OPERATOR SCHUR CONVEXITY OF SOME FUNCTIONS ASSOCIATED TO HERMITE-HADAMARD INEQUALITY

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. A continuous function $f : I \times I \to \mathbb{R}$ is called *operator Schur* convex, if f is symmetric, namely f(x, y) = f(y, x) for all $x, y \in I$ and

$$f(tA + (1 - t)B, tB + (1 - t)A) \le f(A, B)$$

in the operator order, for all $(A, B) \in \mathcal{SA}_{I}(H) \times \mathcal{SA}_{I}(H)$ and $t \in [0, 1]$, where $\mathcal{SA}_{I}(H)$ is the convex set of all selfadjoint operators on Hilbert space H with spectra in I.

In this paper we investigate the operator Schur convexity of some functions associated to the Hermite-Hadamard inequality for operator convex functions. Some particular examples of interest are also given.

1. INTRODUCTION

For any $x = (x_1, ..., x_n) \in \mathbb{R}^n$, let $x_{[1]} \ge ... \ge x_{[n]}$ denote the components of x in decreasing order, and let $x_{\downarrow} = (x_{[1]}, ..., x_{[n]})$ denote the decreasing rearrangement of x. For $x, y \in \mathbb{R}^n, x \prec y$ if, by definition,

$$\begin{cases} \sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]}, \ k = 1, ..., n-1; \\ \sum_{i=1}^{n} x_{[i]} = \sum_{i=1}^{n} y_{[i]}. \end{cases}$$

When $x \prec y$, x is said to be *majorized* by y (y majorizes x). This notation and terminology was introduced by Hardy, Littlewood and Pólya in 1934.

Functions that preserve the ordering of majorization are said to be Schur-convex, [21, p.80]. A real-valued function ϕ defined on a set $\mathcal{A} \subset \mathbb{R}^n$ is said to be *Schur-convex* on \mathcal{A} if

(1.1)
$$x \prec y \text{ on } \mathcal{A} \Rightarrow \phi(x) \leq \phi(y).$$

If, in addition, $\phi(x) < \phi(y)$ whenever $x \prec y$ but x is not a permutation of y, then ϕ is said to be *strictly Schur-convex* on \mathcal{A} . If $\mathcal{A} = \mathbb{R}^n$, then ϕ is simply said to be Schur-convex or strictly Schur-convex.

For fundamental properties of Schur convexity see the monograph [21] and the references therein. For some recent results, see [5]-[13], [15], [22] and [24]-[26].

The following result is known in the literature as *Schur-Ostrowski theorem* [21, p. 84]:

Theorem 1. Let $I \subset \mathbb{R}$ be an open interval and let $\phi : I^n \to \mathbb{R}$ be continuously differentiable. Necessary and sufficient conditions for ϕ to be Schur-convex on I^n

¹⁹⁹¹ Mathematics Subject Classification. 47A63; 47A99.

Key words and phrases. Operator convex functions, Integral inequalities, Hermite-Hadamard inequality, Multivariate operator convex function.

are

 $\mathbf{2}$

(1.2)
$$\phi$$
 is symmetric on I^n ,

and for all $i \neq j$, with $i, j \in \{1, ..., n\}$,

(1.3)
$$(z_i - z_j) \left[\frac{\partial \phi(z)}{\partial x_i} - \frac{\partial \phi(z)}{\partial x_j} \right] \ge 0 \text{ for all } z \in I^n,$$

where $\frac{\partial \phi}{\partial x_k}$ denotes the partial derivative of ϕ with respect to its k-th argument.

Let $\mathcal{A} \subset \mathbb{R}^n$ be a set with the following properties:

(i) \mathcal{A} is symmetric in the sense that $x \in \mathcal{A} \Rightarrow x \Pi \in \mathcal{A}$ for all permutations Π of the coordinates.

(ii) \mathcal{A} is convex and has a nonempty interior.

We have the following result, [21, p. 85].

Theorem 2. If ϕ is continuously differentiable on the interior of \mathcal{A} and continuous on \mathcal{A} , then necessary and sufficient conditions for ϕ to be Schur-convex on \mathcal{A} are

(1.4)
$$\phi$$
 is symmetric on \mathcal{A}

and

(1.5)
$$(z_1 - z_2) \left[\frac{\partial \phi(z)}{\partial x_1} - \frac{\partial \phi(z)}{\partial x_2} \right] \ge 0 \text{ for all } z \in \mathcal{A}.$$

Another interesting characterization of Schur convex functions ϕ on \mathcal{A} was obtained by C. Stępniak in [26]:

Theorem 3. Let ϕ be any function defined on a symmetric convex set \mathcal{A} in \mathbb{R}^n . Then the function ϕ is Schur convex on \mathcal{A} if and only if

(1.6)
$$\phi(x_1, ..., x_i, ..., x_j, ..., x_n) = \phi(x_1, ..., x_j, ..., x_i, ..., x_n)$$

for all $(x_1, ..., x_n) \in \mathcal{A}$ and $1 \leq i < j \leq n$ and

(1.7)
$$\phi(\lambda x_1 + (1 - \lambda) x_2, \lambda x_2 + (1 - \lambda) x_1, x_3, ..., x_n) \le \phi(x_1, ..., x_n)$$

for all $(x_1, ..., x_n) \in \mathcal{A}$ and for all $\lambda \in (0, 1)$,

It is well known that any symmetric convex function defined on a symmetric convex set \mathcal{A} is Schur convex, [21, p. 97]. If the function $\phi : \mathcal{A} \to \mathbb{R}$ is symmetric and quasi-convex, namely

$$\phi\left(\alpha u + (1 - \alpha)v\right) \le \max\left\{\phi\left(u\right), \phi\left(v\right)\right\}$$

for all $\alpha \in [0, 1]$ and $u, v \in \mathcal{A}$, a symmetric convex set, then ϕ is Schur convex on \mathcal{A} [21, p. 98].

In order to extend the above concept to continuous functions of selfadjoint operators on complex Hilbert space we need some preparations as follow.

A real valued continuous function f on an interval I is said to be *operator convex* (*operator concave*) on I if

(1.8)
$$f((1-\lambda)A + \lambda B) \le (\ge)(1-\lambda)f(A) + \lambda f(B)$$

in the operator order, for all $\lambda \in [0, 1]$ and for every selfadjoint operator A and B on a Hilbert space H whose spectra are contained in I. Notice that a function f is operator concave if -f is operator convex.

A real valued continuous function f on an interval I is said to be *operator* monotone if it is monotone with respect to the operator order, i.e., $A \leq B$ with $\operatorname{Sp}(A), \operatorname{Sp}(B) \subset I$ imply $f(A) \leq f(B)$.

For some fundamental results on operator convex (operator concave) and operator monotone functions, see [16] and the references therein.

As examples of such functions, we note that $f(t) = t^r$ is operator monotone on $[0, \infty)$ if and only if $0 \le r \le 1$. The function $f(t) = t^r$ is operator convex on $(0, \infty)$ if either $1 \le r \le 2$ or $-1 \le r \le 0$ and is operator concave on $(0, \infty)$ if $0 \le r \le 1$. The logarithmic function $f(t) = \ln t$ is operator monotone and operator concave on $(0, \infty)$. The entropy function $f(t) = -t \ln t$ is operator concave on $(0, \infty)$. The exponential function $f(t) = e^t$ is neither operator convex nor operator monotone.

In [7] we obtained among others the following Hermite-Hadamard type inequalities for operator convex functions $f: I \to \mathbb{R}$

(1.9)
$$f\left(\frac{A+B}{2}\right) \le \int_0^1 f\left((1-s)A + sB\right) ds \le \frac{f(A) + f(B)}{2},$$

where A, B are selfadjoint operators with spectra included in I.

If $p: [0,1] \to [0,\infty)$ is symmetric in the sense that p(1-t) = p(t) for all $t \in [0,1]$, p is Lebesgue integrable with $\int_0^1 p(s) ds > 0$ and $f: I \to \mathbb{R}$ is operator convex function, then we also have the weighted operator inequality (see for instance [12])

(1.10)
$$f\left(\frac{A+B}{2}\right) \leq \frac{1}{\int_0^1 p(s) \, ds} \int_0^1 f\left((1-s) A + sB\right) p(s) \, ds$$
$$\leq \frac{f(A) + f(B)}{2},$$

where A, B are selfadjoint operators with spectra included in I.

For recent inequalities for operator convex functions see [1], [3], [6], [7], [8], [10]-[20] and [27]-[31].

Let $I_1, ..., I_k$ be intervals from \mathbb{R} and let $f: I_1 \times ... \times I_k \to \mathbb{R}$ be an essentially bounded real function defined on the product of the intervals. Let $A = (A_1, ..., A_n)$ be a k-tuple of bounded selfadjoint operators on Hilbert spaces $H_1, ..., H_k$ such that the spectrum of A_i is contained in I_i for i = 1, ..., k. We say that such a k-tuple is in the domain of f. If

$$A_{i} = \int_{I_{i}} \lambda_{i} E_{i} \left(d\lambda_{i} \right)$$

is the spectral resolution of A_i for i = 1, ..., k; by following [2] we define

(1.11)
$$f(A) = f(A_1, ..., A_n) = \int_{I_1 \times ... \times I_k} f(\lambda_1, ..., \lambda_1) E_1(d\lambda_1) \otimes ... \otimes E_k(d\lambda_k)$$

as a bounded selfadjoint operator on $H_1 \otimes \ldots \otimes H_k$.

The above function $f: I_1 \times ... \times I_k \to \mathbb{R}$ is said to be operator convex, if the operator inequality

(1.12)
$$f((1-\alpha)A + \alpha B) \le (1-\alpha)f(A) + \alpha f(B)$$

holds for all $\alpha \in [0,1]$, for any Hilbert spaces $H_1, ..., H_k$ and any k-tuples of of selfadjoint operators $A = (A_1, ..., A_n)$, $B = (B_1, ..., B_n)$ on $H_1 \otimes ... \otimes H_k$ contained in the domain of f. The definition is meaningful since also the spectrum of $\alpha A_i + (1 - \alpha)B_i$ is contained in the interval I_i for each i = 1, ..., k.

In the following we restrict ourself to the case k = 1, $I_1 = I_2 = I$ and $H_1 = H_1 = H$. The operator convexity of $f: I \times I \to \mathbb{R}$ in this case means, for instance,

(1.13)
$$f((1-\alpha)A_1 + \alpha B_1, (1-\alpha)A_2 + \alpha B_2) \le (1-\alpha)f(A_1, A_2) + \alpha f(B_1, B_2)$$

or, equivalently,

(1.14)
$$f((1-\alpha)(A_1, A_2) + \alpha(B_1, B_2)) \le (1-\alpha)f(A_1, A_2) + \alpha f(B_1, B_2)$$

for all selfadjoint operators A_1 , A_2 , B_1 , B_2 with spectra in I and for all $\alpha \in [0, 1]$.

In this paper we investigate the operator Schur convexity of some functions associated to the Hermite-Hadamard inequality for operator convex functions. Some particular examples of interest are also given.

2. Operator Schur Convexity of Some Functions

For I an interval, we consider the set $\mathcal{SA}_I(H)$ of all selfadjoint operators with spectra in I. $\mathcal{SA}_I(H)$ is a convex set in $\mathcal{B}(H)$ since for A, B selfadjoints with $\operatorname{Sp}(A)$, $\operatorname{Sp}(B) \subset I$, $\alpha A + \beta B$ is selfadjoint with $\operatorname{Sp}(\alpha A + \beta B) \subset I$, where $\alpha, \beta \geq 0$ and $\alpha + \beta = 1$. Motivated by the Stępniak's result for functions of real variables, we can introduce the following concept:

Definition 1. We say that the function $f : I \times I \to \mathbb{R}$ is called operator Schur convex, if f is symmetric, namely f(x, y) = f(y, x) for all $x, y \in I$ and

$$f(tA + (1 - t)B, tB + (1 - t)A) \le f(A, B)$$

or, equivalently,

$$f(t(A, B) + (1 - t)(B, A)) \le f(A, B)$$

in the operator order, for all $(A, B) \in SA_I(H) \times SA_I(H)$ and $t \in [0, 1]$. The function f is called operator Schur concave if -f is operator Schur convex.

For $(A, B) \in \mathcal{SA}_I(H) \times \mathcal{SA}_I(H)$, let us define the following auxiliary function $\varphi_{(A,B)} : [0,1] \to \mathcal{SA}(H \otimes H)$, the set of all selfadjoint operators on $H \otimes H$, by

(2.1)
$$\varphi_{f,(A,B)}(t) = f(t(A,B) + (1-t)(B,A)) \\ = f(tA + (1-t)B, tB + (1-t)A).$$

A function $f: J \to \mathcal{SA}(K)$ defined of an interval of real numbers J with self adjoint operator values on a Hilbert space K is called *operator monotone increasing* on J if

$$f(t) \leq f(s)$$
 in the operator order

for all $s, t \in J$ with t < s.

The following characterization of operator Schur convexity holds, see the recent paper [11]:

Theorem 4. Let $f : I \times I \to \mathbb{R}$ be a continuous symmetric function on $I \times I$. Then f is operator Schur convex on $I \times I$ if and only if for all arbitrarily fixed $(A, B) \in S\mathcal{A}_I(H) \times S\mathcal{A}_I(H)$ the function $\varphi_{f,(A,B)}$ is operator monotone decreasing on [0, 1/2), operator monotone increasing on (1/2, 1], and $\varphi_{f,(A,B)}$ has a global minimum at 1/2 in the operator order. Now, for an operator convex function $f:I\to\mathbb{R}$ and a $t\in[0,1]$ define the functions $M_t,\,T_t:I^2\to\mathbb{R}$

$$M_t(x,y) := \frac{1}{2} \left[f\left((1-t) \, x + ty \right) + f\left((1-t) \, y + tx \right) \right] - f\left(\frac{x+y}{2} \right) \ge 0$$

and

$$T_t(x,y) := \frac{f(x) + f(y)}{2} - \frac{1}{2} \left[f((1-t)x + ty) + f((1-t)y + tx) \right] \ge 0.$$

The positivity of these functions follows by the fact that f is convex on I. We have the following result concerning the Schur convexity of M_t .

Theorem 5. Let $f: I \to \mathbb{R}$ be an operator convex function on the interval *I*. For all $t \in [0,1]$, $t \neq \frac{1}{2}$ the function M_t is operator Schur convex on I^2 .

Proof. Let $(A, B) \in \mathcal{SA}_{I}(H) \times \mathcal{SA}_{I}(H)$ and $s \in [0, 1]$. Then

$$\begin{split} &M_t \left(s \left(A, B \right) + \left(1 - s \right) \left(B, A \right) \right) \\ &= M_t \left(sA + \left(1 - s \right) B, sB + \left(1 - s \right) A \right) \\ &= \frac{1}{2} f \left(\left(1 - t \right) \left(sA + \left(1 - s \right) B \right) + t \left(sB + \left(1 - s \right) A \right) \right) \\ &+ \frac{1}{2} f \left(\left(1 - t \right) \left(sB + \left(1 - s \right) A \right) + t \left(sA + \left(1 - s \right) B \right) \right) \\ &- f \left(\frac{sA + \left(1 - s \right) B + sB + \left(1 - s \right) A}{2} \right) \\ &= \frac{1}{2} f \left(s \left(\left(1 - t \right) A + tB \right) + \left(1 - s \right) \left(\left(1 - t \right) B + tA \right) \right) \\ &+ \frac{1}{2} f \left(s \left(\left(1 - t \right) B + tA \right) + \left(1 - s \right) \left(\left(1 - t \right) A + tB \right) \right) - f \left(\frac{A + B}{2} \right) . \end{split}$$

By the operator convexity of f we have

$$f(s((1-t)A+tB) + (1-s)((1-t)B+tA)) \leq sf((1-t)A+tB) + (1-s)f((1-t)B+tA)$$

and

$$f(s((1-t)B+tA) + (1-s)((1-t)A+tB)) \le sf((1-t)B+tA) + (1-s)f((1-t)A+tB).$$

for all $(A, B) \in SA_I(H) \times SA_I(H)$ and $s \in [0, 1]$. If we add these two inequalities and divide by 2 we get

$$\begin{aligned} &\frac{1}{2}f\left(s\left((1-t)A+tB\right)+(1-s)\left((1-t)B+tA\right)\right)\\ &+\frac{1}{2}f\left(s\left((1-t)B+tA\right)+(1-s)\left((1-t)A+tB\right)\right)\\ &\leq\frac{1}{2}\left[f\left((1-t)B+tA\right)+f\left((1-t)A+tB\right)\right]\end{aligned}$$

for all $(A, B) \in \mathcal{SA}_I(H) \times \mathcal{SA}_I(H)$ and $s \in [0, 1]$.

Therefore

$$M_t (s (A, B) + (1 - s) (B, A))$$

$$\leq \frac{1}{2} [f ((1 - t) B + tA) + f ((1 - t) A + tB)] - f \left(\frac{A + B}{2}\right)$$

$$= M_t (A, B)$$

for all $(A, B) \in \mathcal{SA}_I(H) \times \mathcal{SA}_I(H)$ and $s \in [0, 1]$, which shows that M_t is Schur convex on I^2 .

For a convex function $f: I \to \mathbb{R}$ and $q: [0,1] \to [0,\infty)$ a Lebesgue integrable function we consider the function $M_{\check{q}}: I^2 \to [0,\infty)$ defined by

$$\begin{split} M_{\breve{q}}\left(x,y\right) &:= \int_{0}^{1} M_{t}\left(x,y\right)q\left(t\right)dt \\ &= \frac{1}{2} \int_{0}^{1} \left[f\left((1-t)x+ty\right)+f\left((1-t)y+tx\right)\right]q\left(t\right)dt \\ &- f\left(\frac{x+y}{2}\right) \int_{0}^{1} q\left(t\right)dt \\ &= \int_{0}^{1} f\left((1-t)x+ty\right)\breve{q}\left(t\right)dt - f\left(\frac{x+y}{2}\right) \int_{0}^{1} q\left(t\right)dt, \end{split}$$

where

$$\check{q}(t) := \frac{1}{2} \left[q(t) + q(1-t) \right], \ t \in [0,1].$$

Corollary 1. Let $f: I \to \mathbb{R}$ be an operator convex function on I and $q: [0,1] \to [0,\infty)$ a Lebesgue integrable function on [0,1], then $M_{\tilde{q}}$ is operator Schur convex on I^2 .

Proof. Let $(A, B) \in SA_I(H) \times SA_I(H)$ and $s \in [0, 1]$. By the operator Schur convexity of M_t for all $t \in [0, 1]$, we have

$$M_{\tilde{q}}(s(A,B) + (1-s)(B,A)) = \int_{0}^{1} M_{t}(s(A,B) + (1-s)(B,A))q(t) dt$$
$$\leq \int_{0}^{1} M_{t}(A,B)q(t) dt = M_{\tilde{q}}(A,B),$$

which proves the Schur convexity of $M_{\tilde{q}}$.

Corollary 2. Let $f: I \to \mathbb{R}$ be an operator convex function on I and $p: [0,1] \to [0,\infty)$ a Lebesgue integrable symmetric function on [0,1], then M_p is operator Schur convex on I^2 .

We denote by [A, B] the closed segment defined by $\{(1 - s)A + sB, s \in [0, 1]\}$. We also define the functional

$$\Psi_{f,t}(A,B) := (1-t) f(A) + tf(B) - f((1-t)A + tB) \ge 0,$$

where $A, B \in I$ and $t \in [0, 1]$.

In [7] we obtained among others the following result :

6

Lemma 1. Let $f: I \to \mathbb{R}$ be an operator convex function on the interval I. Then for each $A, B \in SA_I(H)$ and $C \in [A, B]$ we have

(2.2)
$$(0 \le) \Psi_{f,t}(A, C) + \Psi_{f,t}(C, B) \le \Psi_{f,t}(A, B)$$

for each $t \in [0,1]$, i.e., the functional $\Psi_{f,t}(\cdot, \cdot)$ is superadditive as a function of interval.

If $C, D \in [A, B]$, then

$$(2.3) \qquad (0 \le) \Psi_{f,t}(C,D) \le \Psi_{f,t}(A,B)$$

for each $t \in [0,1]$, i.e., the functional $\Psi_f(\cdot, \cdot)$ is nondecreasing as a function of interval.

By utilising this lemma we can prove the following result as well:

Theorem 6. Let $f : I \to \mathbb{R}$ be an operator convex function on the interval I in \mathbb{R} . For all $t \in (0,1)$, the function T_t is Schur convex on I^2 .

Proof. Let $(A, B) \in \mathcal{SA}_I(H) \times \mathcal{SA}_I(H)$ with $A \neq B$ and $s \in [0, 1]$. Then

$$\begin{split} T_t \left(s \left(A, B \right) + \left(1 - s \right) \left(B, A \right) \right) \\ &= T_t \left(sA + \left(1 - s \right) B, sB + \left(1 - s \right) A \right) \\ &= \frac{f \left(sA + \left(1 - s \right) B \right) + f \left(sB + \left(1 - s \right) A \right) }{2} \\ &- \frac{1}{2} f \left(\left(1 - t \right) \left(sA + \left(1 - s \right) B \right) + t \left(sB + \left(1 - s \right) A \right) \right) \\ &- \frac{1}{2} f \left(\left(1 - t \right) \left(sB + \left(1 - s \right) A \right) + t \left(sA + \left(1 - s \right) B \right) \right). \end{split}$$

From (2.3) we have for $C, D \in [A, B]$

$$\Psi_{f,t}\left(C,D\right) \leq \Psi_{f,t}\left(A,B\right) \text{ and } \Psi_{f,1-t}\left(C,D\right) \leq \Psi_{f,1-t}\left(A,B\right),$$

which, by addition gives that

$$\Psi_{f,t}(C,D) + \Psi_{f,1-t}(C,D) \le \Psi_{f,t}(A,B) + \Psi_{f,1-t}(A,B)$$

namely

$$(1-t) f (C) + tf (D) - f ((1-t) C + tD) + tf (C) + (1-t) f (D) - f (tC + (1-t) D) \leq (1-t) f (A) + tf (B) - f ((1-t) A + tB) + tf (A) + (1-t) f (B) - f (tA + (1-t) B),$$

which is equivalent to

(2.4)
$$f(C) + f(D) - f((1-t)C + tD) - f(tC + (1-t)uD) \\ \leq f(A) + f(B) - f((1-t)A + tB) - f(tA + (1-t)B)$$

for all $C, D \in [A, B]$.

If we take C = sA + (1 - s)B and D = sB + (1 - s)A, with $s \in [0, 1]$ then C, $D \in [A, B]$ and by (2.4) we get

$$f(sA + (1 - s)B) + f(sB + (1 - s)A) - f((1 - t)(sA + (1 - s)B) + t(sB + (1 - s)A)) - f((1 - t)(sB + (1 - s)A) + t(sA + (1 - s)B)) \leq f(A) + f(B) - f((1 - t)A + tB) - f(tA + (1 - t)B).$$

This inequality is equivalent to

$$T_t(s(A, B) + (1 - s)(B, A)) \le T_t(A, B)$$

for all $(A, B) \in \mathcal{SA}_I(H) \times \mathcal{SA}_I(H)$ and $s \in [0, 1]$. This proves the operator Schur convexity of T_t .

Remark 1. Since both M_t and T_t are operator Schur convex when f is operator convex on I it follows that the sum, namely the Jensen's functional

$$J(A, B) := \frac{f(A) + f(B)}{2} - f\left(\frac{A+B}{2}\right)$$

is also operator Schur convex on I^2 .

For a convex function $f: I \to \mathbb{R}$ and $q: [0,1] \to [0,\infty)$ a Lebesgue integrable function we consider the function $T_{\check{q}}: I^2 \to [0,\infty)$ defined by

$$\begin{split} T_{\breve{q}}\left(x,y\right) &:= \int_{0}^{1} T_{t}\left(x,y\right)q\left(t\right)dt\\ &= \frac{f\left(x\right) + f\left(y\right)}{2} \int_{0}^{1} q\left(t\right)dt\\ &- \frac{1}{2} \int_{0}^{1} \left[f\left((1-t)x + ty\right) + f\left((1-t)y + tx\right)\right]q\left(t\right)dt\\ &= \frac{f\left(x\right) + f\left(y\right)}{2} \int_{0}^{1} q\left(t\right)dt - \int_{0}^{1} f\left((1-t)x + ty\right)\breve{q}\left(t\right)dt. \end{split}$$

Corollary 3. Let $f: I \to \mathbb{R}$ be an operator convex function on I and $q: [0,1] \to [0,\infty)$ a Lebesgue integrable function on [0,1], then $T_{\tilde{q}}$ is operator Schur convex on I^2 . In particular, if $p: [0,1] \to [0,\infty)$ is a Lebesgue integrable symmetric function on [0,1], then T_p is operator Schur convex on I^2 .

If we take $p \equiv 1$ and consider the functions

$$M(x,y) := \int_0^1 f((1-t)x + ty) \, dt - f\left(\frac{x+y}{2}\right)$$

and

$$T(x,y) := \frac{f(x) + f(y)}{2} - \int_0^1 f((1-t)y + ty) dt$$

then we conclude that M and T are operator Schur convex functions on I^2 if f is operator convex on I.

Also, if we consider the symmetric weights $p_1(t) = \left|t - \frac{1}{2}\right|$ and $p_2(t) = t(1-t)$, $t \in [0, 1]$, then

$$M_{\left|\cdot-\frac{1}{2}\right|}\left(x,y\right) := \int_{0}^{1} f\left(\left(1-t\right)x+ty\right) \left|t-\frac{1}{2}\right| dt - \frac{1}{4}f\left(\frac{x+y}{2}\right)$$

8

and

$$M_{\cdot(1-\cdot)}(x,y) := \int_0^1 f\left((1-t)x + ty\right) t\left(1-t\right) dt - \frac{1}{6} f\left(\frac{A+B}{2}\right)$$

are Schur convex on I^2 if f is convex on I.

The trapezoid functions

$$T_{\left|\cdot-\frac{1}{2}\right|}\left(x,y\right) := \frac{f\left(x\right) + f\left(y\right)}{8} - \int_{0}^{1} f\left(\left(1-t\right)x + ty\right) \left|t - \frac{1}{2}\right| dt$$

and

$$T_{\cdot(1-\cdot)}(x,y) := \frac{f(x) + f(y)}{12} - \int_0^1 f((1-t)x + ty) t(1-t) dt$$

are also operator Schur convex on I^2 if f is operator convex on I.

3. Some Examples

Assume that f is a continuous function on the interval I and $x, y \in I$. Also, let $p: [0,1] \to [0,\infty)$ be a Lebesgue integrable symmetric function on [0,1]. If we consider the functions

$$M_{p}(x,y) := \int_{0}^{1} f((1-t)x + ty) p(t) dt - f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) dt$$

and

$$T_{p}(x,y) := \frac{f(x) + f(y)}{2} \int_{0}^{1} p(t) dt - \int_{0}^{1} f((1-t)x + ty) p(t) dt$$

then

$$M_p(x, x) = T_p(x, x) = 0 \text{ for } x \in I.$$

If $x \neq y$, then by the change of the variable u = (1-t)x + ty, we have du = (y-x) dt, $t = \frac{u-x}{y-x}$, and we can consider the functions of two variables M_p , $T_p : I^2 \to \mathbb{R}$ defined by

(3.1)
$$M_{p}(x,y) := \begin{cases} \frac{1}{y-x} \int_{x}^{y} f(u) p\left(\frac{u-x}{y-x}\right) du - f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) dt, \\ (x,y) \in I^{2}, \ x \neq y, \\ 0, \ (x,y) \in I^{2}, \ x \neq y \end{cases}$$

and

(3.2)
$$T_{p}(x,y) := \begin{cases} \frac{f(x)+f(y)}{2} \int_{0}^{1} p(t) dt - \frac{1}{y-x} \int_{x}^{y} f(u) p\left(\frac{u-x}{y-x}\right) du, \\ (x,y) \in I^{2}, \ x \neq y, \\ 0, \ (x,y) \in I^{2}, \ x \neq y. \end{cases}$$

In particular, we have the functions $M,\,T:I^2\to\mathbb{R}$ introduced in [4] and defined by

$$M(x,y) := \begin{cases} \frac{1}{y-x} \int_{x}^{y} f(u) \, du - f\left(\frac{x+y}{2}\right), & (x,y) \in I^{2}, \ x \neq y, \\\\ 0, & (x,y) \in I^{2}, \ x \neq y, \end{cases}$$

and

$$T(x,y) := \begin{cases} \frac{f(x)+f(y)}{2} - \frac{1}{y-x} \int_x^y f(u) \, du, \ (x,y) \in I^2, \ x \neq y, \\\\ 0, \ (x,y) \in I^2, \ x \neq y. \end{cases}$$

We can also consider the weighted functions defined on I^2

$$\begin{split} M_{\left|\cdot-\frac{1}{2}\right|}\left(x,y\right) &:= \begin{cases} \left.\frac{1}{\left(y-x\right)^{2}}\int_{x}^{y}f\left(u\right)\left|u-\frac{x+y}{2}\right|du-\frac{1}{4}f\left(\frac{x+y}{2}\right),\\ \left(x,y\right)\in I^{2},\ x\neq y,\\ 0,\ \left(x,y\right)\in I^{2},\ x\neq y,\\ \end{array} \\ T_{\left|\cdot-\frac{1}{2}\right|}\left(x,y\right) &:= \begin{cases} \left.\frac{f(x)+f(y)}{8}-\frac{1}{\left(y-x\right)^{2}}\int_{x}^{y}f\left(u\right)\left|u-\frac{x+y}{2}\right|du,\\ \left(x,y\right)\in I^{2},\ x\neq y,\\ \end{array} \\ 0,\ \left(x,y\right)\in I^{2},\ x\neq y,\\ 0,\ \left(x,y\right)\in I^{2},\ x\neq y,\\ \end{array} \\ M_{\cdot(1-\cdot)}\left(x,y\right) &:= \begin{cases} \left.\frac{1}{\left(y-x\right)^{3}}\int_{x}^{y}f\left(u\right)\left(u-x\right)\left(y-u\right)du-\frac{1}{6}f\left(\frac{x+y}{2}\right),\\ \left(x,y\right)\in I^{2},\ x\neq y,\\ \end{array} \\ 0,\ \left(x,y\right)\in I^{2},\ x\neq y,\\ \end{array} \\ 0,\ \left(x,y\right)\in I^{2},\ x\neq y, \end{split} \end{split}$$

and

$$T_{\cdot(1-\cdot)}(x,y) := \begin{cases} \frac{f(x)+f(y)}{12} - \frac{1}{(y-x)^3} \int_x^y f(u) (u-x) (y-u) \, du, \\ (x,y) \in I^2, \ x \neq y, \\ 0, \ (x,y) \in I^2, \ x \neq y. \end{cases}$$

By utilising Corollary 2 and Corollary 3 we can state the following Schur convexity result:

Proposition 1. Assume that f is an operator convex function on the interval I and let $p : [0,1] \to [0,\infty)$ be a Lebesgue integrable symmetric function on [0,1]. Then the functions M_p and T_p are operator Schur convex on I^2 .

Since the function $f(t) = t^r$ is operator convex on $(0, \infty)$ if either $1 \le r \le 2$ or $-1 \le r \le 0$ and is operator concave on $(0, \infty)$ if $0 \le r \le 1$, hence for $p : [0, 1] \to [0, \infty)$ a Lebesgue integrable symmetric function on [0, 1],

(3.3)
$$M_{p,r}(x,y) := \begin{cases} \frac{1}{y-x} \int_{x}^{y} u^{r} p\left(\frac{u-x}{y-x}\right) du - \left(\frac{x+y}{2}\right)^{r} \int_{0}^{1} p(t) dt, \\ (x,y) \in (0,\infty) \times (0,\infty), \ x \neq y, \\ 0, \ (x,y) \in (0,\infty) \times (0,\infty), \ x \neq y \end{cases}$$

and

(3.4)
$$T_{p,r}(x,y) := \begin{cases} \frac{x^r + y^r}{2} \int_0^1 p(t) \, dt - \frac{1}{y-x} \int_x^y u^r p\left(\frac{u-x}{y-x}\right) \, du \\ (x,y) \in (0,\infty) \times (0,\infty) \, , \ x \neq y, \\ 0, \ (x,y) \in (0,\infty) \times (0,\infty) \, , \ x \neq y \end{cases}$$

are operator Schur convex on $(0, \infty) \times (0, \infty)$ if either $1 \le r \le 2$ or $-1 \le r \le 0$ and are operator Schur concave on $(0, \infty) \times (0, \infty)$ if $0 \le r \le 1$.

In particular,

(3.5)
$$M_{r}(x,y) = \begin{cases} \frac{y^{r+1}-y^{r+1}}{(r+1)(y-x)} - \left(\frac{x+y}{2}\right)^{r}, & (x,y) \in (0,\infty) \times (0,\infty), \ x \neq y, \\ 0, & (x,y) \in (0,\infty) \times (0,\infty), \ x \neq y \end{cases}$$

and

(3.6)
$$T_{r}(x,y) = \begin{cases} \frac{x^{r}+y^{r}}{2} - \frac{y^{r+1}-y^{r+1}}{(r+1)(y-x)}, & (x,y) \in (0,\infty) \times (0,\infty), & x \neq y, \\ 0, & (x,y) \in (0,\infty) \times (0,\infty), & x \neq y. \end{cases}$$

are operator Schur convex on $(0, \infty) \times (0, \infty)$ if either $1 \le r \le 2$ or $-1 < r \le 0$ and are operator Schur concave on $(0, \infty) \times (0, \infty)$ if $0 \le r \le 1$.

For r = -1, if we put

(3.7)
$$M_{-1}(x,y) = \begin{cases} \frac{\ln y - \ln x}{y - x} - \left(\frac{x + y}{2}\right)^{-1}, & (x,y) \in (0,\infty) \times (0,\infty), & x \neq y, \\ 0, & (x,y) \in (0,\infty) \times (0,\infty), & x = y, \end{cases}$$

and

(3.8)
$$T_{-1}(x,y) = \begin{cases} \frac{x^{-1}+y^{-1}}{2} - \frac{\ln y - \ln x}{y - x}, & (x,y) \in (0,\infty) \times (0,\infty), & x \neq y, \\ 0, & (x,y) \in (0,\infty) \times (0,\infty), & x \neq y, \end{cases}$$

then we conclude that M_{-1} and T_{-1} are operator Schur convex on $(0,\infty) \times (0,\infty)$.

The logarithmic function $f(t) = \ln t$ is operator concave on $(0, \infty)$. For $p : [0,1] \to [0,\infty)$ a Lebesgue integrable symmetric function on [0,1],

(3.9)
$$M_{p,\ln}(x,y) := \begin{cases} \frac{1}{y-x} \int_{x}^{y} p\left(\frac{u-x}{y-x}\right) \ln u du - \ln\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) dt, \\ (x,y) \in (0,\infty) \times (0,\infty), \ x \neq y, \\ 0, \ (x,y) \in (0,\infty) \times (0,\infty), \ x \neq y \end{cases}$$

and

(3.10)
$$T_{p,\ln}(x,y) := \begin{cases} \frac{\ln x + \ln y}{2} \int_0^1 p(t) dt - \frac{1}{y-x} \int_x^y p\left(\frac{u-x}{y-x}\right) \ln u du \\ (x,y) \in (0,\infty) \times (0,\infty), \ x \neq y, \\ 0, \ (x,y) \in (0,\infty) \times (0,\infty), \ x \neq y \end{cases}$$

are operator Schur concave on $(0,\infty)\times(0,\infty)$.

In particular,

(3.11)
$$M_{\ln}(x,y) := \begin{cases} \frac{y \ln y - x \ln x}{y - x} - 1 - \ln\left(\frac{x + y}{2}\right), \\ (x,y) \in (0,\infty) \times (0,\infty), \ x \neq y, \\ 0, \ (x,y) \in (0,\infty) \times (0,\infty), \ x \neq y \end{cases}$$

y

and

(3.12)
$$T_{\ln}(x,y) := \begin{cases} \frac{\ln x + \ln y}{2} - \frac{y \ln y - x \ln x}{y - x} + 1\\ (x,y) \in (0,\infty) \times (0,\infty), \ x \neq y,\\ 0, \ (x,y) \in (0,\infty) \times (0,\infty), \ x \neq y \end{cases}$$

(3.13)
$$= \begin{cases} 1 - \frac{x+y}{2} \frac{\ln y - \ln x}{y-x}, \\ (x,y) \in (0,\infty) \times (0,\infty), \ x \neq y, \\ 0, \ (x,y) \in (0,\infty) \times (0,\infty), \ x \neq y \end{cases}$$

are operator Schur concave on $(0, \infty) \times (0, \infty)$.

References

- R. P. Agarwal and S. S. Dragomir, A survey of Jensen type inequalities for functions of selfadjoint operators in Hilbert spaces. *Comput. Math. Appl.* 59 (2010), no. 12, 3785–3812.
- [2] H. Araki and F. Hansen, Jensen's operator inequality for functions of several variables, Proc. Amer. Math. Soc. 128 (2000), Number 7, 2075-2084.
- [3] V. Bacak, T. Vildan and R. Türkmen, Refinements of Hermite-Hadamard type inequalities for operator convex functions. J. Inequal. Appl. 2013, 2013:262, 10 pp.
- [4] Y. Chu, G. Wang, X. Zhang, Schur convexity and Hadamard's inequality, Math. Inequal. Appl. 13 (4) (2010) 725-731.
- [5] V. Čuljak, A remark on Schur-convexity of the mean of a convex function. J. Math. Inequal. 9 (2015), No. 4, 1133–1142.
- [6] V. Darvish, S. S. Dragomir, H. M. Nazari and A. Taghavi, Some inequalities associated with the Hermite-Hadamard inequalities for operator *h*-convex functions. Acta Comment. Univ. Tartu. Math. 21 (2017), no. 2, 287–297.
- [7] S. S. Dragomir, Hermite-Hadamard's type inequalities for operator convex functions. *Appl. Math. Comput.* 218 (2011), no. 3, 766–772.
- [8] S. S. Dragomir, Operator Inequalities of the Jensen, Čebyšev and Grüss Type. Springer Briefs in Mathematics. Springer, New York, 2012. xii+121 pp. ISBN: 978-1-4614-1520-6.
- [9] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results. Aust. J. Math. Anal. Appl. 14 (2017), No. 1, Art. 1, 283 pp. [Online https://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P1.tex].
- [10] S. S. Dragomir, Some Hermite-Hadamard type inequalities for operator convex functions and positive maps. Spec. Matrices 7 (2019), 38-51. Preprint RGMIA Res. Rep. Coll. 19 (2016), Art. 80. [Online http://rgmia.org/papers/v19/v19a80.pdf].
- [11] S. S. Dragomir, Operator Schur convexity and some integral inequalities, Preprint RGMIA Res. Rep. Coll. 22 (2019), Art. .
- [12] S. S. Dragomir, Some Hermite-Hadamard type inequalities via operator convex functions of two variables, Preprint RGMIA Res. Rep. Coll. 22 (2019), Art. .
- [13] S. S. Dragomir and K. Nikodem, Functions generating (m, M, Ψ)-Schur-convex sums. Aequationes Math. 93 (2019), No. 1, 79–90.
- [14] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online https://rgmia.org/monographs/hermite_hadamard.html].
- [15] N. Elezović and J. Pečarić, A note on Schur convex fuctions, Rocky Mountain J. Math. 30 (2000), No. 3, 853-956.
- [16] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
- [17] A. G. Ghazanfari, The Hermite-Hadamard type inequalities for operator s-convex functions. J. Adv. Res. Pure Math. 6 (2014), no. 3, 52–61.
- [18] A. G. Ghazanfari, Hermite-Hadamard type inequalities for functions whose derivatives are operator convex. *Complex Anal. Oper. Theory* 10 (2016), no. 8, 1695–1703.

12

- [19] J. Han and J. Shi, Refinements of Hermite-Hadamard inequality for operator convex function. J. Nonlinear Sci. Appl. 10 (2017), no. 11, 6035–6041.
- [20] B. Li, Refinements of Hermite-Hadamard's type inequalities for operator convex functions. Int. J. Contemp. Math. Sci. 8 (2013), no. 9-12, 463–467.
- [21] A. W. Marshall, I. Olkin and B. C. Arnold, *Inequalities: Theory of Majorization and Its Applications*, Second Edition, Springer New York Dordrecht Heidelberg London, 2011.
- [22] K. Nikodem, T. Rajba and S. Wąsowicz, Functions generating strongly Schur-convex sums. *Inequalities and applications* 2010, 175–182, Internat. Ser. Numer. Math., 161, Birkhäuser/Springer, Basel, 2012.
- [23] A. M. Ostrowski, On an integral inequality, Aequat. Math., 4 (1970), 358-373.
- [24] J. Qi and W. Wang, Schur convex functions and the Bonnesen style isoperimetric inequalities for planar convex polygons. J. Math. Inequal. 12 (2018), no. 1, 23–29.
- [25] H.-N. Shi and J. Zhang, Compositions involving Schur harmonically convex functions. J. Comput. Anal. Appl. 22 (2017), no. 5, 907–922.
- [26] C. Stępniak, An effective characterization of Schur-convex functions with applications, *Journal of Convex Analysis*, 14 (2007), No. 1, 103–108,pp.
- [27] A. Taghavi, V. Darvish, H. M. Nazari and S. S. Dragomir, Hermite-Hadamard type inequalities for operator geometrically convex functions. *Monatsh. Math.* 181 (2016), no. 1, 187–203.
- [28] M. Vivas Cortez, H. Hernández and E. Jorge, Refinements for Hermite-Hadamard type inequalities for operator h-convex function. Appl. Math. Inf. Sci. 11 (2017), no. 5, 1299–1307.
- [29] M. Vivas Cortez, H. Hernández and E. Jorge, On some new generalized Hermite-Hadamard-Fejér inequalities for product of two operator h-convex functions. Appl. Math. Inf. Sci. 11 (2017), no. 4, 983–992.
- [30] S.-H. Wang, Hermite-Hadamard type inequalities for operator convex functions on the coordinates. J. Nonlinear Sci. Appl. 10 (2017), no. 3, 1116–1125
- [31] S.-H. Wang, New integral inequalities of Hermite-Hadamard type for operator m-convex and (α, m)-convex functions. J. Comput. Anal. Appl. 22 (2017), no. 4, 744–753.

¹Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au *URL*: http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-SRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA