OPERATOR SCHUR CONVEXITY OF SOME FUNCTIONS ASSOCIATED TO HERMITE-HADAMARD INEQUALITY

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract

A continuous function $f: I \times I \rightarrow \mathbb{R}$ is called operator Schur convex, if f is symmetric, namely $f(x, y)=f(y, x)$ for all $x, y \in I$ and $$
f(t A+(1-t) B, t B+(1-t) A) \leq f(A, B)
$$ in the operator order, for all $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$ and $t \in[0,1]$, where $\mathcal{S} \mathcal{A}_{I}(H)$ is the convex set of all selfadjoint operators on Hilbert space H with spectra in I.

In this paper we investigate the operator Schur convexity of some functions associated to the Hermite-Hadamard inequality for operator convex functions. Some particular examples of interest are also given.

1. Introduction

For any $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, let $x_{[1]} \geq \ldots \geq x_{[n]}$ denote the components of x in decreasing order, and let $x_{\downarrow}=\left(x_{[1]}, \ldots, x_{[n]}\right)$ denote the decreasing rearrangement of x. For $x, y \in \mathbb{R}^{n}, x \prec y$ if, by definition,

$$
\left\{\begin{array}{l}
\sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]}, k=1, \ldots, n-1 ; \\
\sum_{i=1}^{n} x_{[i]}=\sum_{i=1}^{n} y_{[i]}
\end{array}\right.
$$

When $x \prec y, x$ is said to be majorized by y (y majorizes x). This notation and terminology was introduced by Hardy, Littlewood and Pólya in 1934.

Functions that preserve the ordering of majorization are said to be Schur-convex, [21, p.80]. A real-valued function ϕ defined on a set $\mathcal{A} \subset \mathbb{R}^{n}$ is said to be Schurconvex on \mathcal{A} if

$$
\begin{equation*}
x \prec y \text { on } \mathcal{A} \Rightarrow \phi(x) \leq \phi(y) . \tag{1.1}
\end{equation*}
$$

If, in addition, $\phi(x)<\phi(y)$ whenever $x \prec y$ but x is not a permutation of y, then ϕ is said to be strictly Schur-convex on \mathcal{A}. If $\mathcal{A}=\mathbb{R}^{n}$, then ϕ is simply said to be Schur-convex or strictly Schur-convex.

For fundamental properties of Schur convexity see the monograph [21] and the references therein. For some recent results, see [5]-[13], [15], [22] and [24]-[26].

The following result is known in the literature as Schur-Ostrowski theorem [21, p. 84]:

Theorem 1. Let $I \subset \mathbb{R}$ be an open interval and let $\phi: I^{n} \rightarrow \mathbb{R}$ be continuously differentiable. Necessary and sufficient conditions for ϕ to be Schur-convex on I^{n}

[^0][^1]are
\[

$$
\begin{equation*}
\phi \text { is symmetric on } I^{n}, \tag{1.2}
\end{equation*}
$$

\]

and for all $i \neq j$, with $i, j \in\{1, \ldots, n\}$,

$$
\begin{equation*}
\left(z_{i}-z_{j}\right)\left[\frac{\partial \phi(z)}{\partial x_{i}}-\frac{\partial \phi(z)}{\partial x_{j}}\right] \geq 0 \text { for all } z \in I^{n} \tag{1.3}
\end{equation*}
$$

where $\frac{\partial \phi}{\partial x_{k}}$ denotes the partial derivative of ϕ with respect to its k-th argument.
Let $\mathcal{A} \subset \mathbb{R}^{n}$ be a set with the following properties:
(i) \mathcal{A} is symmetric in the sense that $x \in \mathcal{A} \Rightarrow x \Pi \in \mathcal{A}$ for all permutations Π of the coordinates.
(ii) \mathcal{A} is convex and has a nonempty interior.

We have the following result, [21, p. 85].
Theorem 2. If ϕ is continuously differentiable on the interior of \mathcal{A} and continuous on \mathcal{A}, then necessary and sufficient conditions for ϕ to be Schur-convex on \mathcal{A} are

$$
\begin{equation*}
\phi \text { is symmetric on } \mathcal{A} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(z_{1}-z_{2}\right)\left[\frac{\partial \phi(z)}{\partial x_{1}}-\frac{\partial \phi(z)}{\partial x_{2}}\right] \geq 0 \text { for all } z \in \mathcal{A} \tag{1.5}
\end{equation*}
$$

Another interesting characterization of Schur convex functions ϕ on \mathcal{A} was obtained by C. Stępniak in [26]:

Theorem 3. Let ϕ be any function defined on a symmetric convex set \mathcal{A} in \mathbb{R}^{n}. Then the function ϕ is Schur convex on \mathcal{A} if and only if

$$
\begin{equation*}
\phi\left(x_{1}, \ldots, x_{i}, \ldots, x_{j}, \ldots, x_{n}\right)=\phi\left(x_{1}, \ldots, x_{j}, \ldots, x_{i}, \ldots, x_{n}\right) \tag{1.6}
\end{equation*}
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{A}$ and $1 \leq i<j \leq n$ and

$$
\begin{equation*}
\phi\left(\lambda x_{1}+(1-\lambda) x_{2}, \lambda x_{2}+(1-\lambda) x_{1}, x_{3}, \ldots, x_{n}\right) \leq \phi\left(x_{1}, \ldots, x_{n}\right) \tag{1.7}
\end{equation*}
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{A}$ and for all $\lambda \in(0,1)$,
It is well known that any symmetric convex function defined on a symmetric convex set \mathcal{A} is Schur convex, [21, p. 97]. If the function $\phi: \mathcal{A} \rightarrow \mathbb{R}$ is symmetric and quasi-convex, namely

$$
\phi(\alpha u+(1-\alpha) v) \leq \max \{\phi(u), \phi(v)\}
$$

for all $\alpha \in[0,1]$ and $u, v \in \mathcal{A}$, a symmetric convex set, then ϕ is Schur convex on \mathcal{A} [21, p. 98].

In order to extend the above concept to continuous functions of selfadjoint operators on complex Hilbert space we need some preparations as follow.

A real valued continuous function f on an interval I is said to be operator convex (operator concave) on I if

$$
\begin{equation*}
f((1-\lambda) A+\lambda B) \leq(\geq)(1-\lambda) f(A)+\lambda f(B) \tag{1.8}
\end{equation*}
$$

in the operator order, for all $\lambda \in[0,1]$ and for every selfadjoint operator A and B on a Hilbert space H whose spectra are contained in I. Notice that a function f is operator concave if $-f$ is operator convex.

A real valued continuous function f on an interval I is said to be operator monotone if it is monotone with respect to the operator order, i.e., $A \leq B$ with $\operatorname{Sp}(A), \operatorname{Sp}(B) \subset I$ imply $f(A) \leq f(B)$.

For some fundamental results on operator convex (operator concave) and operator monotone functions, see [16] and the references therein.

As examples of such functions, we note that $f(t)=t^{r}$ is operator monotone on $[0, \infty)$ if and only if $0 \leq r \leq 1$. The function $f(t)=t^{r}$ is operator convex on $(0, \infty)$ if either $1 \leq r \leq 2$ or $-1 \leq r \leq 0$ and is operator concave on $(0, \infty)$ if $0 \leq r \leq 1$. The logarithmic function $f(t)=\ln t$ is operator monotone and operator concave on $(0, \infty)$. The entropy function $f(t)=-t \ln t$ is operator concave on $(0, \infty)$. The exponential function $f(t)=e^{t}$ is neither operator convex nor operator monotone.

In [7] we obtained among others the following Hermite-Hadamard type inequalities for operator convex functions $f: I \rightarrow \mathbb{R}$

$$
\begin{equation*}
f\left(\frac{A+B}{2}\right) \leq \int_{0}^{1} f((1-s) A+s B) d s \leq \frac{f(A)+f(B)}{2} \tag{1.9}
\end{equation*}
$$

where A, B are selfadjoint operators with spectra included in I.
If $p:[0,1] \rightarrow[0, \infty)$ is symmetric in the sense that $p(1-t)=p(t)$ for all $t \in[0,1], p$ is Lebesgue integrable with $\int_{0}^{1} p(s) d s>0$ and $f: I \rightarrow \mathbb{R}$ is operator convex function, then we also have the weighted operator inequality (see for instance [12])

$$
\begin{align*}
f\left(\frac{A+B}{2}\right) & \leq \frac{1}{\int_{0}^{1} p(s) d s} \int_{0}^{1} f((1-s) A+s B) p(s) d s \tag{1.10}\\
& \leq \frac{f(A)+f(B)}{2}
\end{align*}
$$

where A, B are selfadjoint operators with spectra included in I.
For recent inequalities for operator convex functions see [1], [3], [6], [7], [8], [10][20] and [27]-[31].

Let I_{1}, \ldots, I_{k} be intervals from \mathbb{R} and let $f: I_{1} \times \ldots \times I_{k} \rightarrow \mathbb{R}$ be an essentially bounded real function defined on the product of the intervals. Let $A=\left(A_{1}, \ldots, A_{n}\right)$ be a k-tuple of bounded selfadjoint operators on Hilbert spaces H_{1}, \ldots, H_{k} such that the spectrum of A_{i} is contained in I_{i} for $i=1, \ldots, k$. We say that such a k-tuple is in the domain of f. If

$$
A_{i}=\int_{I_{i}} \lambda_{i} E_{i}\left(d \lambda_{i}\right)
$$

is the spectral resolution of A_{i} for $i=1, \ldots, k$; by following [2] we define

$$
\begin{equation*}
f(A)=f\left(A_{1}, \ldots, A_{n}\right)=\int_{I_{1} \times \ldots \times I_{k}} f\left(\lambda_{1}, \ldots, \lambda_{1}\right) E_{1}\left(d \lambda_{1}\right) \otimes \ldots \otimes E_{k}\left(d \lambda_{k}\right) \tag{1.11}
\end{equation*}
$$

as a bounded selfadjoint operator on $H_{1} \otimes \ldots \otimes H_{k}$.
The above function $f: I_{1} \times \ldots \times I_{k} \rightarrow \mathbb{R}$ is said to be operator convex, if the operator inequality

$$
\begin{equation*}
f((1-\alpha) A+\alpha B) \leq(1-\alpha) f(A)+\alpha f(B) \tag{1.12}
\end{equation*}
$$

holds for all $\alpha \in[0,1]$, for any Hilbert spaces H_{1}, \ldots, H_{k} and any k-tuples of of selfadjoint operators $A=\left(A_{1}, \ldots, A_{n}\right), B=\left(B_{1}, \ldots, B_{n}\right)$ on $H_{1} \otimes \ldots \otimes H_{k}$ contained in the domain of f. The definition is meaningful since also the spectrum of αA_{i} $+(1-\alpha) B_{i}$ is contained in the interval I_{i} for each $i=1, \ldots, k$.

In the following we restrict ourself to the case $k=1, I_{1}=I_{2}=I$ and $H_{1}=$ $H_{1}=H$. The operator convexity of $f: I \times I \rightarrow \mathbb{R}$ in this case means, for instance,
(1.13) $f\left((1-\alpha) A_{1}+\alpha B_{1},(1-\alpha) A_{2}+\alpha B_{2}\right) \leq(1-\alpha) f\left(A_{1}, A_{2}\right)+\alpha f\left(B_{1}, B_{2}\right)$ or, equivalently,

$$
\begin{equation*}
f\left((1-\alpha)\left(A_{1}, A_{2}\right)+\alpha\left(B_{1}, B_{2}\right)\right) \leq(1-\alpha) f\left(A_{1}, A_{2}\right)+\alpha f\left(B_{1}, B_{2}\right) \tag{1.14}
\end{equation*}
$$

for all selfadjoint operators $A_{1}, A_{2}, B_{1}, B_{2}$ with spectra in I and for all $\alpha \in[0,1]$.
In this paper we investigate the operator Schur convexity of some functions associated to the Hermite-Hadamard inequality for operator convex functions. Some particular examples of interest are also given.

2. Operator Schur Convexity of Some Functions

For I an interval, we consider the set $\mathcal{S} \mathcal{A}_{I}(H)$ of all selfadjoint operators with spectra in $I . \mathcal{S} \mathcal{A}_{I}(H)$ is a convex set in $\mathcal{B}(H)$ since for A, B selfadjoints with $\operatorname{Sp}(A), \operatorname{Sp}(B) \subset I, \alpha A+\beta B$ is selfadjoint with $\operatorname{Sp}(\alpha A+\beta B) \subset I$, where $\alpha, \beta \geq 0$ and $\alpha+\beta=1$. Motivated by the Steppniak's result for functions of real variables, we can introduce the following concept:

Definition 1. We say that the function $f: I \times I \rightarrow \mathbb{R}$ is called operator Schur convex, if f is symmetric, namely $f(x, y)=f(y, x)$ for all $x, y \in I$ and

$$
f(t A+(1-t) B, t B+(1-t) A) \leq f(A, B)
$$

or, equivalently,

$$
f(t(A, B)+(1-t)(B, A)) \leq f(A, B)
$$

in the operator order, for all $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$ and $t \in[0,1]$. The function f is called operator Schur concave if $-f$ is operator Schur convex.

For $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$, let us define the following auxiliary function $\varphi_{(A, B)}:[0,1] \rightarrow \mathcal{S} \mathcal{A}(H \otimes H)$, the set of all selfadjoint operators on $H \otimes H$, by

$$
\begin{align*}
\varphi_{f,(A, B)}(t) & =f(t(A, B)+(1-t)(B, A)) \tag{2.1}\\
& =f(t A+(1-t) B, t B+(1-t) A)
\end{align*}
$$

A function $f: J \rightarrow \mathcal{S} \mathcal{A}(K)$ defined of an interval of real numbers J with self adjoint operator values on a Hilbert space K is called operator monotone increasing on J if

$$
f(t) \leq f(s) \text { in the operator order }
$$

for all $s, t \in J$ with $t<s$.
The following characterization of operator Schur convexity holds, see the recent paper [11]:

Theorem 4. Let $f: I \times I \rightarrow \mathbb{R}$ be a continuous symmetric function on $I \times I$. Then f is operator Schur convex on $I \times I$ if and only if for all arbitrarily fixed $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$ the function $\varphi_{f,(A, B)}$ is operator monotone decreasing on $[0,1 / 2)$, operator monotone increasing on $(1 / 2,1]$, and $\varphi_{f,(A, B)}$ has a global minimum at $1 / 2$ in the operator order.

Now, for an operator convex function $f: I \rightarrow \mathbb{R}$ and a $t \in[0,1]$ define the functions $M_{t}, T_{t}: I^{2} \rightarrow \mathbb{R}$

$$
M_{t}(x, y):=\frac{1}{2}[f((1-t) x+t y)+f((1-t) y+t x)]-f\left(\frac{x+y}{2}\right) \geq 0
$$

and

$$
T_{t}(x, y):=\frac{f(x)+f(y)}{2}-\frac{1}{2}[f((1-t) x+t y)+f((1-t) y+t x)] \geq 0
$$

The positivity of these functions follows by the fact that f is convex on I.
We have the following result concerning the Schur convexity of M_{t}.
Theorem 5. Let $f: I \rightarrow \mathbb{R}$ be an operator convex function on the interval I. For all $t \in[0,1], t \neq \frac{1}{2}$ the function M_{t} is operator Schur convex on I^{2}.

Proof. Let $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$ and $s \in[0,1]$. Then

$$
\begin{aligned}
& M_{t}(s(A, B)+(1-s)(B, A)) \\
& =M_{t}(s A+(1-s) B, s B+(1-s) A) \\
& =\frac{1}{2} f((1-t)(s A+(1-s) B)+t(s B+(1-s) A)) \\
& +\frac{1}{2} f((1-t)(s B+(1-s) A)+t(s A+(1-s) B)) \\
& -f\left(\frac{s A+(1-s) B+s B+(1-s) A}{2}\right) \\
& =\frac{1}{2} f(s((1-t) A+t B)+(1-s)((1-t) B+t A)) \\
& +\frac{1}{2} f(s((1-t) B+t A)+(1-s)((1-t) A+t B))-f\left(\frac{A+B}{2}\right) .
\end{aligned}
$$

By the operator convexity of f we have

$$
\begin{aligned}
& f(s((1-t) A+t B)+(1-s)((1-t) B+t A)) \\
& \leq s f((1-t) A+t B)+(1-s) f((1-t) B+t A)
\end{aligned}
$$

and

$$
\begin{aligned}
& f(s((1-t) B+t A)+(1-s)((1-t) A+t B)) \\
& \leq s f((1-t) B+t A)+(1-s) f((1-t) A+t B)
\end{aligned}
$$

for all $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$ and $s \in[0,1]$.
If we add these two inequalities and divide by 2 we get

$$
\begin{aligned}
& \frac{1}{2} f(s((1-t) A+t B)+(1-s)((1-t) B+t A)) \\
& +\frac{1}{2} f(s((1-t) B+t A)+(1-s)((1-t) A+t B)) \\
& \leq \frac{1}{2}[f((1-t) B+t A)+f((1-t) A+t B)]
\end{aligned}
$$

for all $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$ and $s \in[0,1]$.

Therefore

$$
\begin{aligned}
& M_{t}(s(A, B)+(1-s)(B, A)) \\
& \leq \frac{1}{2}[f((1-t) B+t A)+f((1-t) A+t B)]-f\left(\frac{A+B}{2}\right) \\
& =M_{t}(A, B)
\end{aligned}
$$

for all $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$ and $s \in[0,1]$, which shows that M_{t} is Schur convex on I^{2}.

For a convex function $f: I \rightarrow \mathbb{R}$ and $q:[0,1] \rightarrow[0, \infty)$ a Lebesgue integrable function we consider the function $M_{\breve{q}}: I^{2} \rightarrow[0, \infty)$ defined by

$$
\begin{aligned}
M_{\breve{q}}(x, y) & :=\int_{0}^{1} M_{t}(x, y) q(t) d t \\
& =\frac{1}{2} \int_{0}^{1}[f((1-t) x+t y)+f((1-t) y+t x)] q(t) d t \\
& -f\left(\frac{x+y}{2}\right) \int_{0}^{1} q(t) d t \\
& =\int_{0}^{1} f((1-t) x+t y) \breve{q}(t) d t-f\left(\frac{x+y}{2}\right) \int_{0}^{1} q(t) d t
\end{aligned}
$$

where

$$
\breve{q}(t):=\frac{1}{2}[q(t)+q(1-t)], t \in[0,1] .
$$

Corollary 1. Let $f: I \rightarrow \mathbb{R}$ be an operator convex function on I and $q:[0,1] \rightarrow$ $[0, \infty)$ a Lebesgue integrable function on $[0,1]$, then $M_{\breve{q}}$ is operator Schur convex on I^{2}.

Proof. Let $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$ and $s \in[0,1]$. By the operator Schur convexity of M_{t} for all $t \in[0,1]$, we have

$$
\begin{aligned}
M_{\breve{q}}(s(A, B)+(1-s)(B, A)) & =\int_{0}^{1} M_{t}(s(A, B)+(1-s)(B, A)) q(t) d t \\
& \leq \int_{0}^{1} M_{t}(A, B) q(t) d t=M_{\breve{q}}(A, B)
\end{aligned}
$$

which proves the Schur convexity of $M_{\breve{q}}$.
Corollary 2. Let $f: I \rightarrow \mathbb{R}$ be an operator convex function on I and $p:[0,1] \rightarrow$ $[0, \infty)$ a Lebesgue integrable symmetric function on $[0,1]$, then M_{p} is operator Schur convex on I^{2}.

We denote by $[A, B]$ the closed segment defined by $\{(1-s) A+s B, s \in[0,1]\}$. We also define the functional

$$
\Psi_{f, t}(A, B):=(1-t) f(A)+t f(B)-f((1-t) A+t B) \geq 0
$$

where $A, B \in I$ and $t \in[0,1]$.
In [7] we obtained among others the following result :

Lemma 1. Let $f: I \rightarrow \mathbb{R}$ be an operator convex function on the interval I. Then for each $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$ and $C \in[A, B]$ we have

$$
\begin{equation*}
(0 \leq) \Psi_{f, t}(A, C)+\Psi_{f, t}(C, B) \leq \Psi_{f, t}(A, B) \tag{2.2}
\end{equation*}
$$

for each $t \in[0,1]$, i.e., the functional $\Psi_{f, t}(\cdot, \cdot)$ is superadditive as a function of interval.

If $C, D \in[A, B]$, then

$$
\begin{equation*}
(0 \leq) \Psi_{f, t}(C, D) \leq \Psi_{f, t}(A, B) \tag{2.3}
\end{equation*}
$$

for each $t \in[0,1]$, i.e., the functional $\Psi_{f}(\cdot, \cdot)$ is nondecreasing as a function of interval.

By utilising this lemma we can prove the following result as well:
Theorem 6. Let $f: I \rightarrow \mathbb{R}$ be an operator convex function on the interval I in \mathbb{R}. For all $t \in(0,1)$, the function T_{t} is Schur convex on I^{2}.

Proof. Let $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$ with $A \neq B$ and $s \in[0,1]$. Then

$$
\begin{aligned}
& T_{t}(s(A, B)+(1-s)(B, A)) \\
& =T_{t}(s A+(1-s) B, s B+(1-s) A) \\
& =\frac{f(s A+(1-s) B)+f(s B+(1-s) A)}{2} \\
& -\frac{1}{2} f((1-t)(s A+(1-s) B)+t(s B+(1-s) A)) \\
& -\frac{1}{2} f((1-t)(s B+(1-s) A)+t(s A+(1-s) B)) .
\end{aligned}
$$

From (2.3) we have for $C, D \in[A, B]$

$$
\Psi_{f, t}(C, D) \leq \Psi_{f, t}(A, B) \text { and } \Psi_{f, 1-t}(C, D) \leq \Psi_{f, 1-t}(A, B)
$$

which, by addition gives that

$$
\Psi_{f, t}(C, D)+\Psi_{f, 1-t}(C, D) \leq \Psi_{f, t}(A, B)+\Psi_{f, 1-t}(A, B)
$$

namely

$$
\begin{aligned}
& (1-t) f(C)+t f(D)-f((1-t) C+t D) \\
& +t f(C)+(1-t) f(D)-f(t C+(1-t) D) \\
& \leq(1-t) f(A)+t f(B)-f((1-t) A+t B) \\
& +t f(A)+(1-t) f(B)-f(t A+(1-t) B)
\end{aligned}
$$

which is equivalent to

$$
\begin{align*}
& f(C)+f(D)-f((1-t) C+t D)-f(t C+(1-t) u D) \tag{2.4}\\
& \leq f(A)+f(B)-f((1-t) A+t B)-f(t A+(1-t) B)
\end{align*}
$$

for all $C, D \in[A, B]$.

If we take $C=s A+(1-s) B$ and $D=s B+(1-s) A$, with $s \in[0,1]$ then C, $D \in[A, B]$ and by (2.4) we get

$$
\begin{aligned}
& f(s A+(1-s) B)+f(s B+(1-s) A) \\
& -f((1-t)(s A+(1-s) B)+t(s B+(1-s) A)) \\
& -f((1-t)(s B+(1-s) A)+t(s A+(1-s) B)) \\
& \leq f(A)+f(B)-f((1-t) A+t B)-f(t A+(1-t) B)
\end{aligned}
$$

This inequality is equivalent to

$$
T_{t}(s(A, B)+(1-s)(B, A)) \leq T_{t}(A, B)
$$

for all $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$ and $s \in[0,1]$. This proves the operator Schur convexity of T_{t}.

Remark 1. Since both M_{t} and T_{t} are operator Schur convex when f is operator convex on I it follows that the sum, namely the Jensen's functional

$$
J(A, B):=\frac{f(A)+f(B)}{2}-f\left(\frac{A+B}{2}\right)
$$

is also operator Schur convex on I^{2}.
For a convex function $f: I \rightarrow \mathbb{R}$ and $q:[0,1] \rightarrow[0, \infty)$ a Lebesgue integrable function we consider the function $T_{\breve{q}}: I^{2} \rightarrow[0, \infty)$ defined by

$$
\begin{aligned}
T_{\breve{q}}(x, y) & :=\int_{0}^{1} T_{t}(x, y) q(t) d t \\
& =\frac{f(x)+f(y)}{2} \int_{0}^{1} q(t) d t \\
& -\frac{1}{2} \int_{0}^{1}[f((1-t) x+t y)+f((1-t) y+t x)] q(t) d t \\
& =\frac{f(x)+f(y)}{2} \int_{0}^{1} q(t) d t-\int_{0}^{1} f((1-t) x+t y) \breve{q}(t) d t
\end{aligned}
$$

Corollary 3. Let $f: I \rightarrow \mathbb{R}$ be an operator convex function on I and $q:[0,1] \rightarrow$ $[0, \infty)$ a Lebesgue integrable function on $[0,1]$, then $T_{\breve{q}}$ is operator Schur convex on I^{2}. In particular, if $p:[0,1] \rightarrow[0, \infty)$ is a Lebesgue integrable symmetric function on $[0,1]$, then T_{p} is operator Schur convex on I^{2}.

If we take $p \equiv 1$ and consider the functions

$$
M(x, y):=\int_{0}^{1} f((1-t) x+t y) d t-f\left(\frac{x+y}{2}\right)
$$

and

$$
T(x, y):=\frac{f(x)+f(y)}{2}-\int_{0}^{1} f((1-t) y+t y) d t
$$

then we conclude that M and T are operator Schur convex functions on I^{2} if f is operator convex on I.

Also, if we consider the symmetric weights $p_{1}(t)=\left|t-\frac{1}{2}\right|$ and $p_{2}(t)=t(1-t)$, $t \in[0,1]$, then

$$
M_{\left|-\frac{1}{2}\right|}(x, y):=\int_{0}^{1} f((1-t) x+t y)\left|t-\frac{1}{2}\right| d t-\frac{1}{4} f\left(\frac{x+y}{2}\right)
$$

and

$$
M_{\cdot(1-\cdot)}(x, y):=\int_{0}^{1} f((1-t) x+t y) t(1-t) d t-\frac{1}{6} f\left(\frac{A+B}{2}\right)
$$

are Schur convex on I^{2} if f is convex on I.
The trapezoid functions

$$
T_{\left|\cdot-\frac{1}{2}\right|}(x, y):=\frac{f(x)+f(y)}{8}-\int_{0}^{1} f((1-t) x+t y)\left|t-\frac{1}{2}\right| d t
$$

and

$$
T_{\cdot(1-\cdot)}(x, y):=\frac{f(x)+f(y)}{12}-\int_{0}^{1} f((1-t) x+t y) t(1-t) d t
$$

are also operator Schur convex on I^{2} if f is operator convex on I.

3. Some Examples

Assume that f is a continuous function on the interval I and $x, y \in I$. Also, let $p:[0,1] \rightarrow[0, \infty)$ be a Lebesgue integrable symmetric function on $[0,1]$. If we consider the functions

$$
M_{p}(x, y):=\int_{0}^{1} f((1-t) x+t y) p(t) d t-f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) d t
$$

and

$$
T_{p}(x, y):=\frac{f(x)+f(y)}{2} \int_{0}^{1} p(t) d t-\int_{0}^{1} f((1-t) x+t y) p(t) d t
$$

then

$$
M_{p}(x, x)=T_{p}(x, x)=0 \text { for } x \in I
$$

If $x \neq y$, then by the change of the variable $u=(1-t) x+t y$, we have $d u=$ $(y-x) d t, t=\frac{u-x}{y-x}$, and we can consider the functions of two variables M_{p}, T_{p} : $I^{2} \rightarrow \mathbb{R}$ defined by

$$
M_{p}(x, y):=\left\{\begin{array}{l}
\frac{1}{y-x} \int_{x}^{y} f(u) p\left(\frac{u-x}{y-x}\right) d u-f\left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) d t \tag{3.1}\\
(x, y) \in I^{2}, x \neq y \\
0, \quad(x, y) \in I^{2}, x \neq y
\end{array}\right.
$$

and

$$
T_{p}(x, y):=\left\{\begin{array}{l}
\frac{f(x)+f(y)}{2} \int_{0}^{1} p(t) d t-\frac{1}{y-x} \int_{x}^{y} f(u) p\left(\frac{u-x}{y-x}\right) d u \tag{3.2}\\
(x, y) \in I^{2}, x \neq y \\
0, \quad(x, y) \in I^{2}, x \neq y
\end{array}\right.
$$

In particular, we have the functions $M, T: I^{2} \rightarrow \mathbb{R}$ introduced in [4] and defined by

$$
M(x, y):=\left\{\begin{array}{l}
\frac{1}{y-x} \int_{x}^{y} f(u) d u-f\left(\frac{x+y}{2}\right), \quad(x, y) \in I^{2}, x \neq y \\
0, \quad(x, y) \in I^{2}, x \neq y
\end{array}\right.
$$

and

$$
T(x, y):=\left\{\begin{array}{l}
\frac{f(x)+f(y)}{2}-\frac{1}{y-x} \int_{x}^{y} f(u) d u, \quad(x, y) \in I^{2}, x \neq y \\
0, \quad(x, y) \in I^{2}, x \neq y
\end{array}\right.
$$

We can also consider the weighted functions defined on I^{2}

$$
\begin{aligned}
& M_{\left|\cdot-\frac{1}{2}\right|}(x, y):=\left\{\begin{array}{l}
\frac{1}{(y-x)^{2}} \int_{x}^{y} f(u)\left|u-\frac{x+y}{2}\right| d u-\frac{1}{4} f\left(\frac{x+y}{2}\right) \\
(x, y) \in I^{2}, x \neq y, \\
0,(x, y) \in I^{2}, x \neq y,
\end{array}\right. \\
& T_{\left|\cdot-\frac{1}{2}\right|}(x, y):=\left\{\begin{array}{l}
\frac{f(x)+f(y)}{8}-\frac{1}{(y-x)^{2}} \int_{x}^{y} f(u)\left|u-\frac{x+y}{2}\right| d u, \\
0,(x, y) \in I^{2}, x \neq y,
\end{array}\right. \\
& M_{\cdot(1-\cdot)}(x, y):=\left\{\begin{array}{l}
\frac{1}{(y-x)^{3}} \int_{x}^{y} f(u)(u-x)(y-u) d u-\frac{1}{6} f\left(\frac{x+y}{2}\right), \\
(x, y) \in I^{2}, x \neq y, \\
0,(x, y) \in I^{2}, x \neq y,
\end{array}\right.
\end{aligned}
$$

and

$$
T_{\cdot(1-\cdot)}(x, y):=\left\{\begin{array}{l}
\frac{f(x)+f(y)}{12}-\frac{1}{(y-x)^{3}} \int_{x}^{y} f(u)(u-x)(y-u) d u \\
(x, y) \in I^{2}, x \neq y \\
0, \quad(x, y) \in I^{2}, x \neq y
\end{array}\right.
$$

By utilising Corollary 2 and Corollary 3 we can state the following Schur convexity result:

Proposition 1. Assume that f is an operator convex function on the interval I and let $p:[0,1] \rightarrow[0, \infty)$ be a Lebesgue integrable symmetric function on $[0,1]$. Then the functions M_{p} and T_{p} are operator Schur convex on I^{2}.

Since the function $f(t)=t^{r}$ is operator convex on $(0, \infty)$ if either $1 \leq r \leq 2$ or $-1 \leq r \leq 0$ and is operator concave on $(0, \infty)$ if $0 \leq r \leq 1$, hence for $p:[0,1] \rightarrow$ $[0, \infty)$ a Lebesgue integrable symmetric function on $[0,1]$,

$$
M_{p, r}(x, y):=\left\{\begin{array}{l}
\frac{1}{y-x} \int_{x}^{y} u^{r} p\left(\frac{u-x}{y-x}\right) d u-\left(\frac{x+y}{2}\right)^{r} \int_{0}^{1} p(t) d t \tag{3.3}\\
(x, y) \in(0, \infty) \times(0, \infty), x \neq y \\
0, \quad(x, y) \in(0, \infty) \times(0, \infty), x \neq y
\end{array}\right.
$$

and

$$
T_{p, r}(x, y):=\left\{\begin{array}{l}
\frac{x^{r}+y^{r}}{2} \int_{0}^{1} p(t) d t-\frac{1}{y-x} \int_{x}^{y} u^{r} p\left(\frac{u-x}{y-x}\right) d u \tag{3.4}\\
(x, y) \in(0, \infty) \times(0, \infty), x \neq y \\
0, \quad(x, y) \in(0, \infty) \times(0, \infty), x \neq y
\end{array}\right.
$$

are operator Schur convex on $(0, \infty) \times(0, \infty)$ if either $1 \leq r \leq 2$ or $-1 \leq r \leq 0$ and are operator Schur concave on $(0, \infty) \times(0, \infty)$ if $0 \leq r \leq 1$.

In particular,

$$
\begin{align*}
& M_{r}(x, y) \tag{3.5}\\
& :=\left\{\begin{array}{l}
\frac{y^{r+1}-y^{r+1}}{(r+1)(y-x)}-\left(\frac{x+y}{2}\right)^{r}, \quad(x, y) \in(0, \infty) \times(0, \infty), x \neq y, \\
0, \quad(x, y) \in(0, \infty) \times(0, \infty), x \neq y
\end{array}\right.
\end{align*}
$$

and

$$
\begin{align*}
& T_{r}(x, y) \tag{3.6}\\
& :=\left\{\begin{array}{l}
\frac{x^{r}+y^{r}}{2}-\frac{y^{r+1}-y^{r+1}}{(r+1)(y-x)}, \quad(x, y) \in(0, \infty) \times(0, \infty), x \neq y \\
0, \quad(x, y) \in(0, \infty) \times(0, \infty), x \neq y
\end{array}\right.
\end{align*}
$$

are operator Schur convex on $(0, \infty) \times(0, \infty)$ if either $1 \leq r \leq 2$ or $-1<r \leq 0$ and are operator Schur concave on $(0, \infty) \times(0, \infty)$ if $0 \leq r \leq 1$.

For $r=-1$, if we put

$$
\begin{align*}
& M_{-1}(x, y) \tag{3.7}\\
& :=\left\{\begin{array}{l}
\frac{\ln y-\ln x}{y-x}-\left(\frac{x+y}{2}\right)^{-1}, \quad(x, y) \in(0, \infty) \times(0, \infty), x \neq y \\
0, \quad(x, y) \in(0, \infty) \times(0, \infty), x=y
\end{array}\right.
\end{align*}
$$

and

$$
\begin{align*}
& T_{-1}(x, y) \tag{3.8}\\
& :=\left\{\begin{array}{l}
\frac{x^{-1}+y^{-1}}{2}-\frac{\ln y-\ln x}{y-x}, \quad(x, y) \in(0, \infty) \times(0, \infty), x \neq y \\
0, \quad(x, y) \in(0, \infty) \times(0, \infty), x \neq y
\end{array}\right.
\end{align*}
$$

then we conclude that M_{-1} and T_{-1} are operator Schur convex on $(0, \infty) \times(0, \infty)$.
The logarithmic function $f(t)=\ln t$ is operator concave on $(0, \infty)$. For p : $[0,1] \rightarrow[0, \infty)$ a Lebesgue integrable symmetric function on $[0,1]$,

$$
M_{p, \ln }(x, y):=\left\{\begin{array}{l}
\frac{1}{y-x} \int_{x}^{y} p\left(\frac{u-x}{y-x}\right) \ln u d u-\ln \left(\frac{x+y}{2}\right) \int_{0}^{1} p(t) d t \tag{3.9}\\
(x, y) \in(0, \infty) \times(0, \infty), x \neq y \\
0, \quad(x, y) \in(0, \infty) \times(0, \infty), x \neq y
\end{array}\right.
$$

and

$$
T_{p, \ln }(x, y):=\left\{\begin{array}{l}
\frac{\ln x+\ln y}{2} \int_{0}^{1} p(t) d t-\frac{1}{y-x} \int_{x}^{y} p\left(\frac{u-x}{y-x}\right) \ln u d u \tag{3.10}\\
(x, y) \in(0, \infty) \times(0, \infty), x \neq y \\
0, \quad(x, y) \in(0, \infty) \times(0, \infty), x \neq y
\end{array}\right.
$$

are operator Schur concave on $(0, \infty) \times(0, \infty)$.
In particular,

$$
M_{\ln }(x, y):=\left\{\begin{array}{l}
\frac{y \ln y-x \ln x}{y-x}-1-\ln \left(\frac{x+y}{2}\right) \tag{3.11}\\
(x, y) \in(0, \infty) \times(0, \infty), x \neq y \\
0, \quad(x, y) \in(0, \infty) \times(0, \infty), x \neq y
\end{array}\right.
$$

and

$$
\begin{align*}
T_{\ln }(x, y) \quad & :\left\{\begin{array}{l}
\frac{\ln x+\ln y}{2}-\frac{y \ln y-x \ln x}{y-x}+1 \\
(x, y) \in(0, \infty) \times(0, \infty), x \neq y \\
0,(x, y) \in(0, \infty) \times(0, \infty), x \neq y
\end{array}\right. \tag{3.12}\\
= & \left\{\begin{array}{l}
1-\frac{x+y}{2} \frac{\ln y-\ln x}{y-x}, \\
(x, y) \in(0, \infty) \times(0, \infty), x \neq y \\
0,(x, y) \in(0, \infty) \times(0, \infty), x \neq y
\end{array}\right. \tag{3.13}
\end{align*}
$$

are operator Schur concave on $(0, \infty) \times(0, \infty)$.

References

[1] R. P. Agarwal and S. S. Dragomir, A survey of Jensen type inequalities for functions of selfadjoint operators in Hilbert spaces. Comput. Math. Appl. 59 (2010), no. 12, 3785-3812.
[2] H. Araki and F. Hansen, Jensen's operator inequality for functions of several variables, Proc. Amer. Math. Soc. 128 (2000), Number 7, 2075-2084.
[3] V. Bacak, T. Vildan and R. Türkmen, Refinements of Hermite-Hadamard type inequalities for operator convex functions. J. Inequal. Appl. 2013, 2013:262, 10 pp.
[4] Y. Chu, G. Wang, X. Zhang, Schur convexity and Hadamard's inequality, Math. Inequal. Appl. 13 (4) (2010) 725-731.
[5] V. Čuljak, A remark on Schur-convexity of the mean of a convex function. J. Math. Inequal. 9 (2015), No. 4, 1133-1142.
[6] V. Darvish, S. S. Dragomir, H. M. Nazari and A. Taghavi, Some inequalities associated with the Hermite-Hadamard inequalities for operator h-convex functions. Acta Comment. Univ. Tartu. Math. 21 (2017), no. 2, 287-297.
[7] S. S. Dragomir, Hermite-Hadamard's type inequalities for operator convex functions. Appl. Math. Comput. 218 (2011), no. 3, 766-772.
[8] S. S. Dragomir, Operator Inequalities of the Jensen, Čebyšev and Grüss Type. Springer Briefs in Mathematics. Springer, New York, 2012. xii+121 pp. ISBN: 978-1-4614-1520-6.
[9] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results. Aust. J. Math. Anal. Appl. 14 (2017), No. 1, Art. 1, 283 pp. [Online https://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P1.tex].
[10] S. S. Dragomir, Some Hermite-Hadamard type inequalities for operator convex functions and positive maps. Spec. Matrices 7 (2019), 38-51. Preprint RGMIA Res. Rep. Coll. 19 (2016), Art. 80. [Online http://rgmia.org/papers/v19/v19a80.pdf].
[11] S. S. Dragomir, Operator Schur convexity and some integral inequalities, Preprint RGMIA Res. Rep. Coll. 22 (2019), Art.
[12] S. S. Dragomir, Some Hermite-Hadamard type inequalities via operator convex functions of two variables, Preprint RGMIA Res. Rep. Coll. 22 (2019), Art. .
[13] S. S. Dragomir and K. Nikodem, Functions generating (m, M, Ψ)-Schur-convex sums. Aequationes Math. 93 (2019), No. 1, 79-90.
[14] S. S. Dragomir and C. E. M. Pearce, Selected Topics on HermiteHadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online https://rgmia.org/monographs/hermite_hadamard.html].
[15] N. Elezović and J. Pečarić, A note on Schur convex fuctions, Rocky Mountain J. Math. 30 (2000), No. 3, 853-956.
[16] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
[17] A. G. Ghazanfari, The Hermite-Hadamard type inequalities for operator s-convex functions. J. Adv. Res. Pure Math. 6 (2014), no. 3, 52-61.
[18] A. G. Ghazanfari, Hermite-Hadamard type inequalities for functions whose derivatives are operator convex. Complex Anal. Oper. Theory 10 (2016), no. 8, 1695-1703.
[19] J. Han and J. Shi, Refinements of Hermite-Hadamard inequality for operator convex function. J. Nonlinear Sci. Appl. 10 (2017), no. 11, 6035-6041.
[20] B. Li, Refinements of Hermite-Hadamard's type inequalities for operator convex functions. Int. J. Contemp. Math. Sci. 8 (2013), no. 9-12, 463-467.
[21] A. W. Marshall, I. Olkin and B. C. Arnold, Inequalities: Theory of Majorization and Its Applications, Second Edition, Springer New York Dordrecht Heidelberg London, 2011.
[22] K. Nikodem, T. Rajba and S. Wąsowicz, Functions generating strongly Schur-convex sums. Inequalities and applications 2010, 175-182, Internat. Ser. Numer. Math., 161, Birkhäuser/Springer, Basel, 2012.
[23] A. M. Ostrowski, On an integral inequality, Aequat. Math., 4 (1970), 358-373.
[24] J. Qi and W. Wang, Schur convex functions and the Bonnesen style isoperimetric inequalities for planar convex polygons. J. Math. Inequal. 12 (2018), no. 1, 23-29.
[25] H.-N. Shi and J. Zhang, Compositions involving Schur harmonically convex functions. J. Comput. Anal. Appl. 22 (2017), no. 5, 907-922.
[26] C. Stępniak, An effective characterization of Schur-convex functions with applications, Journal of Convex Analysis, 14 (2007), No. 1, 103-108.pp.
[27] A. Taghavi, V. Darvish, H. M. Nazari and S. S. Dragomir, Hermite-Hadamard type inequalities for operator geometrically convex functions. Monatsh. Math. 181 (2016), no. 1, 187-203.
[28] M. Vivas Cortez, H. Hernández and E. Jorge, Refinements for Hermite-Hadamard type inequalities for operator h-convex function. Appl. Math. Inf. Sci. 11 (2017), no. 5, 1299-1307.
[29] M. Vivas Cortez, H. Hernández and E. Jorge, On some new generalized Hermite-HadamardFejér inequalities for product of two operator h-convex functions. Appl. Math. Inf. Sci. 11 (2017), no. 4, 983-992.
[30] S.-H. Wang, Hermite-Hadamard type inequalities for operator convex functions on the coordinates. J. Nonlinear Sci. Appl. 10 (2017), no. 3, 1116-1125
[31] S.-H. Wang, New integral inequalities of Hermite-Hadamard type for operator m-convex and (α, m)-convex functions. J. Comput. Anal. Appl. 22 (2017), no. 4, 744-753.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand,, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 47A63; 47A99.
 Key words and phrases. Operator convex functions, Integral inequalities, Hermite-Hadamard inequality, Multivariate operator convex function.

[^1]: 1

