SOME NEW PROPERTIES OF $A H$-CONVEX FUNCTIONS DEFINED ON CONVEX SUBSETS IN LINEAR SPACES

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract. For a Lebesgue integrable function $p:[0,1] \rightarrow[0, \infty)$ we consider the symmetric functions

$$
\Delta_{f, p}(x, y)=\int_{0}^{1} \frac{\breve{p}(t) d t}{f((1-t) x+t y)}-\frac{f(x)+f(y)}{2 f(x) f(y)} \int_{0}^{1} p(t) d t
$$

and

$$
\Theta_{f, p}(x, y):=\frac{1}{f\left(\frac{x+y}{2}\right)} \int_{0}^{1} p(t) d t-\int_{0}^{1} \frac{\breve{p}(t) d t}{f((1-t) x+t y)}
$$

where $f: C \rightarrow(0, \infty)$ is a $A H$-convex function defined on the convex subset C of a linear space X and $\breve{p}(t):=\frac{1}{2}[p(t)+p(1-t)], t \in[0,1]$.

In this paper we show among others that $\Delta_{f, p}$ and $\Theta_{f, p}$ are Schur convex on $C \times C$. Some examples for $A H$-convex functions of a real variable are also given.

1. Introduction

The following inequality holds for any convex function f defined on \mathbb{R}

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2}, \quad a, b \in \mathbb{R}, a<b \tag{1.1}
\end{equation*}
$$

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [14]). But this result was nowhere mentioned in the mathematical literature and was not widely known as Hermite's result.
E. F. Beckenbach, a leading expert on the history and the theory of convex functions, wrote that this inequality was proven by J. Hadamard in 1893 [1]. In 1974, D. S. Mitrinović found Hermite's note in Mathesis [14]. Since (1.1) was known as Hadamard's inequality, the inequality is now commonly referred as the Hermite-Hadamard inequality.

For related results, see [12] and [9].
Let X be a vector space over the real or complex number field \mathbb{K} and $x, y \in$ $X, x \neq y$. Define the segment

$$
[x, y]:=\{(1-t) x+t y, t \in[0,1]\} .
$$

We consider the function $f:[x, y] \rightarrow \mathbb{R}$ and the associated function

$$
g(x, y):[0,1] \rightarrow \mathbb{R}, g(x, y)(t):=f[(1-t) x+t y], t \in[0,1]
$$

Note that f is convex on $[x, y]$ if and only if $g(x, y)$ is convex on $[0,1]$.

[^0]For any convex function defined on a segment $[x, y] \subset X$, we have the HermiteHadamard integral inequality (see [5, p. 2], [6, p. 2])

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \leq \int_{0}^{1} f[(1-t) x+t y] d t \leq \frac{f(x)+f(y)}{2} \tag{1.2}
\end{equation*}
$$

which can be derived from the classical Hermite-Hadamard inequality (1.1) for the convex function $g(x, y):[0,1] \rightarrow \mathbb{R}$.

Let X be a linear space and C a convex subset in X. A function $f: C \rightarrow \mathbb{R} \backslash\{0\}$ is called $A H$-convex (concave) on the convex set C if the following inequality holds

$$
\begin{equation*}
f((1-\lambda) x+\lambda y) \leq(\geq) \frac{1}{(1-\lambda) \frac{1}{f(x)}+\lambda \frac{1}{f(y)}}=\frac{f(x) f(y)}{(1-\lambda) f(y)+\lambda f(x)} \tag{AH}
\end{equation*}
$$

for any $x, y \in C$ and $\lambda \in[0,1]$.
An important case which provides many examples is that one in which the function is assumed to be positive for any $x \in C$. In that situation the inequality (AH) is equivalent to

$$
(1-\lambda) \frac{1}{f(x)}+\lambda \frac{1}{f(y)} \leq(\geq) \frac{1}{f((1-\lambda) x+\lambda y)}
$$

for any $x, y \in C$ and $\lambda \in[0,1]$.
Therefore we can state the following fact:
Criterion 1. Let X be a linear space and C a convex subset in X. The function $f: C \rightarrow(0, \infty)$ is AH-convex (concave) on C if and only if $\frac{1}{f}$ is concave (convex) on C in the usual sense.

If we apply the Hermite-Hadamard inequality (1.2) for the function $\frac{1}{f}$ then we state the following result:

Proposition 1. Let X be a linear space and C a convex subset in X. If the function $f: C \rightarrow(0, \infty)$ is AH-convex (concave) on C, then

$$
\begin{equation*}
\frac{f(x)+f(y)}{2 f(x) f(y)} \leq(\geq) \int_{0}^{1} \frac{d \lambda}{f((1-\lambda) x+\lambda y)} \leq(\geq) \frac{1}{f\left(\frac{x+y}{2}\right)} \tag{1.3}
\end{equation*}
$$

for any $x, y \in C$.
Motivated by the above results, in this paper we establish some new HermiteHadamard type inequalities for $A H$-convex (concave) functions, first in the general setting of linear spaces and then in the particular case of functions of a real variable. Some examples for special means are provided as well.

Recently we obtained following results for $A H$-convex defined on convex subsets in linear spaces [8]:

Theorem 1. Let X be a linear space and C a convex subset in X. If the function $f: C \rightarrow(0, \infty)$ is AH-convex (concave) on C, then for any $x, y \in C$ we have

$$
\begin{equation*}
\int_{0}^{1} f((1-\lambda) x+\lambda y) d \lambda \leq(\geq) \frac{G^{2}(f(x), f(y))}{L(f(x), f(y))} \tag{1.4}
\end{equation*}
$$

where the Logarithmic mean of positive numbers a, b is defined as

$$
L(a, b):=\left\{\begin{array}{c}
\frac{b-a}{\ln b-\ln a} \text { if } a \neq b \\
a \text { if } a=b,
\end{array}\right.
$$

and the geometric mean is $G=\sqrt{a b}$.
Remark 1. Using the following well known inequalities

$$
H(a, b) \leq G(a, b) \leq L(a, b)
$$

we have

$$
\begin{equation*}
\int_{0}^{1} f((1-\lambda) x+\lambda y) d \lambda \leq \frac{G^{2}(f(x), f(y))}{L(f(x), f(y))} \leq G(f(x), f(y)) \tag{1.5}
\end{equation*}
$$

for any $x, y \in C$, provided that $f: C \rightarrow(0, \infty)$ is AH-convex.
If $f: C \rightarrow(0, \infty)$ is AH-concave, then

$$
\begin{align*}
\int_{0}^{1} f((1-\lambda) x+\lambda y) d \lambda & \geq \frac{G^{2}(f(x), f(y))}{L(f(x), f(y))} \tag{1.6}\\
& \geq \frac{G(f(x), f(y))}{L(f(x), f(y))} H(f(x), f(y))
\end{align*}
$$

for any $x, y \in C$.
Theorem 2. Let X be a linear space and C a convex subset in X. If the function $f: C \rightarrow(0, \infty)$ is AH-convex (concave) on C, then for any $x, y \in C$ we have

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \leq(\geq) \frac{\int_{0}^{1} f((1-\lambda) x+\lambda y) f(\lambda x+(1-\lambda) y) d \lambda}{\int_{0}^{1} f((1-\lambda) x+\lambda y) d \lambda} \tag{1.7}
\end{equation*}
$$

Remark 2. By the Cauchy-Bunyakovsky-Schwarz integral inequality we have

$$
\begin{align*}
& \int_{0}^{1} f((1-\lambda) x+\lambda y) f(\lambda x+(1-\lambda) y) d \lambda \tag{1.8}\\
& \leq\left[\int_{0}^{1} f^{2}((1-\lambda) x+\lambda y) d \lambda \int_{0}^{1} f^{2}(\lambda x+(1-\lambda) y) d \lambda\right]^{1 / 2} \\
& =\int_{0}^{1} f^{2}((1-\lambda) x+\lambda y) d \lambda
\end{align*}
$$

for any $x, y \in C$.
If the function $f: C \rightarrow(0, \infty)$ is AH-convex on C, then we have

$$
\begin{align*}
f\left(\frac{x+y}{2}\right) & \leq \frac{\int_{0}^{1} f((1-\lambda) x+\lambda y) f(\lambda x+(1-\lambda) y) d \lambda}{\int_{0}^{1} f((1-\lambda) x+\lambda y) d \lambda} \tag{1.9}\\
& \leq \frac{\int_{0}^{1} f^{2}((1-\lambda) x+\lambda y) d \lambda}{\int_{0}^{1} f((1-\lambda) x+\lambda y) d \lambda}
\end{align*}
$$

If the function $\psi_{x, y}(t)=f((1-t) x+t y)$, for some given $x, y \in C$ with $x \neq y$, is monotonic nondecreasing on $[0,1]$, then $\chi_{x, y}(t)=f(t x+(1-t) y)$ is monotonic nonincreasing on $[0,1]$ and by Čebyšev's inequality for monotonic opposite functions we have

$$
\int_{0}^{1} f((1-\lambda) x+\lambda y) f(\lambda x+(1-\lambda) y) d \lambda \leq\left(\int_{0}^{1} f((1-\lambda) x+\lambda y) d \lambda\right)^{2}
$$

So, for some given $x, y \in C$ with $x \neq y, \psi_{x, y}(t)=f((1-t) x+t y)$ is monotonic nondecreasing (nonincreasing) on $[0,1]$ and if the function $f: C \rightarrow(0, \infty)$ is AHconvex on C, then we have

$$
\begin{align*}
f\left(\frac{x+y}{2}\right) & \leq \frac{\int_{0}^{1} f((1-\lambda) x+\lambda y) f(\lambda x+(1-\lambda) y) d \lambda}{\int_{0}^{1} f((1-\lambda) x+\lambda y) d \lambda} \tag{1.10}\\
& \leq \int_{0}^{1} f((1-\lambda) x+\lambda y) d \lambda
\end{align*}
$$

If $(X,\|\cdot\|)$ is a normed space, then the function $g: X \rightarrow[0, \infty), g(x)=\|x\|^{p}$, $p \geq 1$ is convex and then the function $f: C \subset X \rightarrow(0, \infty), f(x)=\frac{1}{\|x\|^{p}}$ is $A H$-concave on any convex subset of X which does not contain $\{0\}$.

Utilising (1.4) we have

$$
\begin{equation*}
\int_{0}^{1} \frac{d \lambda}{\|(1-\lambda) x+\lambda y\|^{p}} \geq \frac{1}{L\left(\|x\|^{p},\|y\|^{p}\right)} \tag{1.11}
\end{equation*}
$$

for any linearly independent $x, y \in X$ and $p \geq 1$.
Making use of (1.7) we also have

$$
\begin{equation*}
\int_{0}^{1} \frac{d \lambda}{\|(1-\lambda) x+\lambda y\|^{p}} \geq\left\|\frac{x+y}{2}\right\|^{p} \int_{0}^{1} \frac{d \lambda}{\|(1-\lambda) x+\lambda y\|^{p}\|\lambda x+(1-\lambda) y\|^{p}} \tag{1.12}
\end{equation*}
$$

for any linearly independent $x, y \in X$ and $p \geq 1$.

2. More on $A H$-Convex Functions

We consider the function $f: C \rightarrow \mathbb{R}$ defined on the convex subset C of the linear space X and for each $(x, y) \in C^{2}:=C \times C$ we introduce the auxiliary function $\varphi_{(x, y)}:[0,1] \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\varphi_{(x, y)}(t):=f((1-t) x+t y) \tag{2.1}
\end{equation*}
$$

It is well known that the function f is convex on C if and only if for each $(x, y) \in C^{2}$ the auxiliary function $\varphi_{(x, y)}$ is convex on $[0,1]$.

Lemma 1. Consider the function $f: C \rightarrow(0, \infty)$. The function f is AH-convex on C if and only if for all $(x, y) \in C^{2}$ the auxiliary function $\varphi_{(x, y)}$ is AH-convex on $[0,1]$.
Proof. Assume that f is $A H$-convex on C and $(x, y) \in C^{2}$. Let $\alpha, \beta>0$ with $\alpha+\beta=1$ and $t_{1}, t_{2} \in[0,1]$ then

$$
\begin{aligned}
\varphi_{(x, y)}\left(\alpha t_{1}+\beta t_{2}\right) & =f\left(\left(\alpha t_{1}+\beta t_{2}\right) x+\left(1-\alpha t_{1}-\beta t_{2}\right) y\right) \\
& =f\left(\left(\alpha t_{1}+\beta t_{2}\right) x+\left(\alpha+\beta-\alpha t_{1}-\beta t_{2}\right) y\right) \\
& =f\left(\alpha\left[t_{1} x+\left(1-t_{1}\right) y\right]+\beta\left[t_{2} x+\left(1-t_{2}\right) y\right]\right) \\
& \leq \frac{1}{\frac{\alpha}{f\left(t_{1} x+\left(1-t_{1}\right) y\right)}+\frac{\beta}{f\left(t_{2} x+\left(1-t_{2}\right) y\right)}} \\
& =\frac{1}{\frac{\alpha}{\varphi_{(x, y)}\left(t_{1}\right)}+\frac{\beta}{\varphi_{(x, y)}\left(t_{2}\right)}},
\end{aligned}
$$

which shows that $\varphi_{(x, y)}$ is $A H$-convex on $[0,1]$.

Let $(x, y) \in C^{2}$ and $t \in[0,1]$, then by the log-convexity of $\varphi_{(x, y)}$ we have

$$
\begin{aligned}
f(t x+(1-t) y) & =\varphi_{(x, y)}(t)=\varphi_{(x, y)}(t \cdot 1+(1-t) \cdot 0) \\
& \leq \frac{1}{\frac{t}{\varphi_{(x, y)}(1)}+\frac{1-t}{\varphi_{(x, y)}(0)}}=\frac{1}{\frac{t}{f(x)}+\frac{1-t}{f(y)}},
\end{aligned}
$$

which proves the $A H$-convexity of f on C.
Now, for $t \in[0,1]$ we define the function $S_{t}: C^{2} \rightarrow(0, \infty)$ by

$$
\begin{equation*}
S_{f, t}(x, y)=f(t x+(1-t) y) \tag{2.2}
\end{equation*}
$$

Lemma 2. If $f: C \rightarrow(0, \infty)$ is a AH-convex function on C and $t \in(0,1)$, then $S_{f, t}$ is AH-convex on C^{2}.

Proof. Let $\alpha, \beta>0$ with $\alpha+\beta=1$ and $(x, y),(u, v) \in C^{2}$. Then

$$
\begin{aligned}
S_{f, t}(\alpha(x, y)+\beta(u, v)) & =S_{f, t}(\alpha x+\beta u, \alpha y+\beta v) \\
& =f(t(\alpha x+\beta u)+(1-t)(\alpha y+\beta v)) \\
& =f(\alpha[t x+(1-t) y]+\beta[t u+(1-t) v]) \\
& \leq \frac{\alpha}{\frac{\alpha}{f(t x+(1-t) y)}+\frac{\beta}{f(t u+(1-t) v)}} \\
& =\frac{1}{\frac{\alpha}{S_{f, t}(x, y)}+\frac{\beta}{S_{f, t}(u, v)}}
\end{aligned}
$$

which shows that $S_{f, t}$ is $A H$-convex on C^{2}.
Lemma 3. The function $\phi:(0, \infty)^{2} \rightarrow(0, \infty)$, defined by

$$
\begin{equation*}
\phi(x, y)=\frac{x y}{x+y}=\frac{1}{\frac{1}{x}+\frac{1}{y}} \tag{2.3}
\end{equation*}
$$

is concave on $(0, \infty)^{2}$.
Proof. The first partial derivatives are

$$
\frac{\partial \phi(x, y)}{\partial x}=\frac{y(x+y)-x y}{(x+y)^{2}}=\frac{y^{2}}{(x+y)^{2}}
$$

and

$$
\frac{\partial \phi(x, y)}{\partial y}=\frac{x(x+y)-x y}{(x+y)^{2}}=\frac{x^{2}}{(x+y)^{2}}
$$

for $x, y>0$.
The second partial derivatives are

$$
\begin{aligned}
& \frac{\partial^{2} \phi(x, y)}{\partial x^{2}}=y^{2} \frac{\partial}{\partial x}\left[(x+y)^{-2}\right]=-2 y^{2}(x+y)^{-3}=-2 \frac{y^{2}}{(x+y)^{3}}, \\
& \frac{\partial^{2} \phi(x, y)}{\partial y \partial x}=\frac{\partial}{\partial y}\left[\frac{y^{2}}{(x+y)^{2}}\right]=\frac{2 y(x+y)^{2}-2 y^{2}(x+y)}{(x+y)^{4}} \\
& =2 \frac{y x+y^{2}-y^{2}}{(x+y)^{3}}=2 \frac{x y}{(x+y)^{3}}
\end{aligned}
$$

and

$$
\frac{\partial^{2} \phi(x, y)}{\partial y^{2}}=x^{2} \frac{\partial}{\partial y}\left((x+y)^{-2}\right)=-2 x^{2}(x+y)^{-3}=-2 \frac{x^{2}}{(x+y)^{3}}
$$

and the Hessian is

$$
\left(\begin{array}{cc}
-2 \frac{y^{2}}{(x+y)^{3}} & 2 \frac{x y}{(x+y)^{3}} \\
2 \frac{x y}{(x+y)^{3}} & -2 \frac{x^{2}}{(x+y)^{3}}
\end{array}\right)
$$

for $x, y>0$.
We have

$$
-2 \frac{y^{2}}{(x+y)^{3}}<0 \text { and }\left|\begin{array}{cc}
-2 \frac{y^{2}}{(x+y)^{3}} & 2 \frac{x y}{(x+y)^{3}} \\
2 \frac{x y}{(x+y)^{3}} & -2 \frac{x^{2}}{(x+y)^{3}}
\end{array}\right|=0
$$

for $x, y>0$, which shows that the Hessian is negative semidefinite and therefore the function ϕ is globally concave on $(0, \infty)^{2}$.

Corollary 1. Let $\lambda \in(0,1)$ and consider the function (the λ-Harmonic mean)

$$
\begin{equation*}
\phi_{\lambda}(x, y)=\frac{1}{\frac{1-\lambda}{x}+\frac{\lambda}{y}}=\frac{x y}{\lambda x+(1-\lambda) y} \tag{2.4}
\end{equation*}
$$

for $x, y>0$. The function ϕ_{λ} is concave on $(0, \infty)^{2}$.
In particular, the Harmonic mean

$$
\phi_{1 / 2}(x, y)=\frac{2 x y}{x+y}
$$

is concave on $(0, \infty)^{2}$.
Proof. Observe that

$$
\phi_{\lambda}(x, y)=\frac{1}{\lambda(1-\lambda)} \frac{\lambda x(1-\lambda) y}{\lambda x+(1-\lambda) y}=\frac{1}{\lambda(1-\lambda)} \phi(\lambda x,(1-\lambda) y)
$$

Let $(x, y),(u, v) \in(0, \infty)^{2}$ and $\alpha, \beta>0$ with $\alpha+\beta=1$. Then

$$
\phi_{\lambda}[\alpha(x, y)+\beta(u, v)]=\phi_{\lambda}(\alpha x+\beta u, \alpha y+\beta v)
$$

$$
=\frac{1}{\lambda(1-\lambda)} \phi(\lambda(\alpha x+\beta u),(1-\lambda)(\alpha y+\beta v))
$$

$$
=\frac{1}{\lambda(1-\lambda)} \phi(\alpha \lambda x+\beta \lambda u, \alpha(1-\lambda) y+\beta(1-\lambda) v)
$$

$$
=\frac{1}{\lambda(1-\lambda)} \phi[\alpha(\lambda x,(1-\lambda) y)+\beta(\lambda u,(1-\lambda) v)]
$$

by the concavity of ϕ

$$
\begin{aligned}
& \geq \frac{1}{\lambda(1-\lambda)}[\alpha \phi(\lambda x,(1-\lambda) y)+\beta \phi(\lambda u,(1-\lambda) v)] \\
& =\alpha \frac{1}{\lambda(1-\lambda)} \phi(\lambda x,(1-\lambda) y)+\beta \frac{1}{\lambda(1-\lambda)} \phi(\lambda u,(1-\lambda) v) \\
& =\alpha \phi_{\lambda}(x, y)+\beta \phi_{\lambda}(u, v),
\end{aligned}
$$

which shows that ϕ_{λ} is globally concave on $(0, \infty)^{2}$.

Lemma 4. Let $g:(0, \infty)^{2} \rightarrow(0, \infty)$ be a concave function on $(0, \infty)^{2}$ and x, y, $w:[a, b] \subset \mathbb{R} \rightarrow(0, \infty)$ be Lebesgue integrable on $[a, b]$. Then we have

$$
\begin{align*}
& \frac{1}{\int_{a}^{b} w(t) d t} \int_{a}^{b} w(t) g(x(t), y(t)) d t \tag{2.5}\\
& \leq g\left(\frac{\int_{a}^{b} x(s) w(s) d s}{\int_{a}^{b} w(s) d s}, \frac{\int_{a}^{b} y(s) w(s) d s}{\int_{a}^{b} w(s) d s}\right)
\end{align*}
$$

Proof. Since g is concave on $(0, \infty)^{2}$ then for all $(x, y),(u, v) \in(0, \infty)^{2}$ we have the gradient inequality

$$
g(x, y)-g(u, v) \leq \frac{\partial g(u, v)}{\partial x}(x-u)+\frac{\partial g(u, v)}{\partial y}(y-v)
$$

If we take in this inequality

$$
u=\frac{\int_{a}^{b} x(s) w(s) d s}{\int_{a}^{b} w(s) d s}, v=\frac{\int_{a}^{b} y(s) w(s) d s}{\int_{a}^{b} w(s) d s}
$$

we get

$$
\begin{aligned}
& g(x(t), y(t))-g\left(\frac{\int_{a}^{b} x(s) w(s) d s}{\int_{a}^{b} w(s) d s}, \frac{\int_{a}^{b} y(s) w(s) d s}{\int_{a}^{b} w(s) d s}\right) \\
& \leq \frac{\partial g}{\partial x}\left(\frac{\int_{a}^{b} x(s) w(s) d s}{\int_{a}^{b} w(s) d s}, \frac{\int_{a}^{b} y(s) w(s) d s}{\int_{a}^{b} w(s) d s}\right)\left(x(t)-\frac{\int_{a}^{b} x(s) w(s) d s}{\int_{a}^{b} w(s) d s}\right) \\
& +\frac{\partial g}{\partial y}\left(\frac{\int_{a}^{b} x(s) w(s) d s}{\int_{a}^{b} w(s) d s}, \frac{\int_{a}^{b} y(s) w(s) d s}{\int_{a}^{b} w(s) d s}\right)\left(y(t)-\frac{\int_{a}^{b} y(s) w(s) d s}{\int_{a}^{b} w(s) d s}\right)
\end{aligned}
$$

for all $t \in[a, b]$.
If we multiply this inequality by $w(t)>0$ and integrate over $t \in[a, b]$ we get

$$
\int_{a}^{b} w(t) g(x(t), y(t)) d t-g\left(\frac{\int_{a}^{b} x(s) w(s) d s}{\int_{a}^{b} w(s) d s}, \frac{\int_{a}^{b} y(s) w(s) d s}{\int_{a}^{b} w(s) d s}\right) \int_{a}^{b} w(t) d t \leq 0
$$

that is equivalent to (2.5).
We have the following integral inequality for harmonic mean:
Corollary 2. Let $x, y, w:[a, b] \subset \mathbb{R} \rightarrow(0, \infty)$ be Lebesgue integrable on $[a, b]$. Then we have

$$
\begin{equation*}
\frac{1}{\int_{a}^{b} w(t) d t} \int_{a}^{b} \frac{w(t)}{\frac{1-\lambda}{x(t)}+\frac{\lambda}{y(t)}} d t \leq \frac{1}{\frac{(1-\lambda) \int_{a}^{b} w(s) d s}{\int_{a}^{b} x(s) w(s) d s}+\frac{\lambda \int_{a}^{b} w(s) d s}{\int_{a}^{b} y(s) w(s) d s}} \tag{2.6}
\end{equation*}
$$

or,

$$
\begin{equation*}
\int_{a}^{b} \frac{w(t)}{\frac{1-\lambda}{x(t)}+\frac{\lambda}{y(t)}} d t \leq \frac{1}{\frac{1-\lambda}{\int_{a}^{b} x(s) w(s) d s}+\frac{\lambda}{\int_{a}^{b} y(s) w(s) d s}} \tag{2.7}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\int_{a}^{b} \frac{y(t) x(t) w(t)}{(1-\lambda) y(t)+\lambda x(t)} d t \leq \frac{\int_{a}^{b} y(s) w(s) d s \int_{a}^{b} x(s) w(s) d s}{\int_{a}^{b}[(1-\lambda) y(s)+\lambda x(s)] w(s) d s} \tag{2.8}
\end{equation*}
$$

We define now the following function $S_{f, p}: C^{2} \rightarrow \mathbb{R}$,

$$
S_{f, p}(x, y)=\int_{0}^{1} S_{f, t}(x, y) p(t) d t=\int_{0}^{1} f(t x+(1-t) y) p(t) d t
$$

for a Lebesgue integrable function $p:[0,1] \rightarrow(0, \infty)$, and provided that the integral exists.

Theorem 3. If $f: C \rightarrow(0, \infty)$ is a AH-convex function on C and $p:[0,1] \rightarrow$ $(0, \infty)$ is Lebesgue integrable on $[0,1]$, then $S_{f, p}$ is a $A H$-convex function on C^{2}.

Proof. Let $\alpha, \beta>0$ with $\alpha+\beta=1$ and $(x, y),(u, v) \in C^{2}$. Then by Lemma 2 we have

$$
\begin{align*}
S_{f, p}(\alpha(x, y)+\beta(u, v)) & =\int_{0}^{1} S_{f, t}(\alpha(x, y)+\beta(u, v)) p(t) d t \tag{2.9}\\
& \leq \int_{0}^{1} \frac{p(t) d t}{\frac{\alpha}{S_{f, t}(x, y)}+\frac{\beta}{S_{f, t}(u, v)}}
\end{align*}
$$

By Corollary 2 we also have

$$
\begin{align*}
\int_{0}^{1} \frac{p(t) d t}{\frac{\alpha}{S_{f, t}(x, y)}+\frac{\beta}{S_{f, t}(u, v)}} & \leq \frac{1}{\frac{\alpha}{\int_{a}^{b} S_{f, s}(x, y) p(s) d s}+\frac{\beta}{\int_{a}^{b} S_{f, s}(u, v) p(s) d s}} \tag{2.10}\\
& =\frac{1}{\frac{\alpha}{S_{f, p}(x, y)}+\frac{\beta}{S_{f, p}(u, v)}}
\end{align*}
$$

By (2.9) and (2.10) we get

$$
S_{f, p}(\alpha(x, y)+\beta(u, v)) \leq \frac{1}{\frac{\alpha}{S_{f, p}(x, y)}+\frac{\beta}{S_{f, p}(u, v)}}
$$

which shows that $S_{f, p}$ is a $A H$-convex function on C^{2}.

For for $t \in[0,1]$ we define the function $T_{f, t}: C^{2} \rightarrow(0, \infty)$ by

$$
\begin{align*}
T_{f, t}(x, y) & =\frac{S_{f, t}(x, y)+S_{f, 1-t}(x, y)}{2} \tag{2.11}\\
& =\frac{f(t x+(1-t) y)+f((1-t) x+t y)}{2}
\end{align*}
$$

We observe that $T_{f, t}$ is symmetric on C^{2}, namely $T_{f, t}(x, y)=T_{f, t}(y, x)$ for all $(x, y) \in C^{2}$.

Lemma 5. If $f: C \rightarrow(0, \infty)$ is a AH-convex function on C and $t \in(0,1)$, then $T_{f, t}$ is AH-convex on C^{2}.

Proof. Let $\alpha, \beta>0$ with $\alpha+\beta=1$ and $(x, y),(u, v) \in C^{2}$. Then by the $A H$ convexity of $S_{f, t}$ and $S_{f, 1-t}$, with $t \in(0,1)$, we get

$$
\begin{align*}
& T_{f, t}(\alpha(x, y)+\beta(u, v)) \tag{2.12}\\
& =\frac{1}{2}\left[S_{f, t}(\alpha(x, y)+\beta(u, v))+S_{f, 1-t}(\alpha(x, y)+\beta(u, v))\right] \\
& \leq \frac{1}{2}\left[\frac{\alpha}{\frac{\alpha}{S_{f, t}(x, y)}+\frac{\beta}{S_{f, t}(u, v)}}+\frac{\alpha}{\frac{1}{S_{f, 1-t}(x, y)}+\frac{\beta}{S_{f, 1-t}(u, v)}}\right] \\
& =\frac{1}{2}\left[\phi_{\beta}\left(S_{f, t}(x, y), S_{f, t}(u, v)\right)+\phi_{\beta}\left(S_{f, 1-t}(x, y), S_{f, 1-t}(u, v)\right)\right] .
\end{align*}
$$

By the global concavity of ϕ_{β} (see Corollary 1), we have

$$
\begin{align*}
& \frac{1}{2}\left[\phi_{\beta}\left(S_{f, t}(x, y), S_{f, t}(u, v)\right)+\phi_{\beta}\left(S_{f, 1-t}(x, y), S_{f, 1-t}(u, v)\right)\right] \tag{2.13}\\
& \leq \phi_{\beta}\left(\frac{S_{f, t}(x, y)+S_{f, 1-t}(x, y)}{2}, \frac{S_{f, t}(u, v)+S_{f, 1-t}(u, v)}{2}\right) \\
& =\frac{1}{\frac{\alpha}{\frac{S_{f, t}(x, y)+S_{f, 1-t}(x, y)}{2}}+\frac{\beta}{\frac{S_{f, t}(u, v)+S_{f, 1-t}(u, v)}{2}}} \\
& =\frac{1}{\frac{\alpha}{T_{f, t}(x, y)}+\frac{\beta}{T_{f, t}(u, v)}}
\end{align*}
$$

By utilising the inequalities (2.12) and (2.13) we get

$$
T_{f, t}(\alpha(x, y)+\beta(u, v)) \leq \frac{1}{\frac{\alpha}{T_{f, t}(x, y)}+\frac{\beta}{T_{f, t}(u, v)}}
$$

for $\alpha, \beta>0$ with $\alpha+\beta=1$ and $(x, y),(u, v) \in C^{2}$, which shows that $T_{f, t}$ is $A H$-convex on C^{2}.

We define now the following function $T_{f, p}: C^{2} \rightarrow \mathbb{R}$,

$$
\begin{align*}
T_{f, p}(x, y) & =\int_{0}^{1} T_{f, t}(x, y) p(t) d t=\int_{0}^{1} \frac{S_{f, t}(x, y)+S_{f, 1-t}(x, y)}{2} p(t) d t \tag{2.14}\\
& =\int_{0}^{1} \frac{f(t x+(1-t) y)+f((1-t) x+t y)}{2} p(t) d t \\
& =\int_{0}^{1} f(t x+(1-t) y) \breve{p}(t) d t=S_{f, \breve{p}}(x, y)
\end{align*}
$$

for a Lebesgue integrable function $p:[0,1] \rightarrow(0, \infty)$, where $\breve{p}(t)=\frac{1}{2}[p(t)+p(1-t)]$ and provided that the integral exists.

We have:
Theorem 4. If $f: C \rightarrow(0, \infty)$ is a AH-convex function on C and $p:[0,1] \rightarrow$ $(0, \infty)$ is Lebesgue integrable on $[0,1]$, then $T_{f, p}$ is symmetric and AH-convex function on C^{2}.

We have

$$
\begin{aligned}
T_{f, p}(y, x) & =\int_{0}^{1} f(t y+(1-t) x) \breve{p}(t) d t=\int_{0}^{1} f((1-s) y+s x) \breve{p}(1-s) d s \\
& =\int_{0}^{1} f((1-s) y+s x) \breve{p}(s) d s=T_{f, p}(x, y)
\end{aligned}
$$

for all $(x, y) \in C^{2}$.
The $A H$-convexity of $T_{f, p}$ follows by the identity (2.14) and by Theorem 3 .

3. Schur Convexity

For any $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, let $x_{[1]} \geq \ldots \geq x_{[n]}$ denote the components of x in decreasing order, and let $x_{\downarrow}=\left(x_{[1]}, \ldots, x_{[n]}\right)$ denote the decreasing rearrangement of x. For $x, y \in \mathbb{R}^{n}, x \prec y$ if, by definition,

$$
\left\{\begin{array}{l}
\sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]}, k=1, \ldots, n-1 ; \\
\sum_{i=1}^{n} x_{[i]}=\sum_{i=1}^{n} y_{[i]} .
\end{array}\right.
$$

When $x \prec y, x$ is said to be majorized by y (y majorizes x). This notation and terminology was introduced by Hardy, Littlewood and Pólya in 1934.

A real-valued function ϕ defined on a set $\mathcal{A} \subset \mathbb{R}^{n}$ is said to be Schur-convex on \mathcal{A} if

$$
\begin{equation*}
x \prec y \text { on } \mathcal{A} \Rightarrow \phi(x) \leq \phi(y) . \tag{3.1}
\end{equation*}
$$

If, in addition, $\phi(x)<\phi(y)$ whenever $x \prec y$ but x is not a permutation of y, then ϕ is said to be strictly Schur-convex on \mathcal{A}. If $\mathcal{A}=\mathbb{R}^{n}$, then ϕ is simply said to be Schur-convex or strictly Schur-convex.

For fundamental properties of Schur convexity see the monograph [13] and the references therein. For some recent results, see [2]-[4] and [15]-[17].

The following result is known in the literature as Schur-Ostrowski theorem $[13$, p. 84]:

Theorem 5. Let $I \subset \mathbb{R}$ be an open interval and let $\phi: I^{n} \rightarrow \mathbb{R}$ be continuously differentiable. Necessary and sufficient conditions for ϕ to be Schur-convex on I^{n} are

$$
\begin{equation*}
\phi \text { is symmetric on } I^{n}, \tag{3.2}
\end{equation*}
$$

and for all $i \neq j$, with $i, j \in\{1, \ldots, n\}$,

$$
\begin{equation*}
\left(z_{i}-z_{j}\right)\left[\frac{\partial \phi(z)}{\partial x_{i}}-\frac{\partial \phi(z)}{\partial x_{j}}\right] \geq 0 \text { for all } z \in I^{n} \tag{3.3}
\end{equation*}
$$

where $\frac{\partial \phi}{\partial x_{k}}$ denotes the partial derivative of ϕ with respect to its k-th argument.
Let $\mathcal{A} \subset \mathbb{R}^{n}$ be a set with the following properties:
(i) \mathcal{A} is symmetric in the sense that $x \in \mathcal{A} \Rightarrow x \Pi \in \mathcal{A}$ for all permutations Π of the coordinates.
(ii) \mathcal{A} is convex and has a nonempty interior.

We have the following result, [13, p. 85].

Theorem 6. If ϕ is continuously differentiable on the interior of \mathcal{A} and continuous on \mathcal{A}, then necessary and sufficient conditions for ϕ to be Schur-convex on \mathcal{A} are

$$
\begin{equation*}
\phi \text { is symmetric on } \mathcal{A} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(z_{1}-z_{2}\right)\left[\frac{\partial \phi(z)}{\partial x_{1}}-\frac{\partial \phi(z)}{\partial x_{2}}\right] \geq 0 \text { for all } z \in \mathcal{A} \tag{3.5}
\end{equation*}
$$

Another interesting characterization of Schur convex functions ϕ on \mathcal{A} was obtained by C. Stępniak in [18]:

Theorem 7. Let ϕ be any function defined on a symmetric convex set \mathcal{A} in \mathbb{R}^{n}. Then the function ϕ is Schur convex on \mathcal{A} if and only if

$$
\begin{equation*}
\phi\left(x_{1}, \ldots, x_{i}, \ldots, x_{j}, \ldots, x_{n}\right)=\phi\left(x_{1}, \ldots, x_{j}, \ldots, x_{i}, \ldots, x_{n}\right) \tag{3.6}
\end{equation*}
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{A}$ and $1 \leq i<j \leq n$ and

$$
\begin{equation*}
\phi\left(\lambda x_{1}+(1-\lambda) x_{2}, \lambda x_{2}+(1-\lambda) x_{1}, x_{3}, \ldots, x_{n}\right) \leq \phi\left(x_{1}, \ldots, x_{n}\right) \tag{3.7}
\end{equation*}
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{A}$ and for all $\lambda \in(0,1)$,
It is well known that any symmetric convex function defined on a symmetric convex set \mathcal{A} is Schur convex, [13, p. 97]. If the function $\phi: \mathcal{A} \rightarrow \mathbb{R}$ is symmetric and quasi-convex, namely

$$
\phi(\alpha u+(1-\alpha) v) \leq \max \{\phi(u), \phi(v)\}
$$

for all $\alpha \in[0,1]$ and $u, v \in \mathcal{A}$, a symmetric convex set, then ϕ is Schur convex on \mathcal{A} [13, p. 98].

Let X be a linear space and $G \subset X^{2}:=X \times X$ a convex set. We say that G is symmetric if $(x, y) \in G$ implies that $(y, x) \in G$. If $C \subset X$ is a convex subset of X, then the Cartesian product $G:=C^{2}:=C \times C$ is convex and symmetric in X^{2}.

Motivated by the characterization result of Stępniak above, we say that a function $\phi: G \rightarrow \mathbb{R}$ will be called Schur convex on the convex and symmetric set $G \subset X^{2}$ if

$$
\begin{equation*}
\phi(s(x, y)+(1-s)(y, x)) \leq \phi(x, y) \tag{3.8}
\end{equation*}
$$

for all $(x, y) \in G$ and for all $s \in[0,1]$.
If $G=C^{2}$, then we recapture the general concept of Schur convexity introduced by Burai and Makó in 2016, [2].

We say that the function $\phi: G \rightarrow \mathbb{R}$ is symmetric on G if $\phi(x, y)=\phi(y, x)$ for all $(x, y) \in G$.

If $\phi: G \rightarrow \mathbb{R}$ is Schur convex on the convex and symmetric set $G \subset X^{2}$, then ϕ is symmetric on G. Indeed, if $(x, y) \in G$, then by (3.8) we get for $s=0$ that $\phi(y, x) \leq \phi(x, y)$. If we replace x with y then we also get $\phi(x, y) \leq \phi(y, x)$ which shows that $\phi(x, y)=\phi(y, x)$ for all $(x, y) \in G$.

We denote by $[x, y]$ the closed segment defined by $\{(1-s) x+s y, s \in[0,1]\}$. We also define the functional

$$
\Psi_{g, t}(x, y):=(1-t) g(x)+t g(y)-g((1-t) x+t y) \geq 0
$$

where $x, y \in C, x \neq y$ and $t \in[0,1]$.
In [7] we obtained among others the following result:

Lemma 6. Let $g: C \subset X \rightarrow \mathbb{R}$ be a convex function on the convex set C. Then for each $x, y \in C$ and $z \in[x, y]$ we have

$$
\begin{equation*}
(0 \leq) \Psi_{g, t}(x, z)+\Psi_{g, t}(z, y) \leq \Psi_{g, t}(x, y) \tag{3.9}
\end{equation*}
$$

for each $t \in[0,1]$, i.e., the functional $\Psi_{g, t}(\cdot, \cdot)$ is superadditive as a function of interval.

If $z, u \in[x, y]$, then

$$
\begin{equation*}
(0 \leq) \Psi_{g, t}(z, u) \leq \Psi_{g, t}(x, y) \tag{3.10}
\end{equation*}
$$

for each $t \in[0,1]$, i.e., the functional $\Psi_{g, t}(\cdot, \cdot)$ is nondecreasing as a function of interval.

For a $A H$-convex function $f: C \rightarrow(0, \infty)$ and for $x, y \in C, x \neq y$ and $t \in[0,1]$ we consider the function $\Lambda_{f, t}: C^{2} \rightarrow[1, \infty)$ defined by

$$
\Lambda_{f, t}(x, y):=\frac{1}{f((1-t) x+t y)}-\frac{1-t}{f(x)}-\frac{t}{f(y)} \geq 0
$$

We observe that

$$
\Psi_{-\frac{1}{f}, t}(x, y)=\Lambda_{f, t}(x, y)
$$

for $x, y \in C, x \neq y$ and $t \in[0,1]$.
We have:
Theorem 8. Let $f: C \subset X \rightarrow \mathbb{R}$ be a convex function on the convex set C. Then for each $x, y \in C, x \neq y$ and $z \in[x, y]$ we have

$$
\begin{equation*}
(0 \leq) \Lambda_{f, t}(x, z)+\Lambda_{f, t}(z, y) \leq \Lambda_{f, t}(x, y) \tag{3.11}
\end{equation*}
$$

for each $t \in[0,1]$, i.e., the functional $\Lambda_{f, t}(\cdot, \cdot)$ is superadditive as a function of interval.

If $z, u \in[x, y]$, then

$$
\begin{equation*}
(0 \leq) \Lambda_{f, t}(z, u) \leq \Lambda_{f, t}(x, y) \tag{3.12}
\end{equation*}
$$

for each $t \in[0,1]$, i.e., the functional $\Lambda_{f, t}(\cdot, \cdot)$ is nondecreasing as a function of interval.

The proof follows by Lemma 6 by observing that if f is AH-convex on C, then $-\frac{1}{f}$ is convex on C.

For a $A H$-convex function $f: C \rightarrow(0, \infty)$ and for $x, y \in C, x \neq y$ and $t \in[0,1]$ we consider the function $\Delta_{f, t}: C^{2} \rightarrow[1, \infty)$ defined by

$$
\begin{align*}
\Delta_{f, t}(x, y) & :=\Lambda_{f, t}(x, y)+\Lambda_{f, 1-t}(x, y) \tag{3.13}\\
& =\frac{1}{f((1-t) x+t y)}+\frac{1}{f(t x+(1-t) y)}-\frac{1}{f(x)}-\frac{1}{f(y)}
\end{align*}
$$

Corollary 3. Let $f: C \subset X \rightarrow \mathbb{R}$ be a convex function on the convex set C. Then for each $x, y \in C, x \neq y$ and $z \in[x, y]$ we have

$$
\begin{equation*}
(0 \leq) \Delta_{f, t}(x, z)+\Delta_{f, t}(z, y) \leq \Delta_{f, t}(x, y) \tag{3.14}
\end{equation*}
$$

for each $t \in[0,1]$, i.e., the functional $\Delta_{f, t}(\cdot, \cdot)$ is superadditive as a function of interval.

Theorem 9. If $z, u \in[x, y]$, then

$$
\begin{equation*}
(0 \leq) \Delta_{f, t}(z, u) \leq \Delta_{f, t}(x, y) \tag{3.15}
\end{equation*}
$$

for each $t \in[0,1]$, i.e., the functional $\Delta_{f, t}(\cdot, \cdot)$ is nondecreasing as a function of interval.

For a $A H$-convex function $f: C \rightarrow(0, \infty)$ and for $x, y \in C, x \neq y$ and $t \in[0,1]$ we consider the function $\Theta_{f, t}: C^{2} \rightarrow[1, \infty)$ defined by

$$
\begin{equation*}
\Theta_{f, t}(x, y):=\frac{2}{f\left(\frac{x+y}{2}\right)}-\frac{1}{f((1-t) x+t y)}-\frac{1}{f(t x+(1-t) y)} \tag{3.16}
\end{equation*}
$$

Theorem 10. Let $f: C \rightarrow(0, \infty)$ be a AH-convex function and $t \in[0,1]$. The functions $\Delta_{f, t}$ and $\Theta_{f, t}$ are Schur convex on C^{2}.

Proof. Let $(x, y) \in C^{2}$ and $s \in[0,1], t \in[0,1]$. Then

$$
\begin{align*}
& \Delta_{f, t}(s(x, y)+(1-s)(y, x)) \tag{3.17}\\
& =\Delta_{f, t}(s x+(1-s) y, s y+(1-s) x) \\
& =\frac{1}{f((1-t)(s x+(1-s) y)+t(s y+(1-s) x))} \\
& +\frac{1}{f(t(s x+(1-s) y)+(1-t)(s y+(1-s) x))} \\
& -\frac{1}{f(s x+(1-s) y)}-\frac{1}{f(s y+(1-s) x)}
\end{align*}
$$

If we take $u=(1-s) x+s y, v=s x+(1-s) y$ in (3.15), then we get

$$
\begin{align*}
& \frac{1}{f((1-t)(s x+(1-s) y)+t(s y+(1-s) x))} \tag{3.18}\\
& +\frac{1}{f(t(s x+(1-s) y)+(1-t)(s y+(1-s) x))} \\
& -\frac{1}{f(s x+(1-s) y)}-\frac{1}{f(s y+(1-s) x)} \\
& \leq \frac{1}{f((1-t) x+t y)}+\frac{1}{f(t x+(1-t) y)}-\frac{1}{f(x)}-\frac{1}{f(y)} \\
& =\Delta_{f, t}(x, y) .
\end{align*}
$$

Therefore, by (3.17) and (3.18) we get

$$
\Delta_{f, t}(s(x, y)+(1-s)(y, x)) \leq \Delta_{f, t}(x, y)
$$

$(x, y) \in C^{2}$ and $s \in[0,1], t \in[0,1]$, which shows that $\Delta_{f, t}$ is Schur convex.

Let $(x, y) \in C^{2}$ and $s \in[0,1], t \in[0,1]$. Then

$$
\begin{align*}
& \Theta_{f, t}(s(x, y)+(1-s)(y, x)) \tag{3.19}\\
& =\Theta_{f, t}(s x+(1-s) y, s y+(1-s) x) \\
& =\frac{2}{f\left(\frac{x+y}{2}\right)} \\
& -\frac{1}{f((1-t)(s x+(1-s) y)+t(s y+(1-s) x))} \\
& -\frac{1}{f(t(s x+(1-s) y)+(1-t)(s y+(1-s) x))} \\
& =\frac{2}{f\left(\frac{x+y}{2}\right)} \\
& -\frac{1}{f(s((1-t) x+t y)+(1-s)((1-t) y+t x))} \\
& -\frac{1}{f(s((1-t) y+t x)+(1-s)((1-t) x+t y))} .
\end{align*}
$$

By the $A H$-convexity of f we have

$$
\begin{aligned}
& \frac{1}{f(s((1-t) x+t y)+(1-s)((1-t) y+t x))} \\
& \geq \frac{s}{f((1-t) x+t y)}+\frac{1-s}{f((1-t) y+t x)}
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{1}{f(s((1-t) y+t x)+(1-s)((1-t) x+t y))} \\
& \geq \frac{s}{f((1-t) y+) t x}+\frac{1-s}{f((1-t) x+t y)}
\end{aligned}
$$

If we add these two inequalities we get

$$
\begin{aligned}
& \frac{1}{f(s((1-t) x+t y)+(1-s)((1-t) y+t x))} \\
& +\frac{1}{f(s((1-t) y+t x)+(1-s)((1-t) x+t y))} \\
& \geq \frac{1}{f((1-t) y+) t x}+\frac{1}{f((1-t) y+t x)} .
\end{aligned}
$$

This implies that

$$
\begin{align*}
& \frac{2}{f\left(\frac{x+y}{2}\right)} \tag{3.20}\\
& -\frac{1}{f(s((1-t) x+t y)+(1-s)((1-t) y+t x))} \\
& -\frac{1}{f(s((1-t) y+t x)+(1-s)((1-t) x+t y))} \\
& \leq \frac{2}{f\left(\frac{x+y}{2}\right)}-\frac{1}{f((1-t) y+) t x}+\frac{1}{f((1-t) y+t x)} \\
& =\Theta_{f, t}(x, y)
\end{align*}
$$

for all $(x, y) \in C^{2}$ and $s \in[0,1], t \in[0,1]$.
Using (3.19) and (3.20) we deduce that

$$
\Theta_{f, t}(s(x, y)+(1-s)(y, x)) \leq \Theta_{f, t}(x, y)
$$

for all $(x, y) \in C^{2}$ and $s \in[0,1]$, which shows that $\Theta_{f, t}$ is Schur convex.
Reconsider the function $T_{f, p}: C^{2} \rightarrow \mathbb{R}$, defined by (2.14)

$$
T_{f, p}(x, y)=\int_{0}^{1} f(t x+(1-t) y) \breve{p}(t) d t=S_{f, \breve{p}}(x, y)
$$

for a Lebesgue integrable function $p:[0,1] \rightarrow(0, \infty)$, where $\breve{p}(t)=\frac{1}{2}[p(t)+p(1-t)]$ and provided that the integral exists.
Theorem 11. Let $f: C \rightarrow(0, \infty)$ be a AH-convex function and $p:[0,1] \rightarrow(0, \infty)$ a Lebesgue integrable function, then $T_{f, p}$ is Schur convex on C^{2}.
Proof. Let $(x, y) \in C^{2}$ and $s \in[0,1]$. Then by Theorem 4 we have that

$$
\begin{aligned}
T_{f, p}(s(x, y)+(1-s)(y, x)) & \leq \frac{1}{\frac{s}{T_{f, p}(x, y)}+\frac{1-s}{T_{f, p}(y, x)}} \\
& =\frac{1}{\frac{s}{T_{f, p}(x, y)}+\frac{1-s}{T_{f, p}(x, y)}}=T_{f, p}(x, y)
\end{aligned}
$$

which shows that $T_{f, p}$ is Schur convex on C^{2}.
We can also consider the function $\Delta_{f, p}: C^{2} \rightarrow \mathbb{R}$, defined by

$$
\begin{align*}
\Delta_{f, p}(x, y) & :=\frac{1}{2} \int_{0}^{1} \Delta_{f, t}(x, y) p(t) d t \tag{3.21}\\
& =\frac{1}{2} \int_{0}^{1}\left(\frac{1}{f((1-t) x+t y)}+\frac{1}{f(t x+(1-t) y)}\right) p(t) d t \\
& -\frac{f(x)+f(y)}{2 f(x) f(y)} \int_{0}^{1} p(t) d t \\
& =\int_{0}^{1} \frac{\breve{p}(t) d t}{f((1-t) x+t y)}-\frac{f(x)+f(y)}{2 f(x) f(y)} \int_{0}^{1} p(t) d t
\end{align*}
$$

and the function $\Theta_{f, p}: C^{2} \rightarrow \mathbb{R}$, defined by

$$
\begin{align*}
\Theta_{f, p}(x, y) & :=\frac{1}{2} \int_{0}^{1} \Theta_{f, t}(x, y) p(t) d t \tag{3.22}\\
& =\frac{1}{f\left(\frac{x+y}{2}\right)} \int_{0}^{1} p(t) d t \\
& -\frac{1}{2} \int_{0}^{1} p(t)\left(\frac{1}{f((1-t) x+t y)}+\frac{1}{f(t x+(1-t) y)}\right) d t \\
& =\frac{1}{f\left(\frac{x+y}{2}\right)} \int_{0}^{1} p(t) d t-\int_{0}^{1} \frac{\breve{p}(t) d t}{f((1-t) x+t y)} .
\end{align*}
$$

Theorem 12. Let $f: C \rightarrow(0, \infty)$ be a AH-convex function and $p:[0,1] \rightarrow(0, \infty)$ a Lebesgue integrable function, then $\Delta_{f, p}$ and $\Theta_{f, p}$ are Schur convex on C^{2}.

Proof. Let $(x, y) \in C^{2}$ and $s \in[0,1]$. Then by Theorem 10 we have

$$
\begin{aligned}
\Delta_{f, p}(s(x, y)+(1-s)(y, x)) & =\frac{1}{2} \int_{0}^{1} \Delta_{f, t}(s(x, y)+(1-s)(y, x)) p(t) d t \\
& \leq \frac{1}{2} \int_{0}^{1} \Delta_{f, t}(x, y) w(t) d t=\Delta_{f, p}(x, y)
\end{aligned}
$$

which proves the Schur convexity of $\Delta_{f, p}$.
The proof for the function $\Theta_{f, p}$ is similar.
For a $A H$-convex function f defined on the interval I, by changing the variable $u=(1-t) x+t y, t \in[0,1],(x, y) \in I^{2}, y \neq x$, we have

$$
\begin{align*}
T_{f, p}(x, y) & =\frac{1}{2} \frac{1}{y-x} \int_{x}^{y} f(u)\left[p\left(\frac{u-x}{y-x}\right)+p\left(\frac{y-u}{y-x}\right)\right] d u \tag{3.23}\\
T_{f, p}(x, x) & :=f(x) \int_{0}^{1} p(t) d t \\
\Delta_{f, p}(x, y) & =\frac{1}{2} \frac{1}{y-x} \int_{x}^{y} \frac{1}{f(u)}\left[p\left(\frac{u-x}{y-x}\right)+p\left(\frac{y-u}{y-x}\right)\right] d u \tag{3.24}\\
& -\frac{f(x)+f(y)}{2 f(x) f(y)} \int_{0}^{1} p(t) d t \\
\Delta_{f, p}(x, x) & :=0
\end{align*}
$$

and

$$
\begin{align*}
\Theta_{f, p}(x, y) & =\frac{1}{f\left(\frac{x+y}{2}\right)} \int_{0}^{1} p(t) d t \tag{3.25}\\
& -\frac{1}{2} \frac{1}{y-x} \int_{x}^{y} \frac{1}{f(u)}\left[p\left(\frac{u-x}{y-x}\right)+p\left(\frac{y-u}{y-x}\right)\right] d u \\
\Theta_{f, p}(x, x) & :=0
\end{align*}
$$

where $p:[0,1] \rightarrow(0, \infty)$ is a Lebesgue integrable function.
For $p \equiv 1$ in (3.23)-(3.25) we get

$$
\begin{gather*}
T_{f}(x, y)=\left\{\begin{array}{l}
\frac{1}{y-x} \int_{x}^{y} f(u) d u, \quad(x, y) \in I^{2}, y \neq x \\
f(x),(x, y) \in I^{2}, y=x
\end{array}\right. \tag{3.26}\\
\Delta_{f}(x, y)=\left\{\begin{array}{l}
\frac{1}{y-x} \int_{x}^{y} \frac{d u}{f(u)}-\frac{f(x)+f(y)}{2 f(x) f(y)}, \quad(x, y) \in I^{2}, y \neq x \\
0, \quad(x, y) \in I^{2}, y=x,
\end{array}\right. \tag{3.27}
\end{gather*}
$$

and

$$
\Theta_{f}(x, y)=\left\{\begin{array}{l}
\frac{1}{f\left(\frac{x+y}{2}\right)}-\frac{1}{y-x} \int_{x}^{y} \frac{d u}{f(u)}, \quad(x, y) \in I^{2}, y \neq x \tag{3.28}\\
0, \quad(x, y) \in I^{2}, y=x
\end{array} .\right.
$$

For $p_{m}(t)=\left|t-\frac{1}{2}\right|, t \in[0,1]$, we have

$$
\begin{align*}
& T_{f, p_{m}}(x, y)=\left\{\begin{array}{l}
\frac{1}{(y-x)^{2}} \int_{0}^{1} f(u)\left|u-\frac{x+y}{2}\right| d u, \quad(x, y) \in I^{2}, y \neq x \\
\frac{1}{4} f(x), \quad(x, y) \in I^{2}, y=x
\end{array}\right. \tag{3.29}\\
& \quad \Delta_{f, p_{m}}(x, y) \tag{3.30}\\
& \quad=\left\{\begin{array}{l}
\frac{1}{(y-x)^{2}} \int_{x}^{y}\left|u-\frac{x+y}{2}\right| \frac{d u}{f(u)}-\frac{f(x)+f(y)}{8 f(x) f(y)}, \quad(x, y) \in I^{2}, y \neq x \\
0, \quad(x, y) \in I^{2}, y=x
\end{array}\right.
\end{align*}
$$

and

$$
\begin{align*}
& \Theta_{f, p_{m}}(x, y) \tag{3.31}\\
& =\left\{\begin{array}{l}
\frac{1}{4 f\left(\frac{x+y}{2}\right)}-\frac{1}{(y-x)^{2}} \int_{x}^{y}\left|u-\frac{x+y}{2}\right| \frac{d u}{f(u)}, \quad(x, y) \in I^{2}, y \neq x \\
0, \quad(x, y) \in I^{2}, y=x
\end{array}\right.
\end{align*}
$$

Finally, we can state the following result that provides many example of Schur convex functions on I^{2} originating from $A H$-convex functions on the interval I.

Proposition 2. Let $f: I \rightarrow(0, \infty)$ be a AH-convex function on the interval I and $p:[0,1] \rightarrow(0, \infty)$ a Lebesgue integrable function. Then $T_{f, p}, \Delta_{f, p}$ and $\Theta_{f, p}$ defined by (3.23)-(3.25) are Schur convex on I^{2}. In particular, the functions T_{f}, Δ_{f} and Θ_{f} defined by (3.26)-(3.28) are Schur convex on I^{2} and the functions $T_{f, p_{m}}, \Delta_{f, p_{m}}$ and $\Theta_{f, p_{m}}$ defined by (3.29)-(3.31) are also Schur convex on I^{2}.

References

[1] E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54(1948), 439-460.
[2] P. Burai and J. Makó, On certain Schur-convex functions, Publ. Math. Debrecen, 89 (3) (2016), 307-319.
[3] Y. Chu, G. Wang, X. Zhang, Schur convexity and Hadamard's inequality, Math. Inequal. Appl. 13 (4) (2010) 725-731.
[4] V. Čuljak, A remark on Schur-convexity of the mean of a convex function. J. Math. Inequal. 9 (2015), No. 4, 1133-1142.
[5] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), No. 2, Article 31.
[6] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), No.3, Article 35.
[7] S. S. Dragomir, Superadditivity and monotonicity of some functionals associated with the Hermite-Hadamard inequality for convex functions in linear spaces. Rocky Mountain J. Math. 42 (2012), no. 5, 1447-1459.
[8] S. S. Dragomir, Inequalities of Hermite-Hadamard type for $A H$-convex functions. Stud. Univ. Babeş-Bolyai Math. 61 (2016), no. 4, 489-502
[9] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results. Aust. J. Math. Anal. Appl. 14 (2017), No. 1, Art. 1, 283 pp. [Online https://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P1.tex].
[10] S. S. Dragomir, Integral inequalities for Schur convex functions on symmetric and convex sets in linear spaces, Preprint RGMIA Res. Rep. Coll. 22 (2019), Art.
[11] S. S. Dragomir and K. Nikodem, Functions generating (m, M, Ψ)-Schur-convex sums. Aequationes Math. 93 (2019), No. 1, 79-90.
[12] S. S. Dragomir and C. E. M. Pearce, Selected Topics on HermiteHadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online https://rgmia.org/monographs/hermite_hadamard.html].
[13] A. W. Marshall, I. Olkin and B. C. Arnold, Inequalities: Theory of Majorization and Its Applications, Second Edition, Springer New York Dordrecht Heidelberg London, 2011.
[14] D. S. Mitrinović and I. B. Lacković, Hermite and convexity, Aequationes Math. 28 (1985), 229-232.
[15] K. Nikodem, T. Rajba and S. Wąsowicz, Functions generating strongly Schur-convex sums. Inequalities and applications 2010, 175-182, Internat. Ser. Numer. Math., 161, Birkhäuser/Springer, Basel, 2012.
[16] J. Qi and W. Wang, Schur convex functions and the Bonnesen style isoperimetric inequalities for planar convex polygons. J. Math. Inequal. 12 (2018), no. 1, 23-29.
[17] H.-N. Shi and J. Zhang, Compositions involving Schur harmonically convex functions. J. Comput. Anal. Appl. 22 (2017), no. 5, 907-922.
[18] C. Stępniak, An effective characterization of Schur-convex functions with applications, Journal of Convex Analysis, 14 (2007), No. 1, 103-108.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 26D15.
 Key words and phrases. AH-convex functions, Schur convex functions, Integral inequalities, Hermite-Hadamard inequality.

