ular < TE LI,

which can be derived from the classical Hermite-Hadamard inequality (1.1) for the
convex function g(z,y) : [0,1] — R.
Let X be a linear space and C a convex subset in X. A function f : C — R\ {0}
is called AH-convex (concave) on the convex set C' if the following inequality holds
1
(AH) f (@) f(y)

FA=Xa+29) <(2) T A T =N W)+ A ()

for any z, y € C' and A € [0,1].

An important case which provides many examples is that one in which the func-
tion is assumed to be positive for any x € C. In that situation the inequality (AH)
is equivalent to

1 1 1
R 15 R 0 e PV EE Yy
for any z, y € C' and A € [0,1].
Therefore we can state the following fact:

Criterion 1. Let X be a linear space and C a convex subset in X. The function
f:C — (0,00) is AH-convex (concave) on C if and only zf% is concave (convex)
on C' in the usual sense.

If we apply the Hermite-Hadamard inequality (1.2) for the function % then we
state the following result:

Proposition 1. Let X be a linear space and C a convex subset in X. If the function
f:C — (0,00) is AH-convex (concave) on C, then

f@)+ 1) ' dX 1
2f (x) f (v) = (2)/0 Fl1=Xz+\y) = (Z)f(Ty)

for any x, y € C.

(1.3)

Motivated by the above results, in this paper we establish some new Hermite-
Hadamard type inequalities for A H-convex (concave) functions, first in the general
setting of linear spaces and then in the particular case of functions of a real variable.
Some examples for special means are provided as well.

Recently we obtained following results for A H-convex defined on convex subsets
in linear spaces [8]:

Theorem 1. Let X be a linear space and C a convex subset in X. If the function
f:C —(0,00) is AH-convex (concave) on C, then for any z, y € C we have

PR G (f (2),f (4)
(1.4) / FU=Na )i < () FEEL B

where the Logarithmic mean of positive numbers a, b is defined as
b7 .
lnb—ﬁlu Zfa’ # b
L(a,b) :=
a ifa =70,
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and the geometric mean is G = \/ab.

Remark 1. Using the following well known inequalities
H (a,b) < G(a,b) < L(a,b)

we have

G2 (f (). f (W) _
L@ W) =

for any z, y € C, provided that f : C — (0,00) is AH-convez.
If f: C — (0,00) is AH-concave, then

(1.5) /f (1- Nz + Ay)dA < G(f(x),f ()

V

(1.6) /Of((l—)\)x+/\y)d/\ > o

Y

for any x, y € C.

Theorem 2. Let X be a linear space and C a convex subset in X. If the function
f:C — (0,00) is AH-convex (concave) on C, then for any x, y € C we have

Tty f x+)\y)f()\:c+(1—)\)y)d>\
()= |

.7 fo )z + Ay) dA

Remark 2. By the Cauchy-Bunyakovsky-Schwarz integral inequality we have

1
(1.8) /0 (A =Nz +y) f(Az+(1—A)y)dr
1 1 1/2
< U f2((1—/\)a?+>\y)d>\/ 2Oz + (1= X)y)dr
0 0
1
:/ 2 =Xz + \y) dA
0
for any x, y € C.
If the function f: C — (0,00) is AH-convex on C, then we have
(1.9) f<x+y) < b ! x+>\y)f(/\x+(1—)\)y)d)\
2 fo A) 7+ My) dA
fo f2 1- )x+)\y)d)\
fo A)x+ Ay) dx

If the function v, , (t) = f ((1 —t)x + ty), for some given x, y € C with x # y,
is monotonic nondecreasing on [0, 1], then x, , (t) = f (tz + (1 — t) y) is monotonic
nonincreasing on [0, 1] and by Cebysev’s inequality for monotonic opposite functions
we have

2

1 1
/ f((l/\)x+)\y)f()\:r+(1/\)y)d)\§(/ f((l)\)er)\y)d/\) .
0 0
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So, for some given x, y € C with x #y, ¢, , (t) = f (1 —t) x + ty) is monotonic
nondecreasing (nonincreasing) on [0,1] and if the function f: C — (0,00) is AH-
convex on C, then we have

f<x+y> _ o S =Nt 2y) f O+ (1= V) y)dr
2 )" Jo £ (1= Az + Ay) dX

g/o F((L= N+ Ay)dr.

(1.10)

If (X,]]]|) is a normed space, then the function g : X — [0,00), g (z) = ||z|”,
p > 1 1is convex and then the function f : C C X — (0,00), f(z) = ”;”p is
AH-concave on any convex subset of X which does not contain {0} .

Utilising (1.4) we have

! d\ 1
(1.11 / > ,
) o X=Xz +yl” = LI, ly]")

for any linearly independent z, y € X and p > 1.
Making use of (1.7) we also have

1 p ,l
dX dX
(1.12) / i st / y p
o X=X z+Ayl 2 o [A=Xz+yll"[[Az+ (1 =)y
for any linearly independent z, y € X and p > 1.

2. MORE ON AH-CONVEX FUNCTIONS

We consider the function f : C' — R defined on the convex subset C' of the linear

space X and for each (z,y) € C? := C x C we introduce the auxiliary function
Pz * 10,1] — R defined by
(21) Play) () =1 —t)z+ty).

It is well known that the function f is convex on C if and only if for each (x,y) € C?
the auxiliary function ¢, ,) is convex on [0,1].

Lemma 1. Consider the function f : C — (0,00). The function f is AH-convex
on C if and only if for all (x,y) € C? the auziliary function P(z,y) 18 AH-convex
on [0,1].

Proof. Assume that f is AH-convex on C and (z,y) € C%. Let o, B > 0 with
a+ p=1and ¢, t2 € [0,1] then
Play) (a1 + Bt2) = [ ((at1 + Bta) x + (1 — at1 — Bt2) y)
= [ ((aty + Bta) &+ (o + B — oty — Bta) y)

= flaftiz+ (1 —t1) y] + Bter + (1 — t2) y])
1

<

a + B
ftrz+(1—t1)y) * fltaz+(1—t2)y)
1

Y

o B
Pz (B1) + Pz,y) (t2)

which shows that ¢, . is AH-convex on [0,1].
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Let (z,y) € C* and t € [0,1], then by the log-convexity of ¢, ) we have

< 1 = 1
— t 1—t -t 1—¢
Y Tt O (O BN ()
which proves the AH-convexity of f on C. ]

Now, for ¢ € [0,1] we define the function S; : C? — (0, 00) by
(2.2) Spe(zy) =ftz+(1—-1)y).
Lemma 2. If f : C — (0,00) is a AH-convex function on C and t € (0,1), then
St is AH-convex on C2.
Proof. Let o, 3> 0 with a4+ 8 =1 and (z,%), (u,v) € C?. Then
St (a(@,y) + B (u,v)) = Syt (ax + Pu, ay + fv)
= f(t(az+ pu) + (1 - 1) (ay + fv))
flafte+ (1 -ty +B[tu+ (1 —1t)v])
1

IN

o

B
Far(—ty) T FEur—v)
1

b

a 8
Sy e(x,y) + Sy e (u,v)

which shows that Sy is AH-convex on C?. O
Lemma 3. The function ¢ : (0,00)*> — (0,00), defined by

(2.3) b(ay) = 2 = 1

T+y %—k

< =

is concave on (0,00)° .
Proof. The first partial derivatives are
0 (z,y) _ylet+y -y _y

Oz (z+y)° (z+y)°

2

and
0(ay) _a(wty) oy _  a?

dy (z+y)° (z +y)°

for z, y > 0.
The second partial derivatives are

82(25(9579) _ 0 21 -3 ZJ2
o Vg [T = W e T = 2

y2

(z+y)°
_oyrty -yt wy
(@ +y)° (@ +y)°

_ 2ty -2 (z+y)
(@+y)"

¢ (x,y) 0

oydx Oy
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and

¢ (z,y) 2 0 ( -2 2 -3 a?
— = x+y ):—23: (x4+y) " =-2
Ay? oy \T V) (z+y)°
and the Hessian is
92U p—
(z+y)® (z+y)®
Ty _ ’72
2Gr® 2@y
for z, y > 0.
We have
_o_u _zy
. 2w 2y
-2 7 < 0 and =0
(.’L‘ + y) 2 Yy _2 m2
(a+y)® (z+y)*
for z, y > 0, which shows that the Hessian is negative semidefinite and therefore
the function ¢ is globally concave on (0,00)>. O

Corollary 1. Let A € (0,1) and consider the function (the A-Harmonic mean)

(2.4) o7 (2.9) = 1=

x

1 - Ty
+§ S+ (1-N)y

for z, y > 0. The function ¢y is concave on (0, 00)?.
In particular, the Harmonic mean

2xy
¢1/2 (‘ray) - T+y
is concave on (0,00)° .
Proof. Observe that
1 Ax(l—MNy 1
o2 (@.9) = G-y _ 6 O, (1= ).

A=+ 1 =Ny A(d-=-N)
Let (z,y), (u,v) € (0,00)° and o, B> 0 with & + 8 = 1. Then

¢>\ [Of (:C?y) +/8 (U, U)] = ¢A (OJSL’ + 6u7ay + 67])

— ﬁqﬁ(/\ (az + Bu), (1 = A) (ay + Bv))

:;qﬁ(ax\x—k,@)\u,a(l—/\)y+ﬂ(1—>\)v)

21—\

= S @O (1= )+ 8 G (1= o)

by the concavity of ¢

> S [0 0 (1= 2) 9) + 86 (s (1= A) )

= a5y O (L= W) + Ay O (1= ) )

= a¢y (z,y) + Bo (u,v),

which shows that ¢, is globally concave on (0, 00)2 . [
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Lemma 4. Let g : (0,00)> — (0,00) be a concave function on (0,00)*and , y,
w: [a,b] CR — (0,00) be Lebesgue integrable on [a,b]. Then we have

1 /b
- | w®)g(=@),y())adt
[Pw(t)dt Ja

ff x (s)w(s)ds f: y(s)w(s)ds
g ) .

f; w (s)ds ff w(s)ds

Proof. Since g is concave on (0, 00)2 then for all (z,y), (u,v) € (0,00)2 we have
the gradient inequality

(2.5)

IN

9(0.9) g u0) < 22000 (g 20D ),
If we take in this inequality
- f:x(s)w(s) ds . f y (s s)ds
B f;w(s)ds ’ fa ()ds
we get
Jow(s)w( dsfy w(s) ds
g(z(t),y (1)) g( IR ()ds ; 0 ()d )
<ag<ffz<> $)ds [,y (s >< <>ds>
S0\ [wds o fjw w(s)ds
+ag<ff<) dsjy )(y ()ds>
O\ [Pw(s)ds [Pw w(s)ds

for all ¢ € [a,b].
If we multiply this inequality by w (¢) > 0 and integrate over ¢ € [a, b] we get

bw . B f;x(s)w(s)ds f;y(s)w(s)d8> bw
RGO g< TR [wwaszo

that is equivalent to (2.5). O

We have the following integral inequality for harmonic mean:

Corollary 2. Let x, y, w : [a,b] C R — (0,00) be Lebesgue integrable on [a,b].
Then we have

1 bow(t) 1
(2.6) b d /a -2, Al dt < (1=X) [P w(s)ds A [P w(s)ds
Jow @) dt Jo 35 T 5w - :
fa z(s)w(s)ds fa y(s)w(s)ds
or,
bow(t) 1
(2.7) ﬂ+idt < % n X
@ x(t) y(t) f:w(s)w(s)ds f;y(s)w(s)ds
or, equivalently,
b b
(t Ly (s)w(s)ds [ x(s)w(s)ds

b
o [ 20
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We define now the following function Sy, : C? — R,

Spp(2,y) = / Sy (a,y)p(t) dt = / £tz + (1—t)y)p () dt

for a Lebesgue integrable function p : [0,1] — (0, 00), and provided that the integral
exists.

Theorem 3. If f : C — (0,00) is a AH-convez function on C and p : [0,1] —
(0,00) is Lebesgue integrable on [0,1], then Sy, is a AH-convex function on C?.

Proof. Let o, 3> 0 with a4+ 8 =1 and (x,%), (u,v) € C?. Then by Lemma 2 we
have

(29)  Spp(a(ey) + B (uw) = / Sy (z,y) + B (u,0))p (t) dt

- /01 p(t)dt :

Syi(z,y) + Sg,e(u,v)

By Corollary 2 we also have

(2.10) /01 p(t)dt - 1

a e} a B
Sy.e(zy) + Sy,t(u,v) fab St.s(x,y)p(s)ds + f: St,s(u,v)p(s)ds
1

« B !
Srotew) T 57, 0w0)
By (2.9) and (2.10) we get

Spp (a(@,y)+ B (u,v)) < 1

o )

B
Sf-,:n(x7y) + wap(ufv)

which shows that Sy, is a AH-convex function on C2. O

For for t € [0, 1] we define the function Ty, : C? — (0,00) by

Sy (@,y) + Spi-e (2,y)
2
flez+ (A -ty +f(A-t)z+ty)
5 :

(2.11) Tit(z,y) =

We observe that T, is symmetric on C?, namely Ty, (z,y) = Ty (y, ) for all
(z,y) € C.

Lemma 5. If f : C — (0,00) is a AH-convex function on C and t € (0,1), then
Ty is AH-convex on C?.
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Proof. Let o, 3 > 0 with a + 3 = 1 and (z,y), (u,v) € C?. Then by the AH-
convexity of Sy, and Sy 14, with ¢ € (0,1), we get

(2.12) Ty (o (z,y) + 5 (u,v))

L 1Sy (@ (1) + B (w,0)) + Spae (o (z,9) + B (u,v)

1 1
+

o B « 8
|~Sf,t($’y) T 5@y TGy T S

[¢B (Sf»t (.%', y) 7Sf’t ('LL,’U)) + ¢B (Sf,lft (ZC,y) ) Sf,lft (u, U))] .

<

N~ N~ N

By the global concavity of ¢4 (see Corollary 1), we have

(2.13) % (65 (Spi(2,y), Spa (w,0) 4+ dg (Spa—i (2,y), S (u,0))]
< St (x,y) + Spa—t(2,y) Spe(u,v) 4+ Sp1-¢ (u,v)
=78 2 ’ 2
1

a + B
Sf,t(”—'=y)+§f,1—t(zxy) Sf,t(“vU)Jrif,lft(uﬁv)

1

a JE]
Tr,t(z,y) + Tf,¢(u,v)

By utilising the inequalities (2.12) and (2.13) we get
1

Tf7t (Oé (xay) + 6(“7”)) <

a 8
Tf,t(l'vy) + Tf,t(uﬂ})

for a, B > 0 with @« + 8 = 1 and (z,y), (u,v) € C?, which shows that Ty, is
AH-convex on C2. ([l

We define now the following function Ty, : C* — R,

! VSis(x 1—t \ T,
210) Ty () = [ Teleppa= [ B0 E0, ) g
[0y 0t

:Afm+a4mm@ﬁ:&ﬂaw

for a Lebesgue integrable function p : [0,1] — (0,00), where 5 (£) = % [p(t) + p (1 — t)]
and provided that the integral exists.
We have:

Theorem 4. If f : C — (0,00) is a AH-convez function on C and p : [0,1] —
(0, 00) is Lebesgue integrable on [0,1], then Ty, is symmetric and AH-convex func-
tion on C2.
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‘We have
1 1
Ty, (p2) = /Of(ty+(1*t)x)ﬁ(t)dt:/o F((L—8)y+ s2)p (1 s)ds

= /0 f((=s)y+sz)p(s)ds="Ts, (z,y),

for all (z,y) € C%.
The AH-convexity of T}, follows by the identity (2.14) and by Theorem 3.

3. ScHUR CONVEXITY

For any = = (21, ...,7,) € R", let z1) > ... > x},) denote the components of x in
decreasing order, and let x| = (:1:[1], ...,mm) denote the decreasing rearrangement
of z. For x, y € R™, x < y if, by definition,

k k
D1 T S Yy F=1,n =1

21 Tl = 2ima Y-
When z < y, x is said to be majorized by y (y majorizes x). This notation and
terminology was introduced by Hardy, Littlewood and Pdélya in 1934.
A real-valued function ¢ defined on a set A C R™ is said to be Schur-convex on
A if
(3.1) z<yon A= ¢(z) < o(y).

If, in addition, ¢ (z) < ¢ (y) whenever x < y but x is not a permutation of y, then
¢ is said to be strictly Schur-conver on A. If A = R"™, then ¢ is simply said to be
Schur-convex or strictly Schur-convex.

For fundamental properties of Schur convexity see the monograph [13] and the
references therein. For some recent results, see [2]-[4] and [15]-[17].

The following result is known in the literature as Schur-Ostrowski theorem [13,
p. 84]:

Theorem 5. Let I C R be an open interval and let ¢ : I™ — R be continuously
differentiable. Necessary and sufficient conditions for ¢ to be Schur-convex on I™
are

(3.2) ¢ is symmetric on I"™,
and for all i # j, with i, j € {1,...,n},

0 0
(3.3) (zi — 25) [ giz) - gx(z)} >0 forallzeI",
i J
where aaT(i denotes the partial derivative of ¢ with respect to its k-th argument.

Let A C R™ be a set with the following properties:

(i) A is symmetric in the sense that x € A = zII € A for all permutations IT of
the coordinates.

(ii) A is convex and has a nonempty interior.

We have the following result, [13, p. 85].
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Theorem 6. If ¢ is continuously differentiable on the interior of A and continuous
on A, then necessary and sufficient conditions for ¢ to be Schur-convex on A are
(3.4) ¢ is symmetric on A

and

. (o1 - ) [ 24021 _ 2000

8l‘1 8332

]ZOforallzeA.

Another interesting characterization of Schur convex functions ¢ on A was ob-
tained by C. Stepniak in [18]:

Theorem 7. Let ¢ be any function defined on a symmetric convex set A in R™.
Then the function ¢ is Schur conver on A if and only if

(3.6) G(T1y ooy Ty oy Ty ooy T) = D (T4 ey Ty oy Ty o, Ty
forall (z1,...,2n) €A and 1 <i<j<n and

(3.7) o (Az1+ (1 =Nz, Ao+ (L =N 21,23, 000y Tn) < (21,0, Tp)
for all (z1,...,x,) € A and for all X € (0,1),

It is well known that any symmetric convex function defined on a symmetric
convex set A is Schur convex, [13, p. 97]. If the function ¢ : A — R is symmetric
and quasi-convex, namely

¢ (au+ (1 — a)v) <max{¢ (u), ¢ (v)}

for all @ € [0,1] and u, v € A, a symmetric convex set, then ¢ is Schur convex on
A [13, p. 98].

Let X be a linear space and G C X2 := X x X a convex set. We say that G is
symmetric if (z,y) € G implies that (y,xz) € G. If C C X is a convex subset of X,
then the Cartesian product G := C? := C x C is convex and symmetric in X?2.

Motivated by the characterization result of Stepniak above, we say that a func-
tion ¢ : G — R will be called Schur convex on the convex and symmetric set
G C X?if

(3.8) ¢ (s(@,y) + (1= s)(y,2)) < b (2,9)

for all (z,y) € G and for all s € [0,1].

If G = C?, then we recapture the general concept of Schur convexity introduced
by Burai and Maké in 2016, [2].

We say that the function ¢ : G — R is symmetric on G if ¢ (x,y) = ¢ (y, z) for
all (z,y) € G.

If ¢ : G — R is Schur conver on the convex and symmetric set G C X2, then
¢ is symmetric on G. Indeed, if (z,y) € G, then by (3.8) we get for s = 0 that
¢ (y,x) < ¢ (z,y). If we replace z with y then we also get ¢ (z,y) < ¢ (y,z) which
shows that ¢ (z,y) = ¢ (y,z) for all (z,y) € G.

We denote by [z, y] the closed segment defined by {(1 — s) z + sy, s € [0,1]} . We
also define the functional

Vyi(z,y)=1—t)g(x)+tg(y) —g((1—t)xz+ty) >0

where z, y € C, z #y and t € [0,1].
In [7] we obtained among others the following result :
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Lemma 6. Let g : C C X — R be a convex function on the convex set C'. Then
for each x, y € C and z € [z,y] we have

(39) (0 S) \I/g,t (I‘, Z) + \Ijg,t (Z7 y) S \Ijg,t (LIZ, y)

or each t € |0,1], i.e., the functional W, (-,-) is superadditive as a function o
s
interval.
If z, u € [x,y], then

(3.10) (0<) Wyt (z,u) < Vg4 (z,y)

for each t € [0,1], i.e., the functional W44 (-,-) is nondecreasing as a function of
interval.

For a AH-convex function f: C'— (0,00) and for z, y € C, x # y and t € [0, 1]
we consider the function A : C% — [1,00) defined by
1 1-1¢ t
Ay (z,y) = — — > 0.
A (e P R T R )

We observe that
V_iy(@y) = Age (2,9)

forz,ye C,z#yandte|0,1].
We have:

Theorem 8. Let f: C C X — R be a convex function on the convex set C. Then
for each x, y € C, x #y and z € [z, y] we have

(3.11) (0L)Ap s (2,2) +Agi (2,y) < Agy (2,9)

or each t € [0,1], i.e., the functional Asy (-,+) is superadditive as a function o
/s
interval.
If z, u € [x,y], then

(3.12) (0<) Ay (z,u) < Agy (z,y)

for each t € [0,1], i.e., the functional Ay (-,-) is nondecreasing as a function of
interval.

The proof follows by Lemma 6 by observing that if f is AH-convex on C, then
f% is convex on C.

For a AH-convex function f: C — (0,00) and for z, y € C, z # y and ¢ € [0, 1]
we consider the function Ay, : C? — [1,00) defined by

(313) Af,t (17, y) = Af,t (I’, y) + Af,l—t (LE, y)
1 1 1 1

FA-tHatty) Flat(-by Ff@) Fo)

Corollary 3. Let f: C C X — R be a convex function on the convex set C. Then
for each x, y € C, x #y and z € [x,y] we have

(3.14) (0<)App(x,2) +Apy(2,y) < Ay (z,y)

for each t € [0,1], i.e., the functional Ay, (-,-) is superadditive as a function of
interval.
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Theorem 9. If z, u € [x,y], then
(3.15) 0<) A (z,u) < Apy(z,y)

for each t € [0,1], i.e., the functional Ay (-,-) is nondecreasing as a function of
interval.

For a AH-convex function f: C — (0,00) and for z, y € C, z # y and ¢ € [0, 1]
we consider the function O+ : C? — [1,00) defined by

2 1 - 1
F(FY) f(A=-tHat+ty)  fla+Q-t)y)

(316)  Opi(ny) =

Theorem 10. Let f : C — (0,00) be a AH-conver function and t € [0,1]. The
functions Ayy and © ¢y are Schur convex on C2.

Proof. Let (z,y) € C? and s € [0,1], t € [0,1]. Then

(3.17) Age(s(@,y) + (1—9) (y,2))
=Ar(se+(1—-9)y,sy+(1—s)x)
1
Tzt —s)y) +isy+ (L))
1
T iGr (-9 n+ A -6yt A-9)
1 1

Cfzt+ -8y flsy+(1-s)z)

If we take u = (1 — )z + sy, v = sz + (1 — s) y in (3.15), then we get

1
G189y Tyt (1 5)2)
1
T i+ A-Dey+(1-9)a)
1 1
Cfr+(1-9y) flsy+(1—s)a)
< 1 n 1 _ 1 _ 1
S (U —Hatty) Flar(-ty f@ FO)
=Ayi(z,y).

Therefore, by (3.17) and (3.18) we get

Af,t (S (:zc,y) + (1 - 8) (yvx)) < Af,t (xay) )

(z,y) € C? and s € [0,1], t € [0, 1], which shows that Ay, is Schur convex.
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Let (z,y) € C? and s € [0,1], t € [0,1]. Then

(3.19) O (s(z,y) + (1 —s) (y,2))
=05 (sc+(1—-38)y,sy+(1—s)x)
2
- F(HY)
_ 1
fl=t)(sz+(1—5)y)+t(sy+(1—3s)x))
1
Cftz+(1—s)y)+ 1 —t)(sy+ (1—s)7))
2
()
_ 1
fls(@=t)a+ty)+(1—s)((1-t)y+tx))
1
fs(Q=t)y+te)+ (1 —s)((1—t)z+ty))

By the AH-convexity of f we have
1
fls(=t)z+ty) + (1—s) (1 —1t)y+tx))
] 1-s
F—Datw) " F(0-0y+w)

>

and
1
fs(Q=t)y+itz)+(1—5)(1—-t)z+ty))
S s n 1-s
T =ty (-t +ty)
If we add these two inequalities we get

1
FGA-Datt)+A-9)(0-0y+ia)
1
TGyt (-9 (1 -tz 1iy)
1 1

= (= hyr)tz  F((A-Hy+in)
This implies that

(3.20)
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for all (z,y) € C? and s € [0,1], ¢t € [0,1].
Using (3.19) and (3.20) we deduce that

Ot (s(zy) +(1-5)(y,2) <Ops(z,y)
for all (z,y) € C? and s € [0, 1], which shows that O, is Schur convex. O

Reconsider the function Ty, : C? — R, defined by (2.14)

Ty, (2,y) = / flte+ (L= t)y)p(t) dt = Sy (2,9)

for a Lebesgue integrable function p : [0,1] — (0,00) , where 5 (£) = 3 [p (t) + p (1 — t)]
and provided that the integral exists.

Theorem 11. Let f : C — (0,00) be a AH-convex function and p : [0,1] — (0,00)
a Lebesgue integrable function, then Ty, is Schur convex on C?.

Proof. Let (z,y) € C? and s € [0,1]. Then by Theorem 4 we have that

Ty (s (@,y) + (1 8) (y,2)) < !

s 1—s
Tr@w) T Tr (o)
1
= s + 1—s :Tf)P (iﬁ,y),
Ty p(zy) * Trpzy)

which shows that T, is Schur convex on C2. O

We can also consider the function Ay, : C? — R, defined by

(B321)  Agy(ay): /Aft:cy (t) dt

1 1
- /0 ( fa—t )x+ty)+f(m+(1t)y))p(t)dt
(

(
B () y) [
@/ <y>/”“)dt

pod f@ i) [
/f T Ber®) 2f(x)f(y)/op(t)dt

and the function O, : C? — R, defined by

1
32) O =3 [ enGupOd
ji / p (1) dt
2
1 1

( (1—-1) x+ty) f(tx+(1—t)y)>dt
:f(“y/ /f p(twty)

Theorem 12. Let f : C — (0,00) be a AH-convex function and p : [0,1] — (0,00)
a Lebesgue integrable function, then Ay, and Oy, are Schur convex on C?.

l\')\)—* gﬁ




16 S.S. DRAGOMIR

Proof. Let (z,y) € C? and s € [0,1]. Then by Theorem 10 we have

1

1
Bpp () + (=9 ) =5 [ Ani(sa)+ (1 =3 ) p(O)

1 1
<5 [ BnEnu©d=2.,6y,
0

which proves the Schur convexity of Ay ,,.
The proof for the function ©y , is similar. ([

For a AH-convex function f defined on the interval I, by changing the variable
u=(1—t)z+ty, te[0,1], (z,y) € I?, y # =, we have

62 T =g [ 1w [p(E22) 4 (U2Y)]

2y Yy—x y—x

Ty, (2,7) = f (2) / p(t)dt;

L =l
_()(y)/olp(t)dt,

8

2f () f ()
Ay p(z,x) = 0;
and
1 1
3.25 O d
(3.25) o (@) = f(r)/opu)t
1 1 Yo u— y—u
C2y- /z f (u) {p<y—$> +p<y—w>} o
Ofp (z,z) =0
where p : [0,1] — (0,00) is a Lebesgue integrable function.

For p =1 in (3.23)-(3.25) we get
v [ fw)du, (wy) € PP,y #a
(3.26) Ty (x,y) =
f(x)a (xvy) 6127 y=ax,

1 (Y du f(@)+f) 2
iz Je Fo0 ~ iy @Y el yFa

(3.27) A (z,y) =
07 (.’L’,y) € 12? y=uzx,

and

) v de fay @y €y A
(328) Oy =
0, (w,y) €l? y=u,
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For p, (t) = |t — 3|, t € [0,1], we have

ﬁfolf(u)hj“_ %|duv (xvy) GIQ,y#ZE

(3:29) Ty, (z,y) = :

1f (@), (z,y)€l? y=u,

(3.30) Afpn (,9)

and

1 Y T+ d f(x)+f(y)
e e o= 52 105 — Sy @y ety #a

0, (z,y) €l? y=u,

(3.31) O fpm (%,9)

1 1 Y|, — 2ty | du_ 2
4f(%) (y—£)2 fx |U‘ 2 }f(u)7 (x7y) e I ?y#m

0, (v,y)€I? y=u.

Finally, we can state the following result that provides many example of Schur
convex functions on I? originating from AH-convex functions on the interval I.

Proposition 2. Let f : I — (0,00) be a AH-convex function on the interval I and
p:[0,1] — (0,00) a Lebesgue integrable function. Then Ty, Ay, and Oy, defined
by (5.23)-(3.25) are Schur convex on I?. In particular, the functions T¢, As and

Oy

defined by (3.26)-(3.28) are Schur convex on I? and the functions Ty p, , N,

and Oy, defined by (5.29)-(5.31) are also Schur convex on I*.
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