OPERATOR SCHUR CONVEXITY AND SOME INTEGRAL INEQUALITIES

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract

A continuous function $f: I \times I \rightarrow \mathbb{R}$ is called operator Schur convex, if f is symmetric, namely $f(x, y)=f(y, x)$ for all $x, y \in I$ and $$
f(t A+(1-t) B, t B+(1-t) A) \leq f(A, B)
$$ in the operator order, for all $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$ and $t \in[0,1]$, where $\mathcal{S} \mathcal{A}_{I}(H)$ is the convex set of all selfadjoint operators on Hilbert space H with spectra in I.

In this paper we investigate the main properties of such functions, establish some integral inequalities of Hermite-Hadamard, Čebyšev and Grüss' type and give some general classes of examples of operator Schur convex functions.

1. Introduction

For any $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, let $x_{[1]} \geq \ldots \geq x_{[n]}$ denote the components of x in decreasing order, and let $x_{\downarrow}=\left(x_{[1]}, \ldots, x_{[n]}\right)$ denote the decreasing rearrangement of x. For $x, y \in \mathbb{R}^{n}, x \prec y$ if, by definition,

$$
\left\{\begin{array}{l}
\sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]}, k=1, \ldots, n-1 ; \\
\sum_{i=1}^{n} x_{[i]}=\sum_{i=1}^{n} y_{[i]}
\end{array}\right.
$$

When $x \prec y, x$ is said to be majorized by y (y majorizes x). This notation and terminology was introduced by Hardy, Littlewood and Pólya in 1934.

Functions that preserve the ordering of majorization are said to be Schur-convex, [19, p.80]. A real-valued function ϕ defined on a set $\mathcal{A} \subset \mathbb{R}^{n}$ is said to be Schurconvex on \mathcal{A} if

$$
\begin{equation*}
x \prec y \text { on } \mathcal{A} \Rightarrow \phi(x) \leq \phi(y) . \tag{1.1}
\end{equation*}
$$

If, in addition, $\phi(x)<\phi(y)$ whenever $x \prec y$ but x is not a permutation of y, then ϕ is said to be strictly Schur-convex on \mathcal{A}. If $\mathcal{A}=\mathbb{R}^{n}$, then ϕ is simply said to be Schur-convex or strictly Schur-convex.

For fundamental properties of Schur convexity see the monograph [19] and the references therein. For some recent results, see [5]-[11], [13], [20] and [22]-[24].

The following result is known in the literature as Schur-Ostrowski theorem [19, p. 84]:

Theorem 1. Let $I \subset \mathbb{R}$ be an open interval and let $\phi: I^{n} \rightarrow \mathbb{R}$ be continuously differentiable. Necessary and sufficient conditions for ϕ to be Schur-convex on I^{n}

[^0]are
\[

$$
\begin{equation*}
\phi \text { is symmetric on } I^{n}, \tag{1.2}
\end{equation*}
$$

\]

and for all $i \neq j$, with $i, j \in\{1, \ldots, n\}$,

$$
\begin{equation*}
\left(z_{i}-z_{j}\right)\left[\frac{\partial \phi(z)}{\partial x_{i}}-\frac{\partial \phi(z)}{\partial x_{j}}\right] \geq 0 \text { for all } z \in I^{n} \tag{1.3}
\end{equation*}
$$

where $\frac{\partial \phi}{\partial x_{k}}$ denotes the partial derivative of ϕ with respect to its k-th argument.
Let $\mathcal{A} \subset \mathbb{R}^{n}$ be a set with the following properties:
(i) \mathcal{A} is symmetric in the sense that $x \in \mathcal{A} \Rightarrow x \Pi \in \mathcal{A}$ for all permutations Π of the coordinates.
(ii) \mathcal{A} is convex and has a nonempty interior.

We have the following result, [19, p. 85].
Theorem 2. If ϕ is continuously differentiable on the interior of \mathcal{A} and continuous on \mathcal{A}, then necessary and sufficient conditions for ϕ to be Schur-convex on \mathcal{A} are

$$
\begin{equation*}
\phi \text { is symmetric on } \mathcal{A} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(z_{1}-z_{2}\right)\left[\frac{\partial \phi(z)}{\partial x_{1}}-\frac{\partial \phi(z)}{\partial x_{2}}\right] \geq 0 \text { for all } z \in \mathcal{A} \tag{1.5}
\end{equation*}
$$

Another interesting characterization of Schur convex functions ϕ on \mathcal{A} was obtained by C. Stępniak in [24]:

Theorem 3. Let ϕ be any function defined on a symmetric convex set \mathcal{A} in \mathbb{R}^{n}. Then the function ϕ is Schur convex on \mathcal{A} if and only if

$$
\begin{equation*}
\phi\left(x_{1}, \ldots, x_{i}, \ldots, x_{j}, \ldots, x_{n}\right)=\phi\left(x_{1}, \ldots, x_{j}, \ldots, x_{i}, \ldots, x_{n}\right) \tag{1.6}
\end{equation*}
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{A}$ and $1 \leq i<j \leq n$ and

$$
\begin{equation*}
\phi\left(\lambda x_{1}+(1-\lambda) x_{2}, \lambda x_{2}+(1-\lambda) x_{1}, x_{3}, \ldots, x_{n}\right) \leq \phi\left(x_{1}, \ldots, x_{n}\right) \tag{1.7}
\end{equation*}
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{A}$ and for all $\lambda \in(0,1)$,
It is well known that any symmetric convex function defined on a symmetric convex set \mathcal{A} is Schur convex, [19, p. 97]. If the function $\phi: \mathcal{A} \rightarrow \mathbb{R}$ is symmetric and quasi-convex, namely

$$
\phi(\alpha u+(1-\alpha) v) \leq \max \{\phi(u), \phi(v)\}
$$

for all $\alpha \in[0,1]$ and $u, v \in \mathcal{A}$, a symmetric convex set, then ϕ is Schur convex on \mathcal{A} [19, p. 98].

In order to extend the above concept to continuous functions of selfadjoint operators on complex Hilbert space we need some preparations as follow.

A real valued continuous function f on an interval I is said to be operator convex (operator concave) on I if

$$
\begin{equation*}
f((1-\lambda) A+\lambda B) \leq(\geq)(1-\lambda) f(A)+\lambda f(B) \tag{1.8}
\end{equation*}
$$

in the operator order, for all $\lambda \in[0,1]$ and for every selfadjoint operator A and B on a Hilbert space H whose spectra are contained in I. Notice that a function f is operator concave if $-f$ is operator convex.

A real valued continuous function f on an interval I is said to be operator monotone if it is monotone with respect to the operator order, i.e., $A \leq B$ with $\operatorname{Sp}(A), \operatorname{Sp}(B) \subset I$ imply $f(A) \leq f(B)$.

For some fundamental results on operator convex (operator concave) and operator monotone functions, see [14] and the references therein.

As examples of such functions, we note that $f(t)=t^{r}$ is operator monotone on $[0, \infty)$ if and only if $0 \leq r \leq 1$. The function $f(t)=t^{r}$ is operator convex on $(0, \infty)$ if either $1 \leq r \leq 2$ or $-1 \leq r \leq 0$ and is operator concave on $(0, \infty)$ if $0 \leq r \leq 1$. The logarithmic function $f(t)=\ln t$ is operator monotone and operator concave on $(0, \infty)$. The entropy function $f(t)=-t \ln t$ is operator concave on $(0, \infty)$. The exponential function $f(t)=e^{t}$ is neither operator convex nor operator monotone. For recent inequalities for operator convex functions see [1], [3], [6], [7], [8], [10]-[18] and [25]-[29].

Let I_{1}, \ldots, I_{k} be intervals from \mathbb{R} and let $f: I_{1} \times \ldots \times I_{k} \rightarrow \mathbb{R}$ be an essentially bounded real function defined on the product of the intervals. Let $A=\left(A_{1}, \ldots, A_{n}\right)$ be a k-tuple of bounded selfadjoint operators on Hilbert spaces H_{1}, \ldots, H_{k} such that the spectrum of A_{i} is contained in I_{i} for $i=1, \ldots, k$. We say that such a k-tuple is in the domain of f. If

$$
A_{i}=\int_{I_{i}} \lambda_{i} E_{i}\left(d \lambda_{i}\right)
$$

is the spectral resolution of A_{i} for $i=1, \ldots, k$; by following [2] we define

$$
\begin{equation*}
f(A)=f\left(A_{1}, \ldots, A_{n}\right)=\int_{I_{1} \times \ldots \times I_{k}} f\left(\lambda_{1}, \ldots, \lambda_{1}\right) E_{1}\left(d \lambda_{1}\right) \otimes \ldots \otimes E_{k}\left(d \lambda_{k}\right) \tag{1.9}
\end{equation*}
$$

as a bounded selfadjoint operator on $H_{1} \otimes \ldots \otimes H_{k}$.
The above function $f: I_{1} \times \ldots \times I_{k} \rightarrow \mathbb{R}$ is said to be operator convex, if the operator inequality

$$
\begin{equation*}
f((1-\alpha) A+\alpha B) \leq(1-\alpha) f(A)+\alpha f(B) \tag{1.10}
\end{equation*}
$$

for all $\alpha \in[0,1]$, for any Hilbert spaces H_{1}, \ldots, H_{k} and any k-tuples of of selfadjoint operators $A=\left(A_{1}, \ldots, A_{n}\right), B=\left(B_{1}, \ldots, B_{n}\right)$ on $H_{1} \otimes \ldots \otimes H_{k}$ contained in the domain of f. The definition is meaningful since also the spectrum of $\alpha A_{i}+(1-\alpha) B_{i}$ is contained in the interval I_{i} for each $i=1, \ldots, k$.

In the following we restrict ourself to the case $k=1, I_{1}=I_{2}=I$ and $H_{1}=$ $H_{1}=H$. The operator convexity of $f: I \times I \rightarrow \mathbb{R}$ in this case means, for instance,
(1.11) $f\left((1-\alpha) A_{1}+\alpha B_{1},(1-\alpha) A_{2}+\alpha B_{2}\right) \leq(1-\alpha) f\left(A_{1}, A_{2}\right)+\alpha f\left(B_{1}, B_{2}\right)$
or, equivalently,

$$
\begin{equation*}
f\left((1-\alpha)\left(A_{1}, A_{2}\right)+\alpha\left(B_{1}, B_{2}\right)\right) \leq(1-\alpha) f\left(A_{1}, A_{2}\right)+\alpha f\left(B_{1}, B_{2}\right) \tag{1.12}
\end{equation*}
$$

for all selfadjoint operators $A_{1}, A_{2}, B_{1}, B_{2}$ with spectra in I and for all $\alpha \in[0,1]$.
In this paper we introduce the concept of operator Schur convex functions, investigate their main properties, establish some integral inequalities of HermiteHadamard, Čebyšev and Grüss' type and give some general classes of examples of such functions.

2. Operator Schur Convex Functions

For I an interval, we consider the set $\mathcal{S} \mathcal{A}_{I}(H)$ of all selfadjoint operators with spectra in $I . \mathcal{S} \mathcal{A}_{I}(H)$ is a convex set in $\mathcal{B}(H)$ since for A, B selfadjoints with $\operatorname{Sp}(A), \operatorname{Sp}(B) \subset I, \alpha A+\beta B$ is selfadjoint with $\operatorname{Sp}(\alpha A+\beta B) \subset I$, where $\alpha, \beta \geq 0$ and $\alpha+\beta=1$. Motivated by the Stepniak's result for functions of real variables, we can introduce the following concept:

Definition 1. We say that the function $f: I \times I \rightarrow \mathbb{R}$ is called operator Schur convex, if f is symmetric, namely $f(x, y)=f(y, x)$ for all $x, y \in I$ and

$$
f(t A+(1-t) B, t B+(1-t) A) \leq f(A, B)
$$

or, equivalently,

$$
f(t(A, B)+(1-t)(B, A)) \leq f(A, B)
$$

in the operator order, for all $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$ and $t \in[0,1]$. The function f is called operator Schur concave if $-f$ is operator Schur convex.

For $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$, let us define the following auxiliary function $\varphi_{(A, B)}:[0,1] \rightarrow \mathcal{S A}(H \otimes H)$, the set of all selfadjoint operators on $H \otimes H$, by

$$
\begin{align*}
\varphi_{f,(A, B)}(t) & =f(t(A, B)+(1-t)(B, A)) \tag{2.1}\\
& =f(t A+(1-t) B, t B+(1-t) A)
\end{align*}
$$

A function $f: J \rightarrow \mathcal{S} \mathcal{A}(K)$ defined of an interval of real numbers J with self adjoint operator values on a Hilbert space K is called operator monotone increasing on J if

$$
f(t) \leq f(s) \text { in the operator order }
$$

for all $s, t \in J$ with $t<s$.
The following characterization of operator Schur convexity holds:
Theorem 4. Let $f: I \times I \rightarrow \mathbb{R}$ be a continuous symmetric function on $I \times I$. Then f is operator Schur convex on $I \times I$ if and only if for all arbitrarily fixed $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$ the function $\varphi_{f,(A, B)}$ is operator monotone decreasing on $[0,1 / 2)$, operator monotone increasing on $(1 / 2,1]$, and $\varphi_{f,(A, B)}$ has a global minimum at $1 / 2$ in the operator order.

Proof. Assume that f is operator Schur convex on $I \times I$. Then for all $(C, D) \in$ $\mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$ and $t \in[0,1]$ we have

$$
\begin{equation*}
f(t(C, D)+(1-t)(D, C)) \leq f(C, D) \tag{2.2}
\end{equation*}
$$

Let $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$ and for $0 \leq r<s<\frac{1}{2}$ and put $C=r A+(1-r) B$, $D=r B+(1-r) A$ and $t=\frac{s-r}{1-2 r}$. Then $(C, D)=r(A, B)+(1-r)(B, A) \in$ $\mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$, which is a convex set. By (2.2) we have

$$
\begin{align*}
\varphi_{f,(A, B)}(r) & =f(r(A, B)+(1-r)(B, A))=f(C, D) \tag{2.3}\\
& \geq f\left(\frac{s-r}{1-2 r}(C, D)+\left(1-\frac{s-r}{1-2 r}\right)(D, C)\right)=: \beta
\end{align*}
$$

Observe that

$$
\begin{aligned}
& \frac{s-r}{1-2 r}(C, D)+\left(1-\frac{s-r}{1-2 r}\right)(D, C) \\
& =\frac{s-r}{1-2 r}[r(A, B)+(1-r)(B, A)] \\
& +\left(\frac{1-r-s}{1-2 r}\right)[r(B, A)+(1-r)(A, B)] \\
& =\left[\left(\frac{s-r}{1-2 r}\right) r+\left(\frac{1-r-s}{1-2 r}\right)(1-r)\right](A, B) \\
& +\left[\frac{s-r}{1-2 r}(1-r)+\left(\frac{1-r-s}{1-2 r}\right) r\right](B, A) \\
& =\left(\frac{1-s-2 r+2 r s}{1-2 r}\right)(A, B)+\left(\frac{s-2 r s}{1-2 r}\right)(B, A) \\
& =(1-s)(A, B)+s(B, A) .
\end{aligned}
$$

Then

$$
\beta=f((1-s)(A, B)+s(B, A))=\varphi_{f,(A, B)}(s)
$$

and by (2.3) we get that $\varphi_{f,(A, B)}(r) \geq \varphi_{f,(A, B)}(s)$ for $0 \leq r<s<\frac{1}{2}$, which shows that the function $\varphi_{f,(A, B)}$ is operator monotone decreasing on $[0,1 / 2)$.

Observe that, by the symmetry of f on $\mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$, we have

$$
\begin{aligned}
\varphi_{f,(A, B)}(1-t) & =f((1-t)(A, B)+t(B, A)) \\
& =f((1-t) A+t B,(1-t) B+t A) \\
& =f((1-t) B+t A,(1-t) A+t B) \\
& =f(t(A, B)+(1-t)(B, A))=\varphi_{f,(A, B)}(t)
\end{aligned}
$$

for all $t \in[0,1]$.
This shows that the function $\varphi_{f,(A, B)}$ is also operator monotone increasing on (1/2, 1].

From (2.2) we get for $t=\frac{1}{2}$ that

$$
\begin{equation*}
f\left(\frac{C+D}{2}, \frac{C+D}{2}\right) \leq f(C, D) \tag{2.4}
\end{equation*}
$$

for all $(C, D) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$. If $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$ and we take $C=t A+(1-t) B, D=t B+(1-t) A, t \in[0,1]$ then $(C, D)=t(A, B)+$ $(1-t)(B, A) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H), \frac{C+D}{2}=\frac{A+B}{2}$ and by (2.4) we get $\varphi_{f,(A, B)}(1 / 2) \leq$ $\varphi_{f,(A, B)}(t)$ for all $t \in[0,1]$, showing that $\varphi_{f,(A, B)}$ has a global minimum at $1 / 2$ in the operator order.

Now, for fixed $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$, assume that the function $\varphi_{f,(A, B)}$ is operator monotone decreasing on $[0,1 / 2)$, operator monotone increasing on $(1 / 2,1]$, and has a global minimum at $1 / 2$ in the operator order.

Then for $t \in[0,1 / 2)$ we have

$$
f(t(A, B)+(1-t)(B, A))=\varphi_{f,(A, B)}(t) \leq \varphi_{f,(A, B)}(0)=f(B, A)=f(A, B)
$$

and for $t \in(1 / 2,1]$ we have

$$
f(t(A, B)+(1-t)(B, A))=\varphi_{f,(A, B)}(t) \leq \varphi_{f,(A, B)}(1)=f(A, B)
$$

Therefore, for all $t \in[0,1]$ we have $\varphi_{f,(A, B)}(t) \leq f(A, B)$, which shows that f is operator Schur convex on $\mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$.

We have the following integral inequality in the operator order:
Theorem 5. Assume that the function $f: I \times I \rightarrow \mathbb{R}$ is operator Schur convex on $I \times I$. Then for any Lebesgue integrable function $p:[0,1] \rightarrow[0, \infty)$ with $\int_{0}^{1} p(t) d t=1$ we have

$$
\begin{align*}
f\left(\frac{A+B}{2}, \frac{A+B}{2}\right) d t & \leq \int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) p(t) d t \tag{2.5}\\
& \leq f(A, B)
\end{align*}
$$

for all $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$.
In particular, we have

$$
\begin{equation*}
f\left(\frac{A+B}{2}, \frac{A+B}{2}\right) \leq \int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) d t \leq f(A, B) \tag{2.6}
\end{equation*}
$$

for all $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$.
Proof. Using Theorem 4 we have

$$
f\left(\frac{A+B}{2}, \frac{A+B}{2}\right) \leq f(t(A, B)+(1-t)(B, A)) \leq f(A, B)
$$

for all $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$ and $t \in[0,1]$.
If we multiply this inequality by $p(t) \geq 0$ and integrate on $[0,1]$ we deduce the desired result (2.5).

For scalar inequalities of Hermite-Hadamard type see the monograph online [12] and the recent survey paper [9].

If some monotonicity information is available for the function p we also have:
Theorem 6. Assume that the function $f: I \times I \rightarrow \mathbb{R}$ is operator Schur convex on $I \times I$. If $p:[0,1] \rightarrow \mathbb{R}$ is symmetric towards $1 / 2$, namely $p(1-t)=p(t)$ for all $t \in[0,1]$ and monotonic decreasing (increasing) on $[0,1 / 2]$, then

$$
\begin{align*}
& \int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) p(t) d t \tag{2.7}\\
& \geq(\leq) \int_{0}^{1} p(t) d t \int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) d t
\end{align*}
$$

Proof. Let $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$. Since the functions $\varphi_{f,(A, B)}$ and p are symmetric on $[0,1]$, then

$$
\int_{0}^{1} f(t(A, B)+(1-t)(B, A)) p(t) d t=2 \int_{0}^{1 / 2} f(t(A, B)+(1-t)(B, A)) p(t) d t
$$

Let $x \in H$. Then the function $\varphi_{f,(A, B), x}(t):[0,1] \rightarrow \mathbb{R}$ defined by

$$
\varphi_{f,(A, B), x}(t)=\left\langle\varphi_{f,(A, B)}(t) x, x\right\rangle
$$

where $\langle\cdot, \cdot\rangle$ is the inner product on H, is monotone decreasing as a real valued function on $[0,1 / 2]$.

Assume that p is monotone decreasing on $[0,1 / 2]$, then by Čebyšev's inequality for synchronous functions $h, g:[a, b] \rightarrow \mathbb{R}$, namely

$$
\frac{1}{b-a} \int_{a}^{b} h(t) g(t) d t \geq \frac{1}{b-a} \int_{a}^{b} h(t) d t \frac{1}{b-a} \int_{a}^{b} g(t) d t
$$

we have

$$
\begin{align*}
& 2 \int_{0}^{1 / 2}\langle f(t(A, B)+(1-t)(B, A)) x, x\rangle p(t) d t \tag{2.8}\\
& \geq 2 \int_{0}^{1 / 2}\langle f(t(A, B)+(1-t)(B, A)) x, x\rangle d t \cdot 2 \int_{0}^{1 / 2} p(t) d t
\end{align*}
$$

and since, by symmetry,

$$
\begin{aligned}
& 2 \int_{0}^{1 / 2}\langle f(t(A, B)+(1-t)(B, A)) x, x\rangle d t \\
& =\int_{0}^{1}\langle f(t(A, B)+(1-t)(B, A)) x, x\rangle d t
\end{aligned}
$$

and

$$
2 \int_{0}^{1 / 2} p(t) d t=\int_{0}^{1} p(t) d t
$$

hence by (2.8) we get

$$
\begin{aligned}
& \left\langle\left(\int_{0}^{1} f(t(A, B)+(1-t)(B, A)) p(t) d t\right) x, x\right\rangle \\
& \geq\left\langle\left(\int_{0}^{1} p(t) d t \int_{0}^{1} f(t(A, B)+(1-t)(B, A)) d t\right) x, x\right\rangle
\end{aligned}
$$

which is equivalent to the desired result (2.7).
We can prove the following refinement of (2.5):
Corollary 1. Assume that the function $f: I \times I \rightarrow \mathbb{R}$ is operator Schur convex on $I \times I$ and $p:[0,1] \rightarrow \mathbb{R}$ is symmetric towards $1 / 2$ with $\int_{0}^{1} p(t)=1$.
(i) If p is monotone decreasing on $[0,1 / 2]$, then

$$
\begin{align*}
f\left(\frac{A+B}{2}, \frac{A+B}{2}\right) & \leq \int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) d t \tag{2.9}\\
& \leq \int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) p(t) d t \\
& \leq f(A, B)
\end{align*}
$$

for all $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$.
(ii) If p is monotone increasing on $[0,1 / 2]$, then

$$
\begin{align*}
& \qquad \begin{aligned}
f\left(\frac{A+B}{2}, \frac{A+B}{2}\right) & \leq \int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) p(t) d t \\
& \leq \int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) d t \\
& \leq f(A, B) \\
\text { for all }(A, B) \in \mathcal{S A}_{I}(H) & \times \mathcal{S} \mathcal{A}_{I}(H) .
\end{aligned} \tag{2.10}
\end{align*}
$$

Proof. (i). From (2.7) we get

$$
\begin{aligned}
& \frac{1}{\int_{0}^{1} p(t) d t} \int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) p(t) d t \\
& \geq \int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) d t
\end{aligned}
$$

and by (2.5) and (2.6) we get the desired result (2.9).
(ii). The proof goes in a similar way.

Remark 1. If we consider the weight $p(t)=4\left|t-\frac{1}{2}\right|$, then $\int_{0}^{1} p(t) d t=1$ and by (2.9) we get

$$
\begin{align*}
f\left(\frac{A+B}{2}, \frac{A+B}{2}\right) & \leq \int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) d t \tag{2.11}\\
& \leq 4 \int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A)\left|t-\frac{1}{2}\right| d t \\
& \leq f(A, B)
\end{align*}
$$

for any function $f: I \times I \rightarrow \mathbb{R}$ that is operator Schur convex and for all $(A, B) \in$ $\mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$.

If we consider the weight $p(t)=6 t(1-t)$, then $\int_{0}^{1} p(t) d t=1$ and by (2.10) we get

$$
\begin{align*}
f\left(\frac{A+B}{2}, \frac{A+B}{2}\right) & \leq \int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) d t \tag{2.12}\\
& \leq 6 \int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) t(1-t) d t \\
& \leq f(A, B)
\end{align*}
$$

for any function $f: I \times I \rightarrow \mathbb{R}$ that is operator Schur convex and for all $(A, B) \in$ $\mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$.

We also have:
Theorem 7. Assume that the function $f: I \times I \rightarrow \mathbb{R}$ is operator Schur convex on $I \times I$ and $p:[0,1] \rightarrow \mathbb{R}$ is symmetric towards $1 / 2$.

If $p:[0,1] \rightarrow \mathbb{R}$ is monotonic decreasing on $[0,1 / 2]$, then

$$
\begin{align*}
0 & \leq \int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) p(t) d t \tag{2.13}\\
& -\int_{0}^{1} p(t) d t \int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) d t \\
& \leq \frac{1}{4}\left[p(0)-p\left(\frac{1}{2}\right)\right]\left[f(A, B)-f\left(\frac{A+B}{2}, \frac{A+B}{2}\right)\right]
\end{align*}
$$

for all $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$.

If p is monotonic increasing on $[0,1 / 2]$, then

$$
\begin{align*}
0 & \leq \int_{0}^{1} p(t) d t \int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) d t \tag{2.14}\\
& -\int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) p(t) d t \\
& \leq \frac{1}{4}\left[p\left(\frac{1}{2}\right)-p(0)\right]\left[f(A, B)-f\left(\frac{A+B}{2}, \frac{A+B}{2}\right)\right]
\end{align*}
$$

for all $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$.
Proof. Recall the famous Grüss' inequality that provides an upper bound for the distance between the integral mean of the product and the product of integral means, more precisely

$$
\begin{align*}
& \left|\frac{1}{b-a} \int_{a}^{b} h(t) k(t) d t-\frac{1}{b-a} \int_{a}^{b} h(t) d t \frac{1}{b-a} \int_{a}^{b} k(t) d t\right| \tag{2.15}\\
& \leq \frac{1}{4}(M-m)(N-n)
\end{align*}
$$

provided the functions h, k are measurable on $[a, b]$ and $-\infty<m \leq h(t) \leq M<\infty$, $-\infty<n \leq k(t) \leq N<\infty$, for almost every $t \in[a, b]$. The constant $\frac{1}{4}$ is best possible in (2.15).

Let $x \in H$. Then the function $\varphi_{f,(A, B), x}(t):[0,1] \rightarrow \mathbb{R}$ defined by

$$
\varphi_{f,(A, B), x}(t)=\left\langle\varphi_{f,(A, B)}(t) x, x\right\rangle
$$

is monotone decreasing as a real valued function on $[0,1 / 2]$ and

$$
\left\langle f\left(\frac{A+B}{2}, \frac{A+B}{2}\right) x, x\right\rangle \leq \varphi_{f,(A, B), x}(t) \leq\langle f(A, B) x, x\rangle
$$

for all $t \in[0,1 / 2]$.
Assume that p is monotonic decreasing on $[0,1 / 2]$. Then

$$
p\left(\frac{1}{2}\right) \leq p(t) \leq p(0), t \in[0,1 / 2]
$$

Therefore, by (2.15) we have

$$
\begin{aligned}
0 & \leq 2 \int_{0}^{1 / 2}\langle f(t(A, B)+(1-t)(B, A)) x, x\rangle p(t) d t \\
& -2 \int_{0}^{1 / 2}\langle f(t(A, B)+(1-t)(B, A)) x, x\rangle d t \cdot 2 \int_{0}^{1 / 2} p(t) d t \\
& =\mid 2 \int_{0}^{1 / 2}\langle f(t(A, B)+(1-t)(B, A)) x, x\rangle p(t) d t \\
& -2 \int_{0}^{1 / 2}\langle f(t(A, B)+(1-t)(B, A)) x, x\rangle d t \cdot 2 \int_{0}^{1 / 2} p(t) d t \mid \\
& \leq \frac{1}{4}\left[p(0)-p\left(\frac{1}{2}\right)\right]\left[\langle f(A, B) x, x\rangle-\left\langle f\left(\frac{A+B}{2}, \frac{A+B}{2}\right) x, x\right\rangle\right]
\end{aligned}
$$

namely

$$
\begin{aligned}
0 \leq & \left\langle\left(\int_{0}^{1} f(t(A, B)+(1-t)(B, A)) p(t) d t\right) x, x\right\rangle \\
& -\left\langle\left(\int_{0}^{1} p(t) d t \int_{0}^{1} f(t(A, B)+(1-t)(B, A)) d t\right) x, x\right\rangle \\
& \leq \frac{1}{4}\left\langle\left[p(0)-p\left(\frac{1}{2}\right)\right]\left[f(A, B)-f\left(\frac{A+B}{2}, \frac{A+B}{2}\right)\right] x, x\right\rangle
\end{aligned}
$$

for all $x \in H$, which is equivalent to the operator order inequality (2.13).

Remark 2. Assume that the function $f: I \times I \rightarrow \mathbb{R}$ is operator Schur convex on $I \times I$. Then we have the inequalities

$$
\begin{align*}
0 & \leq \int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A)\left|t-\frac{1}{2}\right| d t \tag{2.16}\\
& -\frac{1}{4} \int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) d t \\
& \leq \frac{1}{8}\left[f(A, B)-f\left(\frac{A+B}{2}, \frac{A+B}{2}\right)\right]
\end{align*}
$$

and

$$
\begin{align*}
0 & \leq \frac{1}{6} \int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) d t \tag{2.17}\\
& -\int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) t(1-t) d t \\
& \leq \frac{1}{16}\left[f(A, B)-f\left(\frac{A+B}{2}, \frac{A+B}{2}\right)\right]
\end{align*}
$$

for all $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$.
In 1970 , A. M. Ostrowski proved amongst others the following result

$$
\begin{align*}
& \left|\frac{1}{b-a} \int_{a}^{b} h(t) k(t) d t-\frac{1}{b-a} \int_{a}^{b} h(t) d t \frac{1}{b-a} \int_{a}^{b} k(t) d t\right| \tag{2.18}\\
& \leq \frac{1}{8}(b-a)(M-m)\left\|k^{\prime}\right\|_{\infty}
\end{align*}
$$

provided h is Lebesgue integrable on $[a, b]$ and satisfying $-\infty<m \leq h(t) \leq M<$ ∞ while $k:[a, b] \rightarrow \mathbb{R}$ is absolutely continuous and $k^{\prime} \in L_{\infty}[a, b]$. The constant $\frac{1}{8}$ in (2.18) is also sharp.

We can prove the following similar result as well:
Theorem 8. Assume that the function $f: I \times I \rightarrow \mathbb{R}$ is operator Schur convex on $I \times I$ and $p:[0,1] \rightarrow \mathbb{R}$ is symmetric towards $1 / 2$ and absolutely continuous with $p^{\prime} \in L_{\infty}[0,1]$.

If $p:[0,1] \rightarrow \mathbb{R}$ is monotonic decreasing on $[0,1 / 2]$, then

$$
\begin{align*}
0 & \leq \int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) p(t) d t \tag{2.19}\\
& -\int_{0}^{1} p(t) d t \int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) d t \\
& \leq \frac{1}{8}\left\|p^{\prime}\right\|_{\infty},\left[f(A, B)-f\left(\frac{A+B}{2}, \frac{A+B}{2}\right)\right]
\end{align*}
$$

for all $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$.
If p is monotonic increasing on $[0,1 / 2]$, then

$$
\begin{align*}
0 & \leq \int_{0}^{1} p(t) d t \int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) d t \tag{2.20}\\
& -\int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) p(t) d t \\
& \leq \frac{1}{8}\left\|p^{\prime}\right\|_{\infty}\left[f(A, B)-f\left(\frac{A+B}{2}, \frac{A+B}{2}\right)\right]
\end{align*}
$$

for all $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$.

3. Some Examples

Let $f: I \rightarrow \mathbb{R}$ be a continuous function on the interval I. For $t \in(0,1)$ we define the auxiliary function $f_{t}: I \times I \rightarrow \mathbb{R}$ by

$$
f_{t}(x, y):=\frac{1}{2}[f((1-t) x+t y)+f((1-t) y+t x)] .
$$

We observe that f_{t} is continuous on $I \times I$ and symmetric, namely $f_{t}(x, y)=f_{t}(y, x)$ for all $(x, y) \in I \times I$.

Proposition 1. Let $f: I \rightarrow \mathbb{R}$ be a continuous function on the interval I. If f is operator convex on I then f_{t} is operator Schur convex on $I \times I$.

Proof. Let $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H), s \in[0,1]$ and $t \in(0,1)$. By the operator convexity of f we have

$$
\begin{aligned}
& f_{t}(s A+(1-s) B, s B+(1-s) A) \\
& =\frac{1}{2} f((1-t)[s A+(1-s) B]+t[s B+(1-s) A]) \\
& +\frac{1}{2} f((1-t)[s B+(1-s) A]+t[s A+(1-s) B])
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} f(s[(1-t) A+t B]+(1-s)[(1-t) B+t A]) \\
& +\frac{1}{2} f(s[(1-t) B+t A]+(1-s)[(1-t) A+t B]) \\
& \leq \frac{1}{2} s f((1-t) A+t B)+\frac{1}{2}(1-s) f((1-t) B+t A) \\
& +\frac{1}{2} s f((1-t) B+t A)+\frac{1}{2}(1-s) f((1-t) A+t B) \\
& =\frac{1}{2}[f((1-t) A+t B)+f((1-t) B+t A)] \\
& =f_{t}(A, B)
\end{aligned}
$$

which shows that f_{t} is operator Schur convex on $I \times I$.

For a Lebesgue integrable function $p:[0,1] \rightarrow[0, \infty)$ and $f: I \rightarrow \mathbb{R}$ a continuous function on the interval I we consider the function $F_{p}: I \times I \rightarrow \mathbb{R}$ defined by

$$
\begin{aligned}
F_{p}(x, y) & :=\int_{0}^{1} f_{t}(x, y) p(t) d t \\
& =\frac{1}{2} \int_{0}^{1}[f((1-t) x+t y)+f((1-t) y+t x)] p(t) d t \\
& =\int_{0}^{1} f((1-t) x+t y) \breve{p}(t) d t
\end{aligned}
$$

where $\breve{p}(t):=\frac{1}{2}[p(t)+p(1-t)], t \in[0,1]$.
In particular, for $p \equiv 1$ we put

$$
F(x, y):=\int_{0}^{1} f((1-t) x+t y) d t
$$

for $(x, y) \in I \times I$.
We have:
Proposition 2. Let $f: I \rightarrow \mathbb{R}$ be a continuous function on the interval I and $p:[0,1] \rightarrow[0, \infty)$ a Lebesgue integrable function on $[0,1]$. If f is operator convex on I then F_{p} is operator Schur convex on $I \times I$. In particular, F is operator Schur convex.

Proof. Let $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H), s \in[0,1]$. By the operator Schur convexity of f_{t} we have

$$
\begin{aligned}
& F_{p}(s A+(1-s) B, s B+(1-s) A) \\
& =\int_{0}^{1} f_{t}(s A+(1-s) B, s B+(1-s) A) p(t) d t \\
& \leq \int_{0}^{1} f_{t}(A, B) p(t) d t=F_{p}(A, B),
\end{aligned}
$$

which proves that F_{p} is operator Schur convex.

By making the change of variable $u=(1-t) x+t y, t \in[0,1]$ for $x \neq y$ we have $d u=(y-x) d t, t=\frac{u-x}{y-x}, 1-t=\frac{y-u}{y-x}$ and

$$
\begin{align*}
& F_{p}(x, y) \tag{3.1}\\
& =\left\{\begin{array}{l}
\frac{1}{2(y-x)} \int_{x}^{y} f(u)\left[p\left(\frac{u-x}{y-x}\right)+p\left(\frac{y-u}{y-x}\right)\right] d u, \quad(x, y) \in I \times I, x \neq y \\
f(x) \int_{0}^{1} p(t) d t, \quad(x, y) \in I \times I, x=y
\end{array}\right.
\end{align*}
$$

In particular

$$
\begin{align*}
& F(x, y) \tag{3.2}\\
& =\left\{\begin{array}{l}
\frac{1}{y-x} \int_{x}^{y} f(u) d u, \quad(x, y) \in I \times I, x \neq y, \\
f(x), \quad(x, y) \in I \times I, x=y .
\end{array}\right.
\end{align*}
$$

If we consider $p_{m}(t):=\left|t-\frac{1}{2}\right|, t \in[0,1]$, then

$$
\begin{align*}
& F_{p_{m}}(x, y) \tag{3.3}\\
& =\left\{\begin{array}{l}
\frac{1}{(y-x)^{2}} \int_{x}^{y} f(u)\left|u-\frac{x+y}{2}\right| d u, \quad(x, y) \in I \times I, x \neq y \\
\frac{1}{4} f(x), \quad(x, y) \in I \times I, x=y
\end{array}\right.
\end{align*}
$$

If we consider $p_{g}(t):=t(1-t), t \in[0,1]$, then

$$
\begin{align*}
& F_{p_{g}}(x, y) \tag{3.4}\\
& =\left\{\begin{array}{l}
\frac{1}{(y-x)^{3}} \int_{x}^{y} f(u)(u-x)(y-u) d u, \quad(x, y) \in I \times I, x \neq y \\
\frac{1}{6} f(x), \quad(x, y) \in I \times I, x=y
\end{array}\right.
\end{align*}
$$

Therefore, if f is operator convex on I, then the functions defined by (3.1)-(3.4) are operator Schur convex on $I \times I$.

Since the function $f(t)=t^{r}$ is operator convex on $(0, \infty)$ if either $1 \leq r \leq 2$ or $-1 \leq r \leq 0$ and is operator concave on $(0, \infty)$ if $0 \leq r \leq 1$, hence for $p:[0,1] \rightarrow$ $[0, \infty)$ a Lebesgue integrable function on $[0,1]$,

$$
\begin{align*}
& F_{p, r}(x, y) \tag{3.5}\\
& :=\left\{\begin{array}{l}
\frac{1}{2(y-x)} \int_{x}^{y} u^{r}\left[p\left(\frac{u-x}{y-x}\right)+p\left(\frac{y-u}{y-x}\right)\right] d u \\
(x, y) \in(0, \infty) \times(0, \infty), x \neq y \\
x^{r} \int_{0}^{1} p(t) d t, \quad(x, y) \in(0, \infty) \times(0, \infty), x=y
\end{array}\right.
\end{align*}
$$

is operator Schur convex on $(0, \infty) \times(0, \infty)$ if either $1 \leq r \leq 2$ or $-1 \leq r \leq 0$ and is operator Schur concave on $(0, \infty) \times(0, \infty)$ if $0 \leq r \leq 1$.

In particular,

$$
F_{r}(x, y):=\left\{\begin{array}{l}
\frac{y^{r+1}-y^{r+1}}{(r+1)(y-x)}, \quad(x, y) \in(0, \infty) \times(0, \infty), x \neq y \tag{3.6}\\
x^{r}, \quad(x, y) \in(0, \infty) \times(0, \infty), x=y
\end{array}\right.
$$

is operator Schur convex on $(0, \infty) \times(0, \infty)$ if either $1 \leq r \leq 2$ or $-1<r \leq 0$ and is operator Schur concave on $(0, \infty) \times(0, \infty)$ if $0 \leq r \leq 1$.

For $r=-1$, if we put

$$
F_{-1}(x, y):=\left\{\begin{array}{l}
\frac{\ln y-\ln x}{y-x}, \quad(x, y) \in(0, \infty) \times(0, \infty), x \neq y \tag{3.7}\\
x^{-1}, \quad(x, y) \in(0, \infty) \times(0, \infty), x=y
\end{array}\right.
$$

then we conclude that F_{-1} is operator Schur convex on $(0, \infty) \times(0, \infty)$.
Since $f(t)=\ln t, t \in(0, \infty)$ is operator concave, then for $p:[0,1] \rightarrow[0, \infty)$, a Lebesgue integrable function on $[0,1]$,

$$
\begin{align*}
& F_{p, \ln }(x, y) \tag{3.8}\\
& =\left\{\begin{array}{l}
\frac{1}{2(y-x)} \int_{x}^{y}\left[p\left(\frac{u-x}{y-x}\right)+p\left(\frac{y-u}{y-x}\right)\right] \ln u d u \\
(x, y) \in(0, \infty) \times(0, \infty), x \neq y \\
f(x) \int_{0}^{1} p(t) d t, \quad(x, y) \in(0, \infty) \times(0, \infty), x=y,
\end{array}\right.
\end{align*}
$$

is operator Schur concave on $(0, \infty) \times(0, \infty)$.
In particular, if we put

$$
F_{\ln }(x, y):=\left\{\begin{array}{l}
\frac{y \ln y-x \ln x}{y-x}-1, \quad(x, y) \in(0, \infty) \times(0, \infty), x \neq y \tag{3.9}\\
\ln x, \quad(x, y) \in(0, \infty) \times(0, \infty), x=y
\end{array}\right.
$$

then we conclude that $F_{\ln }$ is operator Schur concave on $(0, \infty) \times(0, \infty)$.

References

[1] R. P. Agarwal and S. S. Dragomir, A survey of Jensen type inequalities for functions of selfadjoint operators in Hilbert spaces. Comput. Math. Appl. 59 (2010), no. 12, 3785-3812.
[2] H. Araki and F. Hansen, Jensen's operator inequality for functions of several variables, Proc. Amer. Math. Soc. 128 (2000), Number 7, 2075-2084.
[3] V. Bacak, T. Vildan and R. Türkmen, Refinements of Hermite-Hadamard type inequalities for operator convex functions. J. Inequal. Appl. 2013, 2013:262, 10 pp.
[4] Y. Chu, G. Wang, X. Zhang, Schur convexity and Hadamard's inequality, Math. Inequal. Appl. 13 (4) (2010) 725-731.
[5] V. Čuljak, A remark on Schur-convexity of the mean of a convex function. J. Math. Inequal. 9 (2015), No. 4, 1133-1142.
[6] V. Darvish, S. S. Dragomir, H. M. Nazari and A. Taghavi, Some inequalities associated with the Hermite-Hadamard inequalities for operator h-convex functions. Acta Comment. Univ. Tartu. Math. 21 (2017), no. 2, 287-297.
[7] S. S. Dragomir, Hermite-Hadamard's type inequalities for operator convex functions. Appl. Math. Comput. 218 (2011), no. 3, 766-772.
[8] S. S. Dragomir, Operator Inequalities of the Jensen, Čebyšev and Grüss Type. Springer Briefs in Mathematics. Springer, New York, 2012. xii+121 pp. ISBN: 978-1-4614-1520-6.
[9] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results. Aust. J. Math. Anal. Appl. 14 (2017), No. 1, Art. 1, 283 pp. [Online https://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P1.tex].
[10] S. S. Dragomir, Some Hermite-Hadamard type inequalities for operator convex functions and positive maps. Spec. Matrices 7 (2019), 38-51. Preprint RGMIA Res. Rep. Coll. 19 (2016), Art. 80. [Online http://rgmia.org/papers/v19/v19a80.pdf].
[11] S. S. Dragomir and K. Nikodem, Functions generating (m, M, Ψ)-Schur-convex sums. Aequationes Math. 93 (2019), No. 1, 79-90.
[12] S. S. Dragomir and C. E. M. Pearce, Selected Topics on HermiteHadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online https://rgmia.org/monographs/hermite_hadamard.html].
[13] N. Elezović and J. Pečarić, A note on Schur convex fuctions, Rocky Mountain J. Math. 30 (2000), No. 3, 853-956.
[14] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
[15] A. G. Ghazanfari, The Hermite-Hadamard type inequalities for operator s-convex functions. J. Adv. Res. Pure Math. 6 (2014), no. 3, 52-61.
[16] A. G. Ghazanfari, Hermite-Hadamard type inequalities for functions whose derivatives are operator convex. Complex Anal. Oper. Theory 10 (2016), no. 8, 1695-1703.
[17] J. Han and J. Shi, Refinements of Hermite-Hadamard inequality for operator convex function. J. Nonlinear Sci. Appl. 10 (2017), no. 11, 6035-6041.
[18] B. Li, Refinements of Hermite-Hadamard's type inequalities for operator convex functions. Int. J. Contemp. Math. Sci. 8 (2013), no. 9-12, 463-467.
[19] A. W. Marshall, I. Olkin and B. C. Arnold, Inequalities: Theory of Majorization and Its Applications, Second Edition, Springer New York Dordrecht Heidelberg London, 2011.
[20] K. Nikodem, T. Rajba and S. Wąsowicz, Functions generating strongly Schur-convex sums. Inequalities and applications 2010, 175-182, Internat. Ser. Numer. Math., 161, Birkhäuser/Springer, Basel, 2012.
[21] A. M. Ostrowski, On an integral inequality, Aequat. Math., 4 (1970), 358-373.
[22] J. Qi and W. Wang, Schur convex functions and the Bonnesen style isoperimetric inequalities for planar convex polygons. J. Math. Inequal. 12 (2018), no. 1, 23-29.
[23] H.-N. Shi and J. Zhang, Compositions involving Schur harmonically convex functions. J. Comput. Anal. Appl. 22 (2017), no. 5, 907-922.
[24] C. Stępniak, An effective characterization of Schur-convex functions with applications, Journal of Convex Analysis, 14 (2007), No. 1, 103-108.pp.
[25] A. Taghavi, V. Darvish, H. M. Nazari and S. S. Dragomir, Hermite-Hadamard type inequalities for operator geometrically convex functions. Monatsh. Math. 181 (2016), no. 1, 187-203.
[26] M. Vivas Cortez, H. Hernández and E. Jorge, Refinements for Hermite-Hadamard type inequalities for operator h-convex function. Appl. Math. Inf. Sci. 11 (2017), no. 5, 1299-1307.
[27] M. Vivas Cortez, H. Hernández and E. Jorge, On some new generalized Hermite-HadamardFejér inequalities for product of two operator h-convex functions. Appl. Math. Inf. Sci. 11 (2017), no. 4, 983-992.
[28] S.-H. Wang, Hermite-Hadamard type inequalities for operator convex functions on the coordinates. J. Nonlinear Sci. Appl. 10 (2017), no. 3, 1116-1125
[29] S.-H. Wang, New integral inequalities of Hermite-Hadamard type for operator m-convex and (α, m)-convex functions. J. Comput. Anal. Appl. 22 (2017), no. 4, 744-753.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the WitwaterSrand, , Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 47A63; 47A99.
 Key words and phrases. Operator convex functions, Integral inequalities, Hermite-Hadamard inequality, Multivariate operator convex function.

