OPERATOR SCHUR CONVEXITY OF INTEGRAL MEANS

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

$$
\begin{aligned}
& \text { AbStract. For a Lebesgue integrable function } p:[0,1] \rightarrow[0, \infty) \text { we consider } \\
& \text { the function } S_{f, p}, M_{f, p}: I \times I \rightarrow \mathbb{R} \text { defined by } \\
& \qquad \begin{array}{r}
\qquad \begin{aligned}
S_{f, p}(x, y) & =\int_{0}^{1} f(t x+(1-t) y, t y+(1-t) x) p(t) d t
\end{aligned} \\
\text { and } \\
\qquad \begin{aligned}
M_{f, p}(x, y) & =\int_{0}^{1} f(t x+(1-t) y, t y+(1-t) x) p(t) d t \\
& -f\left(\frac{x+y}{2}, \frac{x+y}{2}\right) \int_{0}^{1} p(t) d t
\end{aligned}
\end{array}
\end{aligned}
$$

where $f: I \times I \rightarrow \mathbb{R}$ is an operator Schur convex function on $I \times I$. In this paper we show among others that $S_{f, p}$ and $M_{f, p}$ preserve the operator Schur convexity of f. We also provide some applications for powers and logarithms.

1. Introduction

A real valued continuous function f on an interval I is said to be operator convex (operator concave) on I if

$$
\begin{equation*}
f((1-\lambda) A+\lambda B) \leq(\geq)(1-\lambda) f(A)+\lambda f(B) \tag{1.1}
\end{equation*}
$$

in the operator order, for all $\lambda \in[0,1]$ and for every selfadjoint operator A and B on a Hilbert space H whose spectra are contained in I. Notice that a function f is operator concave if $-f$ is operator convex.

A real valued continuous function f on an interval I is said to be operator monotone if it is monotone with respect to the operator order, i.e., $A \leq B$ with $\operatorname{Sp}(A), \operatorname{Sp}(B) \subset I$ imply $f(A) \leq f(B)$.

For some fundamental results on operator convex (operator concave) and operator monotone functions, see [15] and the references therein.

As examples of such functions, we note that $f(t)=t^{r}$ is operator monotone on $[0, \infty)$ if and only if $0 \leq r \leq 1$. The function $f(t)=t^{r}$ is operator convex on $(0, \infty)$ if either $1 \leq r \leq 2$ or $-1 \leq r \leq 0$ and is operator concave on $(0, \infty)$ if $0 \leq r \leq 1$. The logarithmic function $f(t)=\ln t$ is operator monotone and operator concave on $(0, \infty)$. The entropy function $f(t)=-t \ln t$ is operator concave on $(0, \infty)$. The exponential function $f(t)=e^{t}$ is neither operator convex nor operator monotone. For recent inequalities for operator convex functions see [1], [3], [6], [7], [8], [10]-[19] and [26]-[30].

Let I_{1}, \ldots, I_{k} be intervals from \mathbb{R} and let $f: I_{1} \times \ldots \times I_{k} \rightarrow \mathbb{R}$ be an essentially bounded real function defined on the product of the intervals. Let $A=\left(A_{1}, \ldots, A_{n}\right)$

[^0]be a k-tuple of bounded selfadjoint operators on Hilbert spaces H_{1}, \ldots, H_{k} such that the spectrum of A_{i} is contained in I_{i} for $i=1, \ldots, k$. We say that such a k-tuple is in the domain of f. If
$$
A_{i}=\int_{I_{i}} \lambda_{i} E_{i}\left(d \lambda_{i}\right)
$$
is the spectral resolution of A_{i} for $i=1, \ldots, k$; by following [2] we define
\[

$$
\begin{equation*}
f(A)=f\left(A_{1}, \ldots, A_{n}\right)=\int_{I_{1} \times \ldots \times I_{k}} f\left(\lambda_{1}, \ldots, \lambda_{1}\right) E_{1}\left(d \lambda_{1}\right) \otimes \ldots \otimes E_{k}\left(d \lambda_{k}\right) \tag{1.2}
\end{equation*}
$$

\]

as a bounded selfadjoint operator on $H_{1} \otimes \ldots \otimes H_{k}$.
The above function $f: I_{1} \times \ldots \times I_{k} \rightarrow \mathbb{R}$ is said to be operator convex, if the operator inequality

$$
\begin{equation*}
f((1-\alpha) A+\alpha B) \leq(1-\alpha) f(A)+\alpha f(B) \tag{1.3}
\end{equation*}
$$

for all $\alpha \in[0,1]$, for any Hilbert spaces H_{1}, \ldots, H_{k} and any k-tuples of of selfadjoint operators $A=\left(A_{1}, \ldots, A_{n}\right), B=\left(B_{1}, \ldots, B_{n}\right)$ on $H_{1} \otimes \ldots \otimes H_{k}$ contained in the domain of f. The definition is meaningful since also the spectrum of $\alpha A_{i}+(1-\alpha) B_{i}$ is contained in the interval I_{i} for each $i=1, \ldots, k$.

In the following we restrict ourself to the case $k=1, I_{1}=I_{2}=I$ and $H_{1}=$ $H_{1}=H$. The operator convexity of $f: I \times I \rightarrow \mathbb{R}$ in this case means, for instance,

$$
\begin{equation*}
f\left((1-\alpha) A_{1}+\alpha B_{1},(1-\alpha) A_{2}+\alpha B_{2}\right) \leq(1-\alpha) f\left(A_{1}, A_{2}\right)+\alpha f\left(B_{1}, B_{2}\right) \tag{1.4}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
f\left((1-\alpha)\left(A_{1}, A_{2}\right)+\alpha\left(B_{1}, B_{2}\right)\right) \leq(1-\alpha) f\left(A_{1}, A_{2}\right)+\alpha f\left(B_{1}, B_{2}\right) \tag{1.5}
\end{equation*}
$$

for all selfadjoint operators $A_{1}, A_{2}, B_{1}, B_{2}$ with spectra in I and for all $\alpha \in[0,1]$.
For I an interval, we consider the set $\mathcal{S} \mathcal{A}_{I}(H)$ of all selfadjoint operators with spectra in $I . \mathcal{S} \mathcal{A}_{I}(H)$ is a convex set in $\mathcal{B}(H)$ since for A, B selfadjoints with $\operatorname{Sp}(A), \operatorname{Sp}(B) \subset I, \alpha A+\beta B$ is selfadjoint with $\operatorname{Sp}(\alpha A+\beta B) \subset I$, where $\alpha, \beta \geq 0$ and $\alpha+\beta=1$. We can introduce the following concept [11]:

Definition 1. We say that the function $f: I \times I \rightarrow \mathbb{R}$ is called operator Schur convex, if f is symmetric, namely $f(x, y)=f(y, x)$ for all $x, y \in I$ and

$$
f(t A+(1-t) B, t B+(1-t) A) \leq f(A, B)
$$

or, equivalently,

$$
f(t(A, B)+(1-t)(B, A)) \leq f(A, B)
$$

in the operator order, for all $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$ and $t \in[0,1]$. The function f is called operator Schur concave if $-f$ is operator Schur convex.

For $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$, let us define the following auxiliary function $\varphi_{(A, B)}:[0,1] \rightarrow \mathcal{S} \mathcal{A}(H \otimes H)$, the set of all selfadjoint operators on $H \otimes H$, by

$$
\begin{align*}
\varphi_{f,(A, B)}(t) & =f(t(A, B)+(1-t)(B, A)) \tag{1.6}\\
& =f(t A+(1-t) B, t B+(1-t) A)
\end{align*}
$$

A function $f: J \rightarrow \mathcal{S} \mathcal{A}(K)$ defined of an interval of real numbers J with self adjoint operator values on a Hilbert space K is called operator monotone increasing on J if

$$
f(t) \leq f(s) \text { in the operator order }
$$

for all $s, t \in J$ with $t<s$.
The following characterization of operator Schur convexity holds [11]:

Theorem 1. Let $f: I \times I \rightarrow \mathbb{R}$ be a continuous symmetric function on $I \times I$. Then f is operator Schur convex on $I \times I$ if and only if for all arbitrarily fixed $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$ the function $\varphi_{f,(A, B)}$ is operator monotone decreasing on $[0,1 / 2)$, operator monotone increasing on $(1 / 2,1]$, and $\varphi_{f,(A, B)}$ has a global minimum at $1 / 2$ in the operator order.

We have the following integral inequality in the operator order [11]:
Theorem 2. Assume that the function $f: I \times I \rightarrow \mathbb{R}$ is operator Schur convex on $I \times I$. Then for any Lebesgue integrable function $p:[0,1] \rightarrow[0, \infty)$ with $\int_{0}^{1} p(t) d t=1$ we have

$$
\begin{align*}
f\left(\frac{A+B}{2}, \frac{A+B}{2}\right) d t & \leq \int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) p(t) d t \tag{1.7}\\
& \leq f(A, B)
\end{align*}
$$

for all $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$.
In particular, we have

$$
\begin{equation*}
f\left(\frac{A+B}{2}, \frac{A+B}{2}\right) \leq \int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) d t \leq f(A, B) \tag{1.8}
\end{equation*}
$$

for all $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$.
For a Lebesgue integrable function $p:[0,1] \rightarrow[0, \infty)$ we consider the function $S_{f, p}, M_{f, p}: I \times I \rightarrow \mathbb{R}$ defined by

$$
S_{f, p}(x, y)=\int_{0}^{1} f(t x+(1-t) y, t y+(1-t) x) p(t) d t
$$

and

$$
\begin{aligned}
M_{f, p}(x, y) & =\int_{0}^{1} f(t x+(1-t) y, t y+(1-t) x) p(t) d t \\
& -f\left(\frac{x+y}{2}, \frac{x+y}{2}\right) \int_{0}^{1} p(t) d t
\end{aligned}
$$

where $f: I \times I \rightarrow \mathbb{R}$ is an operator Schur convex function on $I \times I$. In this paper we show among others that $S_{f, p}$ and $M_{f, p}$ preserve the operator Schur convexity of f. We also provide some applications for powers and logarithms.

2. Operator Schur Convexity for Functions of Composite Arguments

Assume that the function $f: I \times I \rightarrow \mathbb{R}$ is Schur convex on the convex and symmetric set $I \times I \subset \mathbb{R}^{2}$. For $t \in[0,1]$, we define the function $S_{f, t}: I \times I \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
S_{f, t}(x, y):=f(t(x, y)+(1-t)(y, x))=f(t x+(1-t) y, t y+(1-t) x) \tag{2.1}
\end{equation*}
$$

In the case when $t=0$ or $t=1$ the definition (2.1) becomes, by the symmetry of f in $I \times I$, that

$$
S_{f, 0}(x, y)=S_{f, 1}(x, y)=f(x, y), \quad(x, y) \in I \times I
$$

We have:
Theorem 3. Assume that the function $f: I \times I \rightarrow \mathbb{R}$ is operator Schur convex on $I \times I$ then $S_{f, t}$ is operator Schur convex on $I \times I$ for all $t \in(0,1)$.

Proof. Let $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$ and $s \in[0,1], t \in(0,1)$. Observe that

$$
\begin{aligned}
& t(s A+(1-s) B, s B+(1-s) A)+(1-t)(s B+(1-s) A, s A+(1-s) B) \\
& =t(s(A, B)+(1-s)(B, A))+(1-t)(s(B, A)+(1-s)(A, B)) \\
& =s[t(A, B)+(1-t)(B, A)]+(1-s)[t(B, A)+(1-t)(A, B)] \\
& =s(t A+(1-t) B, t B+(1-t) A)+(1-s)[(t B+(1-t) A, t A+(1-t) B)] \\
& =s(C, D)+(1-s)(D, C)
\end{aligned}
$$

where $C:=t A+(1-t) B$ and $D:=t B+(1-t) A$ for all $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times$ $\mathcal{S} \mathcal{A}_{I}(H)$ and $s, t \in[0,1]$.

By Schur convexity of f on $I \times I$ we get

$$
f(s(C, D)+(1-s)(D, C)) \leq f(C, D)
$$

for all $s \in[0,1]$.
Therefore
(2.2) $S_{f, t}(s(A, B)+(1-s)(B, A))$

$$
\begin{array}{r}
=f[t(s A+(1-s) B, s B+(1-s) A)+(1-t)(s B+(1-s) A, s A+(1-s) B)] \\
\leq f(t A+(1-t) B, t B+(1-t) A)=S_{f, t}(A, B)
\end{array}
$$

for $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$ and $s, t \in[0,1]$.
This proves the operator Schur convexity of $S_{f, t}$ on $I \times I$.
We define for $t \in[0,1], t \neq \frac{1}{2}$ the function $M_{f, t}$ on $I \times I$ by

$$
\begin{aligned}
M_{f, t}(x, y) & :=f(t(x, y)+(1-t)(y, x))-f\left(\frac{x+y}{2}, \frac{x+y}{2}\right) \\
& =f(t x+(1-t) y, t y+(1-t) x)-f\left(\frac{x+y}{2}, \frac{x+y}{2}\right) \\
& =S_{f, t}(x, y)-f\left(\frac{x+y}{2}, \frac{x+y}{2}\right)
\end{aligned}
$$

where $f: I \times I \rightarrow \mathbb{R}$ is operator Schur convex on the convex and symmetric subset $I \times I \subset \mathbb{R}^{2}$.

We have the following result.
Corollary 1. Let f be an operator Schur convex function on $I \times I$ and $t \in[0,1]$, $t \neq \frac{1}{2}$. Then the function $M_{f, t}$ is operator Schur convex on $I \times I$.
Proof. Let $s \in[0,1]$ and $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$. Then

$$
\begin{aligned}
& M_{f, t}(s(A, B)+(1-s)(B, A)) \\
& =S_{f, t}(s(A, B)+(1-s)(B, A)) \\
& -f\left(\frac{s A+(1-s) B+s B+(1-s) A}{2}, \frac{s A+(1-s) B+s B+(1-s) A}{2}\right) \\
& =M_{f, t}(s(A, B)+(1-s)(B, A))-f\left(\frac{A+B}{2}, \frac{A+B}{2}\right) \\
& \leq S_{f, t}(A, B)-f\left(\frac{A+B}{2}, \frac{A+B}{2}\right)=M_{f, t}(A, B),
\end{aligned}
$$

which proves the operator Schur convexity of $M_{f, t}$ on $I \times I$.

Assume that the function $f: I \times I \rightarrow \mathbb{R}$ is continuous. For $(t, s) \in[0,1]^{2}$ we consider the function $P_{f,(t, s)}: I \times I \rightarrow \mathbb{R}$ defined by

$$
\begin{aligned}
& P_{f,(t, s)}(x, y) \\
& \quad:=\frac{1}{2}[f(t x+(1-t) y, s x+(1-s) y)+f((1-t) x+t y, s y+(1-s) x)],
\end{aligned}
$$

where $(x, y) \in I \times I$.
Theorem 4. Assume that $f: I \times I \rightarrow R$ is operator convex on $I \times I$ and $(t, s) \in$ $[0,1]^{2}$. Then the function $P_{f,(t, s)}$ is operator Schur convex on $I \times I$.

Proof. Let $\alpha, \beta \geq 0$ with $\alpha+\beta=1,(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$ and consider

$$
\begin{aligned}
& 2 P_{(t, s)}(\alpha(A, B)+\beta(B, A)) \\
& =P_{(t, s)}(\alpha A+\beta B, \alpha B+\beta A) \\
& =f(t(\alpha A+\beta B)+(1-t)(\alpha B+\beta A), s(\alpha A+\beta B)+(1-s)(\alpha B+\beta A)) \\
& +f((1-t)(\alpha A+\beta B)+t(\alpha B+\beta A), s(\alpha B+\beta A)+(1-s)(\alpha A+\beta B)) .
\end{aligned}
$$

Observe that

$$
\begin{aligned}
& (t(\alpha A+\beta B)+(1-t)(\alpha B+\beta A), s(\alpha A+\beta B)+(1-s)(\alpha B+\beta A)) \\
& =\alpha(t A+(1-t) B, s A+(1-s) B)+\beta(t B+(1-t) A, s B+(1-s) A)
\end{aligned}
$$

and

$$
\begin{aligned}
& ((1-t)(\alpha A+\beta B)+t(\alpha B+\beta A), s(\alpha B+\beta A)+(1-s)(\alpha A+\beta B)) \\
& =\alpha((1-t) A+t B, s B+(1-s) A)+\beta((1-t) B+t A, s A+(1-s) B)
\end{aligned}
$$

Since f is operator convex on $I \times I$, hence

$$
\begin{aligned}
& f[\alpha(t A+(1-t) B, s A+(1-s) B)+\beta(t B+(1-t) A, s B+(1-s) A)] \\
& \leq \alpha f(t A+(1-t) B, s A+(1-s) B)+\beta f(t B+(1-t) A, s B+(1-s) A)
\end{aligned}
$$

and

$$
\begin{aligned}
& f[\alpha((1-t) A+t B, s B+(1-s) A)+\beta((1-t) B+t A, s A+(1-s) B)] \\
& \leq \alpha f((1-t) A+t B, s B+(1-s) A)+\beta f((1-t) B+t A, s A+(1-s) B)
\end{aligned}
$$

If we add these two inequalities, we get

$$
\begin{aligned}
2 P_{(t, s)}(\alpha(A, B)+\beta(B, A)) & \leq \alpha f(t A+(1-t) B, s A+(1-s) B) \\
& +\beta f((1-t) B+t A, s A+(1-s) B) \\
& +\beta f(t B+(1-t) A, s B+(1-s) A) \\
& +\alpha f((1-t) A+t B, s B+(1-s) A) \\
& =f(t A+(1-t) B, s A+(1-s) B) \\
& +f(t B+(1-t) A, s B+(1-s) A)=2 P_{(t, s)}(A, B),
\end{aligned}
$$

which shows that $P_{(t, s)}$ is Schur convex on $I \times I$.

For $(t, s) \in[0,1]^{2}$ we also consider the function $Q_{f,(t, s)}: I \times I \rightarrow \mathbb{R}$ defined by

$$
\begin{aligned}
& Q_{f,(t, s)}(x, y) \\
& :=P_{f,(t, s)}(x, y)-P_{f,(t, s)}\left(\frac{x+y}{2}, \frac{x+y}{2}\right) \\
& =\frac{1}{2}[f(t x+(1-t) y, s x+(1-s) y)+f((1-t) x+t y, s y+(1-s) x)] \\
& -f\left(\frac{x+y}{2}, \frac{x+y}{2}\right) .
\end{aligned}
$$

Corollary 2. Assume that $f: I \times I \rightarrow R$ is operator convex on $I \times I$ and $(t, s) \in$ $[0,1]^{2}$. Then the function $Q_{(t, s)}$ is operator Schur convex on $I \times I$.

3. Operator Schur Convexity of Integral Mean

For a Lebesgue integrable function $p:[0,1] \rightarrow[0, \infty)$ and an operator Schur convex function $f: I \times I \rightarrow \mathbb{R}$ on the convex and symmetric set $I \times I \subset \mathbb{R}^{2}$ we define the functions $S_{f, p}$ and $M_{f, p}$ on $I \times I$ by

$$
\begin{aligned}
S_{f, p}(x, y) & :=\int_{0}^{1} S_{f, t}(x, y) p(t) d t \\
& =\int_{0}^{1} f(t x+(1-t) y, t y+(1-t) x) p(t) d t
\end{aligned}
$$

and

$$
\begin{aligned}
M_{f, p}(x, y) & :=\int_{0}^{1} f(t x+(1-t) y, t y+(1-t) x) p(t) d t \\
& -f\left(\frac{x+y}{2}, \frac{x+y}{2}\right) \int_{0}^{1} p(t) d t
\end{aligned}
$$

In particular, if $p \equiv 1$, then we also consider the functions

$$
S_{f}(x, y):=\int_{0}^{1} f(t x+(1-t) y, t y+(1-t) x) d t
$$

and

$$
M_{f}(x, y):=\int_{0}^{1} f(t x+(1-t) y, t y+(1-t) x) d t-f\left(\frac{x+y}{2}, \frac{x+y}{2}\right) .
$$

We have:
Theorem 5. Assume that the function $f: I \times I \rightarrow \mathbb{R}$ is operator Schur convex on $I \times I$ and $p:[0,1] \rightarrow[0, \infty)$ is a Lebesgue integrable function on $[0,1]$, then the functions $S_{f, p}$ and $M_{f, p}$ are operator Schur convex on $I \times I$.
Proof. Let $s \in[0,1]$ and $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$. Then, by the operator Schur convexity of $S_{f, t}$ for $t \in[0,1]$, we have

$$
\begin{aligned}
S_{f, p}(s(A, B)+(1-s)(B, A)) & =\int_{0}^{1} S_{f, t}(s(A, B)+(1-s)(B, A)) p(t) d t \\
& \leq \int_{0}^{1} S_{f, t}(A, B) p(t) d t=S_{f, p}(A, B)
\end{aligned}
$$

which proves the operator Schur convexity of $S_{f, p}$.
The proof for $M_{f, p}$ is similar.

Corollary 3. Assume that the function $f: I \times I \rightarrow \mathbb{R}$ is operator Schur convex on $I \times I$, then the functions S_{f} and M_{f} are operator Schur convex on $I \times I$.

We also have the following double integral inequalities:
Corollary 4. Assume that the function $f: I \times I \rightarrow \mathbb{R}$ is operator Schur convex on the convex and symmetric set $I \times I \subset \mathbb{R}^{2}$. Then for any Lebesgue integrable functions $w, p:[0,1] \rightarrow[0, \infty)$ we have

$$
\begin{align*}
& f\left(\frac{A+B}{2}, \frac{A+B}{2}\right) \int_{0}^{1} p(t) d t \int_{0}^{1} w(s) d s \tag{3.1}\\
& \leq \int_{0}^{1} \int_{0}^{1} f[t(s A+(1-s) B)+(1-t)(s B+(1-s) A) \\
& t(s B+(1-s) A)+(1-t)(s A+(1-s) B)] p(t) w(s) d t d s \\
& \leq \int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) p(t) d t \int_{0}^{1} w(s) d s \\
& \left(\leq f(A, B) \int_{0}^{1} p(t) d t \int_{0}^{1} w(s) d s\right)
\end{align*}
$$

for all $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$.
The proof follows by Theorem ?? applied for the function $S_{f, p}$. This is a refinement of the inequality (1.7) from Introduction.

For $p, w \equiv 1$ we get for $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$ that

$$
\begin{align*}
& f\left(\frac{A+B}{2}, \frac{A+B}{2}\right) \tag{3.2}\\
& \leq \int_{0}^{1} \int_{0}^{1} f[t(s A+(1-s) B)+(1-t)(s B+(1-s) A) \\
& t(s B+(1-s) A)+(1-t)(s A+(1-s) B)] d t d s \\
& \leq \int_{0}^{1} f(t A+(1-t) B, t B+(1-t) A) d t(\leq f(A, B))
\end{align*}
$$

where $f: I \times I \rightarrow \mathbb{R}$ is operator Schur convex on the convex and symmetric set $I \times I \subset \mathbb{R}^{2}$. This is a refinement of the inequality (1.8) from Introduction.

Consider the two variable weight $W:[0,1]^{2} \rightarrow[0, \infty)$ that is Lebesgue integrable on $[0,1]^{2}$ and define

$$
\begin{aligned}
P_{f, W}(x, y) & :=\int_{0}^{1} \int_{0}^{1} P_{f,(t, s)}(x, y) W(t, s) d t d s \\
& =\frac{1}{2} \int_{0}^{1} \int_{0}^{1} f(t x+(1-t) y, s x+(1-s) y) W(t, s) d t d s \\
& +\frac{1}{2} \int_{0}^{1} \int_{0}^{1} f((1-t) x+t y, s y+(1-s) x) W(t, s) d t d s
\end{aligned}
$$

If W is symmetric on $[0,1]^{2}$ in the sense that $W(t, s)=W(s, t)$ for all $(t, s) \in[0,1]^{2}$, then

$$
P_{f, W}(x, y)=\int_{0}^{1} \int_{0}^{1} f(t x+(1-t) y, s x+(1-s) y) W(t, s) d t d s
$$

In particular, if $w:[0,1] \rightarrow[0, \infty)$ is Lebesgue integrable on $[0,1]$, then by taking $W(t, s)=w(t) w(s),(t, s) \in[0,1]^{2}$ we can also consider the function

$$
P_{f, w}(x, y)=\int_{0}^{1} \int_{0}^{1} f(t x+(1-t) y, s x+(1-s) y) w(t) w(s) d t d s
$$

and the unweighted function

$$
P_{f}(x, y)=\int_{0}^{1} \int_{0}^{1} f(t x+(1-t) y, s x+(1-s) y) d t d s
$$

In a similar way, we can consider

$$
\begin{gathered}
Q_{f, W}(x, y):=P_{f, W}(x, y)-f\left(\frac{x+y}{2}, \frac{x+y}{2}\right) \int_{0}^{1} \int_{0}^{1} W(t, s) d t d s \\
Q_{f, w}(x, y):=P_{f, w}(x, y)-f\left(\frac{x+y}{2}, \frac{x+y}{2}\right)\left(\int_{0}^{1} w(t) d t\right)^{2}
\end{gathered}
$$

and

$$
Q_{f}(x, y):=P_{f}(x, y)-f\left(\frac{x+y}{2}, \frac{x+y}{2}\right)
$$

Theorem 6. Assume that the function $f: I \times I \rightarrow \mathbb{R}$ is operator Schur convex on $I \times I$ and $W:[0,1]^{2} \rightarrow[0, \infty)$ is Lebesgue integrable on $[0,1]^{2}$, then $P_{f, W}$ and $Q_{f, W}$ are operator Schur convex on $I \times I$.
Proof. Let $\alpha \in[0,1]$ and $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H) \times \mathcal{S} \mathcal{A}_{I}(H)$. Then, by the operator Schur convexity of $P_{f,(t, s)}$ for $(t, s) \in[0,1]^{2}$, we have

$$
\begin{aligned}
& P_{f, W}(\alpha(A, B)+(1-\alpha)(B, A)) \\
& =\int_{0}^{1} \int_{0}^{1} P_{f,(t, s)}(\alpha(A, B)+(1-\alpha)(B, A)) W(t, s) d t d s \\
& \leq \int_{0}^{1} \int_{0}^{1} P_{f,(t, s)}(A, B) W(t, s) d t d s=P_{f, W}(A, B)
\end{aligned}
$$

which proves the operator Schur convexity of $P_{f, W}$.
The operator Schur convexity of $Q_{f, W}$ goes in a similar way.
Corollary 5. Assume that $f: I \times I \rightarrow \mathbb{R}$ is operator convex on $I \times I$ and w : $[0,1] \rightarrow[0, \infty)$ is Lebesgue integrable on $[0,1]$, then $P_{f, w}$ and $Q_{f, w}$ are operator Schur convex on $I \times I$. In particular, P_{f} and Q_{f} are operator Schur convex on $I \times I$.

4. Some Examples

For a Lebesgue integrable function $p:[0,1] \rightarrow[0, \infty)$ and an operator Schur convex function $f: I^{2} \rightarrow \mathbb{R}$ where I is an interval of real numbers, by changing the variable

$$
u=(1-t) x+t y, t \in[0,1] \text { with }(x, y) \in I^{2} \text { and } x \neq y
$$

we can express the functions $S_{f, p}$ and $M_{f, p}$ on I^{2} by

$$
\begin{align*}
S_{f, p}(x, y) & =\int_{0}^{1} f(t x+(1-t) y, t y+(1-t) x) p(t) d t \tag{4.1}\\
& =\frac{1}{y-x} \int_{x}^{y} f(u, x+y-u) p\left(\frac{u-x}{y-x}\right) d u
\end{align*}
$$

and

$$
\begin{align*}
M_{f, p}(x, y) & =\int_{0}^{1} f(t x+(1-t) y, t y+(1-t) x) p(t) d t \tag{4.2}\\
& -f\left(\frac{x+y}{2}, \frac{x+y}{2}\right) \int_{0}^{1} p(t) d t \\
& =\frac{1}{y-x} \int_{x}^{y} f(u, x+y-u) p\left(\frac{u-x}{y-x}\right) d u \\
& -f\left(\frac{x+y}{2}, \frac{x+y}{2}\right) \int_{0}^{1} p(t) d t .
\end{align*}
$$

For $(x, y) \in I^{2}$ with $x=y$ we have

$$
\begin{equation*}
S_{f, p}(x, x)=f(x, x) \int_{0}^{1} p(t) d t \text { and } M_{f, p}(x, x)=0 \tag{4.3}
\end{equation*}
$$

In particular, if $p \equiv 1$, then we also consider the functions

$$
S_{f}(x, y):=\left\{\begin{array}{l}
\frac{1}{y-x} \int_{x}^{y} f(u, x+y-u) d u \text { for }(x, y) \in I^{2} \text { with } x \neq y \tag{4.4}\\
f(x, x) \text { for }(x, y) \in I^{2} \text { with } x=y
\end{array}\right.
$$

and

$$
M_{f}(x, y)=\left\{\begin{array}{l}
\frac{1}{y-x} \int_{x}^{y} f(u, x+y-u) d u-f\left(\frac{x+y}{2}, \frac{x+y}{2}\right) \tag{4.5}\\
\text { for }(x, y) \in I^{2} \text { with } x \neq y \\
0 \text { for }(x, y) \in I^{2} \text { with } x=y
\end{array}\right.
$$

Proposition 1. Assume that $f: I^{2} \rightarrow \mathbb{R}$ is operator Schur convex on I^{2} and $p:[0,1] \rightarrow[0, \infty)$ is Lebesgue integrable on $[0,1]$, then $S_{f, p}$ and $M_{f, p}$ defined by (4.1)-(4.3) are operator Schur convex on I^{2}. In particular, the functions S_{f} and M_{f} defined by (4.4) and (4.5) are operator Schur convex on I^{2}.

If $w:[0,1] \rightarrow[0, \infty)$ is Lebesgue integrable on $[0,1]$ and $f: I^{2} \rightarrow \mathbb{R}$ is convex on I^{2}, then by changing the variables $t y+(1-t) x=u$ and $s y+(1-s) x=v$ and we can also consider the function

$$
\begin{equation*}
P_{f, w}(x, y):=\frac{1}{(y-x)^{2}} \int_{x}^{y} \int_{x}^{y} f(u, v) w\left(\frac{u-x}{y-x}\right) w\left(\frac{v-x}{y-x}\right) d u d v \tag{4.6}
\end{equation*}
$$

if $(x, y) \in I^{2}$ with $x \neq y$ and

$$
\begin{equation*}
P_{f, w}(x, x):=f(x, x)\left(\int_{0}^{1} w(t) d t\right)^{2} \tag{4.7}
\end{equation*}
$$

We also can consider

$$
\begin{align*}
Q_{f, w}(x, y) & :=\frac{1}{(y-x)^{2}} \int_{x}^{y} \int_{x}^{y} f(u, v) w\left(\frac{u-x}{y-x}\right) w\left(\frac{v-x}{y-x}\right) d u d v \tag{4.8}\\
& -f\left(\frac{x+y}{2}, \frac{x+y}{2}\right)\left(\int_{0}^{1} w(t) d t\right)^{2}
\end{align*}
$$

if $(x, y) \in I^{2}$ with $x \neq y$ and

$$
\begin{equation*}
Q_{f, w}(x, x):=0 \tag{4.9}
\end{equation*}
$$

In particular, we have

$$
P_{f}(x, y):=\left\{\begin{array}{l}
\frac{1}{(y-x)^{2}} \int_{x}^{y} \int_{x}^{y} f(u, v) d u d v \text { if }(x, y) \in I^{2} \text { with } x \neq y, \tag{4.10}\\
f(x, x) \text { if }(x, y) \in I^{2} \text { with } x \neq y
\end{array}\right.
$$

and

$$
Q_{f}(x, y):=\left\{\begin{array}{l}
\frac{1}{(y-x)^{2}} \int_{x}^{y} \int_{x}^{y} f(u, v) d u d v-f\left(\frac{x+y}{2}, \frac{x+y}{2}\right) \tag{4.11}\\
\text { if }(x, y) \in I^{2} \text { with } x \neq y, \\
0 \text { if }(x, y) \in I^{2} \text { with } x \neq y .
\end{array}\right.
$$

Proposition 2. Assume that $f: I^{2} \rightarrow \mathbb{R}$ is operator convex on I^{2} and $w:[0,1] \rightarrow$ $[0, \infty)$ is Lebesgue integrable on $[0,1]$, then $P_{f, w}$ and $Q_{f, w}$ defined by (4.6)-(4.9) are operator Schur convex on I^{2}. In particular, the functions S_{f} and M_{f} defined by (4.10) and (4.11) are operator Schur convex on I^{2}.

In the recent paper [11], we gave several examples of operator Schur convex and concave functions as follows.

The two variables function

$$
f_{r}(x, y):=\left\{\begin{array}{l}
\frac{y^{r+1}-y^{r+1}}{(r+1)(y-x)},(x, y) \in(0, \infty) \times(0, \infty), x \neq y, \tag{4.12}\\
x^{r},(x, y) \in(0, \infty) \times(0, \infty), x=y .
\end{array}\right.
$$

is operator Schur convex on $(0, \infty) \times(0, \infty)$ if either $1 \leq r \leq 2$ or $-1<r \leq 0$ and is operator Schur concave on $(0, \infty) \times(0, \infty)$ if $0 \leq r \leq 1$.

For $r=-1$, if we put

$$
f_{-1}(x, y):=\left\{\begin{array}{l}
\frac{\ln y-\ln x}{y-x},(x, y) \in(0, \infty) \times(0, \infty), x \neq y \tag{4.13}\\
x^{-1}, \quad(x, y) \in(0, \infty) \times(0, \infty), x=y
\end{array}\right.
$$

then we conclude that F_{-1} is operator Schur convex on $(0, \infty) \times(0, \infty)$.
Since $f(t)=\ln t, t \in(0, \infty)$ is operator concave, then

$$
f_{\ln }(x, y):=\left\{\begin{array}{l}
\frac{y \ln y-x \ln x}{y-x}-1, \quad(x, y) \in(0, \infty) \times(0, \infty), x \neq y \tag{4.14}\\
\ln x, \quad(x, y) \in(0, \infty) \times(0, \infty), x=y
\end{array}\right.
$$

is $f_{\ln }$ is operator Schur concave on $(0, \infty) \times(0, \infty)$.
If we replace the function f in the general examples above by f_{r}, f_{-1} and $f_{\text {ln }}$ we have more particular power and logarithmic examples of operator Schur convex functions. The details are omitted.

References

[1] R. P. Agarwal and S. S. Dragomir, A survey of Jensen type inequalities for functions of selfadjoint operators in Hilbert spaces. Comput. Math. Appl. 59 (2010), no. 12, 3785-3812.
[2] H. Araki and F. Hansen, Jensen's operator inequality for functions of several variables, Proc. Amer. Math. Soc. 128 (2000), Number 7, 2075-2084.
[3] V. Bacak, T. Vildan and R. Türkmen, Refinements of Hermite-Hadamard type inequalities for operator convex functions. J. Inequal. Appl. 2013, 2013:262, 10 pp.
[4] Y. Chu, G. Wang, X. Zhang, Schur convexity and Hadamard's inequality, Math. Inequal. Appl. 13 (4) (2010) 725-731.
[5] V. Čuljak, A remark on Schur-convexity of the mean of a convex function. J. Math. Inequal. 9 (2015), No. 4, 1133-1142.
[6] V. Darvish, S. S. Dragomir, H. M. Nazari and A. Taghavi, Some inequalities associated with the Hermite-Hadamard inequalities for operator h-convex functions. Acta Comment. Univ. Tartu. Math. 21 (2017), no. 2, 287-297.
[7] S. S. Dragomir, Hermite-Hadamard's type inequalities for operator convex functions. Appl. Math. Comput. 218 (2011), no. 3, 766-772.
[8] S. S. Dragomir, Operator Inequalities of the Jensen, Čebyšev and Grüss Type. Springer Briefs in Mathematics. Springer, New York, 2012. xii+121 pp. ISBN: 978-1-4614-1520-6.
[9] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results. Aust. J. Math. Anal. Appl. 14 (2017), No. 1, Art. 1, 283 pp. [Online https://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P1.tex].
[10] S. S. Dragomir, Some Hermite-Hadamard type inequalities for operator convex functions and positive maps. Spec. Matrices 7 (2019), 38-51. Preprint RGMIA Res. Rep. Coll. 19 (2016), Art. 80. [Online http://rgmia.org/papers/v19/v19a80.pdf].
[11] S. S. Dragomir, Operator Schur convexity and some integral inequalities, Preprint RGMIA Res. Rep. Coll. 22 (2019), Art...
[12] S. S. Dragomir and K. Nikodem, Functions generating (m, M, Ψ)-Schur-convex sums. Aequationes Math. 93 (2019), No. 1, 79-90.
[13] S. S. Dragomir and C. E. M. Pearce, Selected Topics on HermiteHadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online https://rgmia.org/monographs/hermite_hadamard.html].
[14] N. Elezović and J. Pečarić, A note on Schur convex fuctions, Rocky Mountain J. Math. 30 (2000), No. 3, 853-956.
[15] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
[16] A. G. Ghazanfari, The Hermite-Hadamard type inequalities for operator s-convex functions. J. Adv. Res. Pure Math. 6 (2014), no. 3, 52-61.
[17] A. G. Ghazanfari, Hermite-Hadamard type inequalities for functions whose derivatives are operator convex. Complex Anal. Oper. Theory 10 (2016), no. 8, 1695-1703.
[18] J. Han and J. Shi, Refinements of Hermite-Hadamard inequality for operator convex function. J. Nonlinear Sci. Appl. 10 (2017), no. 11, 6035-6041.
[19] B. Li, Refinements of Hermite-Hadamard's type inequalities for operator convex functions. Int. J. Contemp. Math. Sci. 8 (2013), no. 9-12, 463-467.
[20] A. W. Marshall, I. Olkin and B. C. Arnold, Inequalities: Theory of Majorization and Its Applications, Second Edition, Springer New York Dordrecht Heidelberg London, 2011.
[21] K. Nikodem, T. Rajba and S. Wąsowicz, Functions generating strongly Schur-convex sums. Inequalities and applications 2010, 175-182, Internat. Ser. Numer. Math., 161, Birkhäuser/Springer, Basel, 2012.
[22] A. M. Ostrowski, On an integral inequality, Aequat. Math., 4 (1970), 358-373.
[23] J. Qi and W. Wang, Schur convex functions and the Bonnesen style isoperimetric inequalities for planar convex polygons. J. Math. Inequal. 12 (2018), no. 1, 23-29.
[24] H.-N. Shi and J. Zhang, Compositions involving Schur harmonically convex functions. J. Comput. Anal. Appl. 22 (2017), no. 5, 907-922.
[25] C. Stępniak, An effective characterization of Schur-convex functions with applications, Journal of Convex Analysis, 14 (2007), No. 1, 103-108.pp.
[26] A. Taghavi, V. Darvish, H. M. Nazari and S. S. Dragomir, Hermite-Hadamard type inequalities for operator geometrically convex functions. Monatsh. Math. 181 (2016), no. 1, 187-203.
[27] M. Vivas Cortez, H. Hernández and E. Jorge, Refinements for Hermite-Hadamard type inequalities for operator h-convex function. Appl. Math. Inf. Sci. 11 (2017), no. 5, 1299-1307.
[28] M. Vivas Cortez, H. Hernández and E. Jorge, On some new generalized Hermite-HadamardFejér inequalities for product of two operator h-convex functions. Appl. Math. Inf. Sci. 11 (2017), no. 4, 983-992.
[29] S.-H. Wang, Hermite-Hadamard type inequalities for operator convex functions on the coordinates. J. Nonlinear Sci. Appl. 10 (2017), no. 3, 1116-1125
[30] S.-H. Wang, New integral inequalities of Hermite-Hadamard type for operator m-convex and (α, m)-convex functions. J. Comput. Anal. Appl. 22 (2017), no. 4, 744-753.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand,, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 47A63; 47A99.
 Key words and phrases. Operaor convex functions, Operator Schur convex functions, Integral inequalities, Hermite-Hadamard inequality.

