REVERSES OF OPERATOR HERMITE-HADAMARD INEQUALITIES

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract

Let f be an operator convex function on I and $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$, the convex set of selfadjoint operators with spectra in I. If $A \neq B$ and f, as an operator function, is Gâteaux differentiable on $[A, B]:=\{(1-t) A+t B \mid t \in[0,1]\}$, then $$
\begin{aligned} 0 & \leq \int_{0}^{1} f((1-t) A+t B) d t-f\left(\frac{A+B}{2}\right) \\ & \leq \frac{1}{8}\left[\nabla f_{B}(B-A)-\nabla f_{A}(B-A)\right] \end{aligned}
$$ and $$
\begin{aligned} 0 & \leq \frac{f(A)+f(B)}{2}-\int_{0}^{1} f((1-t) A+t B) d t \\ & \leq \frac{1}{8}\left[\nabla f_{B}(B-A)-\nabla f_{A}(B-A)\right] \end{aligned}
$$

Two particular examples of interest are also given.

1. Introduction

A real valued continuous function f on an interval I is said to be operator convex (operator concave) on I if

$$
\begin{equation*}
f((1-\lambda) A+\lambda B) \leq(\geq)(1-\lambda) f(A)+\lambda f(B) \tag{1.1}
\end{equation*}
$$

in the operator order, for all $\lambda \in[0,1]$ and for every selfadjoint operator A and B on a Hilbert space H whose spectra are contained in I. Notice that a function f is operator concave if $-f$ is operator convex.

A real valued continuous function f on an interval I is said to be operator monotone if it is monotone with respect to the operator order, i.e., $A \leq B$ with $\operatorname{Sp}(A), \operatorname{Sp}(B) \subset I$ imply $f(A) \leq f(B)$.

For some fundamental results on operator convex (operator concave) and operator monotone functions, see [7] and the references therein.

As examples of such functions, we note that $f(t)=t^{r}$ is operator monotone on $[0, \infty)$ if and only if $0 \leq r \leq 1$. The function $f(t)=t^{r}$ is operator convex on $(0, \infty)$ if either $1 \leq r \leq 2$ or $-1 \leq r \leq 0$ and is operator concave on $(0, \infty)$ if $0 \leq r \leq 1$. The logarithmic function $f(t)=\ln t$ is operator monotone and operator concave on $(0, \infty)$. The entropy function $f(t)=-t \ln t$ is operator concave on $(0, \infty)$. The exponential function $f(t)=e^{t}$ is neither operator convex nor operator monotone.

[^0][^1]In [5] we obtained among others the following Hermite-Hadamard type inequalities for operator convex functions $f: I \rightarrow \mathbb{R}$

$$
\begin{equation*}
f\left(\frac{A+B}{2}\right) \leq \int_{0}^{1} f((1-s) A+s B) d s \leq \frac{f(A)+f(B)}{2}, \tag{1.2}
\end{equation*}
$$

where A, B are selfadjoint operators with spectra included in I.
For recent inequalities for operator convex functions see [1]-[6] and [8]-[17].
Motivated by the above results, in this paper we show among others that if $A \neq B$ and f is Gâteaux differentiable on $[A, B]:=\{(1-t) A+t B \mid t \in[0,1]\}$, then

$$
\begin{aligned}
0 & \leq \int_{0}^{1} f((1-t) A+t B) d t-f\left(\frac{A+B}{2}\right) \\
& \leq \frac{1}{8}\left[\nabla f_{B}(B-A)-\nabla f_{A}(B-A)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
0 & \leq \frac{f(A)+f(B)}{2}-\int_{0}^{1} f((1-t) A+t B) d t \\
& \leq \frac{1}{8}\left[\nabla f_{B}(B-A)-\nabla f_{A}(B-A)\right]
\end{aligned}
$$

Two particular examples of interest for $f(x)=-\ln x$ and $f(x)=x^{-1}$ are also given.

2. Some Preliminary Facts

Let f be an operator convex function on I. For $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H)$, the class of all selfadjoint operators with spectra in I, we consider the auxiliary function $\varphi_{(A, B)}:[0,1] \rightarrow \mathcal{S} \mathcal{A}_{I}(H)$ defined by

$$
\begin{equation*}
\varphi_{(A, B)}(t):=f((1-t) A+t B) . \tag{2.1}
\end{equation*}
$$

For $x \in H$ we can also consider the auxiliary function $\varphi_{(A, B) ; x}:[0,1] \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\varphi_{(A, B) ; x}(t):=\left\langle\varphi_{(A, B)}(t) x, x\right\rangle=\langle f((1-t) A+t B) x, x\rangle \tag{2.2}
\end{equation*}
$$

We have the following basic fact:
Lemma 1. Let f be an operator convex function on I. For any $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H)$, $\varphi_{(A, B)}$ is well defined and convex in the operator order. For any $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H)$ and $x \in H$ the function $\varphi_{(A, B) ; x}$ is convex in the usual sense on $[0,1]$.

Proof. If $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H)$ and $t \in[0,1]$ the convex combination $(1-t) A+t B$ is a selfadjoint operator with the spectrum in I showing that $\mathcal{S} \mathcal{A}_{I}(H)$ in the Banach algebra $\mathcal{B}(H)$ of all bounded linear operators on H. By the continuous functional calculus of selfadjoint operator we also conclude that $f((1-t) A+t B)$ is a selfadjoint operator with spectrum in I.

Let $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H)$ and $t_{1}, t_{2} \in[0,1]$. If $\alpha, \beta>0$ with $\alpha+\beta=1$, then

$$
\begin{aligned}
\varphi_{(A, B)}\left(\alpha t_{1}+\beta t_{2}\right) & :=f\left(\left(1-\alpha t_{1}-\beta t_{2}\right) A+\left(\alpha t_{1}+\beta t_{2}\right) B\right) \\
& =f\left(\left(\alpha+\beta-\alpha t_{1}-\beta t_{2}\right) A+\left(\alpha t_{1}+\beta t_{2}\right) B\right) \\
& =f\left(\alpha\left[\left(1-t_{1}\right) A+t_{1} B\right]+\beta\left[\left(1-t_{2}\right) A+t_{2} B\right]\right) \\
& \leq \alpha f\left(\left(1-t_{1}\right) A+t_{1} B\right)+\beta f\left(\left(1-t_{2}\right) A+t_{2} B\right) \\
& =\alpha \varphi_{(A, B)}\left(t_{1}\right)+\beta \varphi_{(A, B)}\left(t_{2}\right),
\end{aligned}
$$

which proves the convexity $\varphi_{(A, B)}$ in the operator order.
Ley $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H)$ and $x \in H$. If $t_{1}, t_{2} \in[0,1]$ and $\alpha, \beta>0$ with $\alpha+\beta=1$, then

$$
\begin{aligned}
\varphi_{(A, B) ; x}\left(\alpha t_{1}+\beta t_{2}\right) & =\left\langle\varphi_{(A, B)}\left(\alpha t_{1}+\beta t_{2}\right) x, x\right\rangle \\
& \leq\left\langle\left[\alpha \varphi_{(A, B)}\left(t_{1}\right)+\beta \varphi_{(A, B)}\left(t_{2}\right)\right] x, x\right\rangle \\
& =\alpha\left\langle\varphi_{(A, B)}\left(t_{1}\right) x, x\right\rangle+\beta\left\langle\varphi_{(A, B)}\left(t_{2}\right) x, x\right\rangle \\
& =\alpha \varphi_{(A, B) ; x}\left(t_{1}\right)+\beta \varphi_{(A, B) ; x}\left(t_{2}\right),
\end{aligned}
$$

which proves the convexity of $\varphi_{(A, B) ; x}$ on $[0,1]$.
A continuous function $g: \mathcal{S}_{I}(H) \rightarrow \mathcal{B}(H)$ is said to be Gâteaux differentiable in $A \in \mathcal{S} \mathcal{A}_{I}(H)$ along the direction $B \in \mathcal{B}(H)$ if the following limit exists in the strong topology of $\mathcal{B}(H)$

$$
\begin{equation*}
\nabla g_{A}(B):=\lim _{s \rightarrow 0} \frac{g(A+s B)-g(A)}{s} \in \mathcal{B}(H) \tag{2.3}
\end{equation*}
$$

If the limit (2.3) exists for all $B \in \mathcal{B}(H)$, then we say that f is Gâteaux differentiable in A and we can write $g \in \mathcal{G}(A)$. If this is true for any A in an open set \mathcal{S} from $\mathcal{S} \mathcal{A}_{I}(H)$ we write that $g \in \mathcal{G}(\mathcal{S})$.

If g is a continuous function on I, by utilising the continuous functional calculus the corresponding function of operators will be denoted in the same way.

For two distinct operators $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$ we consider the segment of selfadjoint operators

$$
[A, B]:=\{(1-t) A+t B \mid t \in[0,1]\}
$$

We observe that $A, B \in[A, B]$ and $[A, B] \subset \mathcal{S} \mathcal{A}_{I}(H)$.
Lemma 2. Let f be an operator convex function on I and $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H)$, with $A \neq B$. If $f \in \mathcal{G}([A, B])$, then the auxiliary function $\varphi_{(A, B)}$ is differentiable on $(0,1)$ and

$$
\begin{equation*}
\varphi_{(A, B)}^{\prime}(t)=\nabla f_{(1-t) A+t B}(B-A) \tag{2.4}
\end{equation*}
$$

Also we have for the lateral derivative that

$$
\begin{equation*}
\varphi_{(A, B)}^{\prime}(0+)=\nabla f_{A}(B-A) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi_{(A, B)}^{\prime}(1-)=\nabla f_{B}(B-A) . \tag{2.6}
\end{equation*}
$$

Proof. Let $t \in(0,1)$ and $h \neq 0$ small enough such that $t+h \in(0,1)$. Then

$$
\begin{align*}
& \frac{\varphi_{(A, B)}(t+h)-\varphi_{(A, B)}(t)}{h} \tag{2.7}\\
& =\frac{f((1-t-h) A+(t+h) B)-f((1-t) A+t B)}{h} \\
& =\frac{f((1-t) A+t B+h(B-A))-f((1-t) A+t B)}{h}
\end{align*}
$$

Since $f \in \mathcal{G}([A, B])$, hence by taking the limit over $h \rightarrow 0$ in (2.7) we get

$$
\begin{aligned}
\varphi_{(A, B)}^{\prime}(t) & =\lim _{h \rightarrow 0} \frac{\varphi_{(A, B)}(t+h)-\varphi_{(A, B)}(t)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f((1-t) A+t B+h(B-A))-f((1-t) A+t B)}{h} \\
& =\nabla g_{(1-t) A+t B}(B-A),
\end{aligned}
$$

which proves (2.8).
Also, we have

$$
\begin{aligned}
\varphi_{(A, B)}^{\prime}(0+) & =\lim _{h \rightarrow 0+} \frac{\varphi_{(A, B)}(h)-\varphi_{(A, B)}(0)}{h} \\
& =\lim _{h \rightarrow 0+} \frac{f((1-h) A+h B)-f(A)}{h} \\
& =\lim _{h \rightarrow 0+} \frac{f(A+h(B-A))-f(A)}{h} \\
& =\nabla f_{A}(B-A)
\end{aligned}
$$

since f is assumed to be Gâteaux differentiable in A. This proves (2.5).
The equality (2.6) follows in a similar way.
Lemma 3. Let f be an operator convex function on I and $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H)$, with $A \neq B$. If $f \in \mathcal{G}([A, B])$, then for $0<t_{1}<t_{2}<1$ we have

$$
\begin{equation*}
\nabla g_{\left(1-t_{1}\right) A+t_{1} B}(B-A) \leq \nabla g_{\left(1-t_{2}\right) A+t_{2} B}(B-A) \tag{2.8}
\end{equation*}
$$

in the operator order.
We also have

$$
\begin{equation*}
\nabla f_{A}(B-A) \leq \nabla g_{\left(1-t_{1}\right) A+t_{1} B}(B-A) \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla g_{\left(1-t_{2}\right) A+t_{2} B}(B-A) \leq \nabla f_{B}(B-A) \tag{2.10}
\end{equation*}
$$

Proof. Let $x \in H$. The auxiliary function $\varphi_{(A, B) ; x}$ is convex in the usual sense on $[0,1]$ and differentiable on $(0,1)$ and for $t \in(0,1)$

$$
\begin{aligned}
\varphi_{(A, B), x}^{\prime}(t) & =\lim _{h \rightarrow 0} \frac{\varphi_{(A, B), x}(t+h)-\varphi_{(A, B), x}(t)}{h} \\
& =\lim _{h \rightarrow 0}\left\langle\frac{\varphi_{(A, B)}(t+h)-\varphi_{(A, B)}(t)}{h} x, x\right\rangle \\
& =\left\langle\lim _{h \rightarrow 0} \frac{\varphi_{(A, B)}(t+h)-\varphi_{(A, B)}(t)}{h} x, x\right\rangle \\
& =\left\langle\nabla g_{(1-t) A+t B}(B-A) x, x\right\rangle
\end{aligned}
$$

Since for $0<t_{1}<t_{2}<1$ we have by the gadient inequality for scalar convex functions that

$$
\varphi_{(A, B), x}^{\prime}\left(t_{1}\right) \leq \varphi_{(A, B), x}^{\prime}\left(t_{2}\right)
$$

then we get

$$
\begin{equation*}
\left\langle\nabla g_{\left(1-t_{1}\right) A+t_{1} B}(B-A) x, x\right\rangle \leq\left\langle\nabla g_{\left(1-t_{2}\right) A+t_{2} B}(B-A) x, x\right\rangle \tag{2.11}
\end{equation*}
$$

for all $x \in H$, which is equivalent to the inequality (2.8) in the operator order.
Let $0<t_{1}<1$. By the gadient inequality for scalar convex functions we also have

$$
\varphi_{(A, B), x}^{\prime}(0+) \leq \varphi_{(A, B), x}^{\prime}\left(t_{1}\right)
$$

which, as above implies that

$$
\left\langle\nabla f_{A}(B-A) x, x\right\rangle \leq\left\langle\nabla g_{\left(1-t_{1}\right) A+t_{1} B}(B-A) x, x\right\rangle
$$

for all $x \leq H$, that is equivalent to the operator inequality (2.9).
The inequality (2.10) follows in a similar way.
Corollary 1. Let f be an operator convex function on I and $(A, B) \in \mathcal{S} \mathcal{A}_{I}(H)$, with $A \neq B$. If $f \in \mathcal{G}([A, B])$, then for all $t \in(0,1)$ we have

$$
\begin{equation*}
\nabla f_{A}(B-A) \leq \nabla f_{(1-t) A+t B}(B-A) \leq \nabla f_{B}(B-A) \tag{2.12}
\end{equation*}
$$

3. Reverses of Operator Hermite-Hadamard Inequalities

It is well known that, if E is a Banach space and $f:[0,1] \rightarrow E$ is a continuous function, then f is Bochner integrable, and its Bochner integral coincides with its Riemann integral. We denote this integral as usual by $\int_{0}^{1} f(t) d t$.

We have the following reverse of the first operator Hermite-Hadamard inequality:
Theorem 1. Let f be an operator convex function on I and $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$, with $A \neq B$. If $f \in \mathcal{G}([A, B])$, then

$$
\begin{align*}
0 & \leq \int_{0}^{1} f((1-t) A+t B) d t-f\left(\frac{A+B}{2}\right) \tag{3.1}\\
& \leq \frac{1}{8}\left[\nabla f_{B}(B-A)-\nabla f_{A}(B-A)\right]
\end{align*}
$$

Proof. Using integration by parts formula for the Bochner integral, we have

$$
\begin{align*}
\int_{0}^{1 / 2} t \varphi_{(A, B)}^{\prime}(t) d t & =\frac{1}{2} \varphi_{(A, B)}\left(\frac{1}{2}\right)-\int_{0}^{1 / 2} \varphi_{(A, B)}(t) d t \tag{3.2}\\
& =\frac{1}{2} f\left(\frac{A+B}{2}\right)-\int_{0}^{1 / 2} f((1-t) A+t B) d t
\end{align*}
$$

and

$$
\begin{align*}
\int_{1 / 2}^{1}(t-1) \varphi_{(A, B)}^{\prime}(t) d t & =\frac{1}{2} \varphi_{(A, B)}\left(\frac{1}{2}\right)-\int_{1 / 2}^{1} f((1-t) A+t B) d t \tag{3.3}\\
& =\frac{1}{2} f\left(\frac{A+B}{2}\right)-\int_{1 / 2}^{1} f((1-t) A+t B) d t
\end{align*}
$$

If we add these two equalities, we get the following identity of interest

$$
\begin{align*}
& \int_{0}^{1} f((1-t) A+t B) d t-f\left(\frac{A+B}{2}\right) \tag{3.4}\\
& =\int_{1 / 2}^{1}(1-t) \varphi_{(A, B)}^{\prime}(t) d t-\int_{0}^{1 / 2} t \varphi_{(A, B)}^{\prime}(t) d t .
\end{align*}
$$

From Lemma 3 we have

$$
\begin{equation*}
\varphi_{(A, B)}^{\prime}(1 / 2) \leq \varphi_{(A, B)}^{\prime}(t) \leq \varphi_{(A, B)}^{\prime}(1-)=\nabla f_{B}(B-A), t \in[1 / 2,1) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla f_{A}(B-A)=\varphi_{(A, B)}^{\prime}(0+) \leq \varphi_{(A, B)}^{\prime}(t) \leq \varphi_{(A, B)}^{\prime}(1 / 2), t \in(0,1 / 2] \tag{3.6}
\end{equation*}
$$

This implies that

$$
(1-t) \varphi_{(A, B)}^{\prime}(1 / 2) \leq(1-t) \varphi_{(A, B)}^{\prime}(t) \leq(1-t) \nabla f_{B}(B-A)
$$

for $t \in[1 / 2,1)$ and

$$
-t \varphi_{(A, B)}^{\prime}(1 / 2) \leq-t \varphi_{(A, B)}^{\prime}(t) \leq-t \nabla f_{A}(B-A)
$$

for $t \in(0,1 / 2]$.
By integrating these inequalities on the corresponding intervals, we get

$$
\frac{1}{8} \varphi_{(A, B)}^{\prime}(1 / 2) \leq \int_{1 / 2}^{1}(1-t) \varphi_{(A, B)}^{\prime}(t) d t \leq \frac{1}{8} \nabla f_{B}(B-A)
$$

and

$$
-\frac{1}{8} \varphi_{(A, B)}^{\prime}(1 / 2) \leq-\int_{0}^{1 / 2} t \varphi_{(A, B)}^{\prime}(t) d t \leq-\frac{1}{8} \nabla f_{A}(B-A)
$$

By addition, we deduce that

$$
\begin{aligned}
0 & \leq \int_{1 / 2}^{1}(1-t) \varphi_{(A, B)}^{\prime}(t)-\int_{0}^{1 / 2} t \varphi_{(A, B)}^{\prime}(t) d t \\
& \leq \frac{1}{8}\left[\nabla f_{B}(B-A)-\nabla f_{A}(B-A)\right]
\end{aligned}
$$

and by the identity (3.4) we get (3.1).
We have the following reverse of the second operator Hermite-Hadamard inequality:

Theorem 2. Let f be an operator convex function on I and $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$, with $A \neq B$. If $f \in \mathcal{G}([A, B])$, then

$$
\begin{align*}
0 & \leq \frac{f(A)+f(B)}{2}-\int_{0}^{1} f((1-t) A+t B) d t \tag{3.7}\\
& \leq \frac{1}{8}\left[\nabla f_{B}(B-A)-\nabla f_{A}(B-A)\right]
\end{align*}
$$

Proof. Using integration by parts formula for the Bochner integral, we have

$$
\begin{align*}
\int_{0}^{1}\left(t-\frac{1}{2}\right) \varphi_{(A, B)}^{\prime}(t) d t & \left.=\left(t-\frac{1}{2}\right) \varphi_{(A, B)}(t)\right]_{0}^{1}-\int_{0}^{1} \varphi_{(A, B)}(t) \tag{3.8}\\
& =\frac{\varphi_{(A, B)}(1)+\varphi_{(A, B)}(0)}{2}-\int_{0}^{1} \varphi_{(A, B)}(t) \\
& =\frac{f(B)+f(A)}{2}-\int_{0}^{1} f((1-t) A+t B) d t
\end{align*}
$$

Observe that

$$
\begin{align*}
& \int_{0}^{1}\left(t-\frac{1}{2}\right) \varphi_{(A, B)}^{\prime}(t) d t \tag{3.9}\\
& =\int_{1 / 2}^{1}\left(t-\frac{1}{2}\right) \varphi_{(A, B)}^{\prime}(t) d t-\int_{0}^{1 / 2}\left(\frac{1}{2}-t\right) \varphi_{(A, B)}^{\prime}(t) d t
\end{align*}
$$

Therefore, we have the following identity of interest

$$
\begin{aligned}
& \frac{f(B)+f(A)}{2}-\int_{0}^{1} f((1-t) A+t B) d t \\
& =\int_{1 / 2}^{1}\left(t-\frac{1}{2}\right) \varphi_{(A, B)}^{\prime}(t) d t-\int_{0}^{1 / 2}\left(\frac{1}{2}-t\right) \varphi_{(A, B)}^{\prime}(t) d t
\end{aligned}
$$

From the inequality (3.5) we obtain

$$
\begin{aligned}
\left(t-\frac{1}{2}\right) \varphi_{(A, B)}^{\prime}(1 / 2) & \leq\left(t-\frac{1}{2}\right) \varphi_{(A, B)}^{\prime}(t) \\
& \leq\left(t-\frac{1}{2}\right) \nabla f_{B}(B-A), t \in[1 / 2,1)
\end{aligned}
$$

and from (3.6)

$$
\begin{aligned}
\left(\frac{1}{2}-t\right) \nabla f_{A}(B-A) & \leq\left(\frac{1}{2}-t\right) \varphi_{(A, B)}^{\prime}(t) \\
& \leq\left(\frac{1}{2}-t\right) \varphi_{(A, B)}^{\prime}(1 / 2), t \in(0,1 / 2]
\end{aligned}
$$

namely

$$
\begin{aligned}
-\left(\frac{1}{2}-t\right) \varphi_{(A, B)}^{\prime}(1 / 2) & \leq-\left(\frac{1}{2}-t\right) \varphi_{(A, B)}^{\prime}(t) \\
& \leq-\left(\frac{1}{2}-t\right) \nabla f_{A}(B-A), t \in(0,1 / 2]
\end{aligned}
$$

Integrating these inequalities on the corresponding intervals, we get

$$
\frac{1}{8} \varphi_{(A, B)}^{\prime}(1 / 2) \leq \int_{1 / 2}^{1}\left(t-\frac{1}{2}\right) \varphi_{(A, B)}^{\prime}(t) d t \leq \frac{1}{8} \nabla f_{B}(B-A)
$$

and

$$
-\frac{1}{8} \varphi_{(A, B)}^{\prime}(1 / 2) \leq-\int_{0}^{1 / 2}\left(\frac{1}{2}-t\right) \varphi_{(A, B)}^{\prime}(t) d t \leq-\frac{1}{8} \nabla f_{A}(B-A)
$$

If we add these two inequalities, we obtain

$$
\begin{aligned}
0 & \leq \int_{1 / 2}^{1}\left(t-\frac{1}{2}\right) \varphi_{(A, B)}^{\prime}(t) d t-\int_{0}^{1 / 2}\left(\frac{1}{2}-t\right) \varphi_{(A, B)}^{\prime}(t) d t \\
& \leq \frac{1}{8}\left[\nabla f_{B}(B-A)-\nabla f_{A}(B-A)\right]
\end{aligned}
$$

which, by the use of identity (3.9) produces the desired result (3.7).
Remark 1. It is well known that, if h is a C^{1}-function defined on an open interval, then the operator function $h(X)$ is Fréchet differentiable and the derivative $D h(A)(B)$ equals the Gâteaux derivative $\nabla f_{A}(B)$. So for operator convex functions f that are of class C^{1} on I we have the inequalities

$$
\begin{align*}
0 & \leq \int_{0}^{1} f((1-t) A+t B) d t-f\left(\frac{A+B}{2}\right) \tag{3.10}\\
& \leq \frac{1}{8}[D f(B)(B-A)-D f(A)(B-A)]
\end{align*}
$$

and

$$
\begin{align*}
0 & \leq \frac{f(A)+f(B)}{2}-\int_{0}^{1} f((1-t) A+t B) d t \tag{3.11}\\
& \leq \frac{1}{8}[D f(B)(B-A)-D f(A)(B-A)]
\end{align*}
$$

for all $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$.

4. Some Examples

We note that the function $f(x)=-\ln x$ is operator convex on $(0, \infty)$. The \ln function is operator Gâteaux differentiable with the following explicit formula for the derivative (cf. Pedersen [12, p. 155]):

$$
\begin{equation*}
\nabla \ln _{T}(S)=\int_{0}^{\infty}\left(s 1_{H}+T\right)^{-1} S\left(s 1_{H}+T\right)^{-1} d s \tag{4.1}
\end{equation*}
$$

for $T, S>0$
If we write the inequalities (3.1) and (3.7) for $-\ln$ we get

$$
\begin{align*}
0 & \leq \ln \left(\frac{A+B}{2}\right)-\int_{0}^{1} \ln ((1-t) A+t B) d t \tag{4.2}\\
& \leq \frac{1}{8}\left[\int_{0}^{\infty}\left(s 1_{H}+A\right)^{-1}(B-A)\left(s 1_{H}+A\right)^{-1} d s\right. \\
& \left.-\int_{0}^{\infty}\left(s 1_{H}+B\right)^{-1}(B-A)\left(s 1_{H}+B\right)^{-1} d s\right]
\end{align*}
$$

and

$$
\begin{align*}
0 & \leq \int_{0}^{1} \ln ((1-t) A+t B) d t-\frac{\ln A+\ln B}{2} \tag{4.3}\\
& \leq \frac{1}{8}\left[\int_{0}^{\infty}\left(s 1_{H}+A\right)^{-1}(B-A)\left(s 1_{H}+A\right)^{-1} d s\right. \\
& \left.-\int_{0}^{\infty}\left(s 1_{H}+B\right)^{-1}(B-A)\left(s 1_{H}+B\right)^{-1} d s\right]
\end{align*}
$$

for all $A, B>0$.
The function $f(x)=x^{-1}$ is also operator convex on $(0, \infty)$, operator Gâteaux differentiable and

$$
\nabla f_{T}(S)=-T^{-1} S T^{-1}
$$

for $T, S>0$.
If we write the inequalities (3.1) and (3.7) for this function, then we get

$$
\begin{align*}
0 & \leq \int_{0}^{1}((1-t) A+t B)^{-1} d t-\left(\frac{A+B}{2}\right)^{-1} \tag{4.4}\\
& \leq \frac{1}{8}\left[A^{-1}(B-A) A^{-1}-B^{-1}(B-A) B^{-1}\right]
\end{align*}
$$

and

$$
\begin{align*}
0 & \leq \frac{A^{-1}+B^{-1}}{2}-\int_{0}^{1}((1-t) A+t B)^{-1} d t \tag{4.5}\\
& \leq \frac{1}{8}\left[A^{-1}(B-A) A^{-1}-B^{-1}(B-A) B^{-1}\right]
\end{align*}
$$

for all $A, B>0$.

References

[1] R. P. Agarwal and S. S. Dragomir, A survey of Jensen type inequalities for functions of selfadjoint operators in Hilbert spaces. Comput. Math. Appl. 59 (2010), no. 12, 3785-3812.
[2] V. Bacak, T. Vildan and R. Türkmen, Refinements of Hermite-Hadamard type inequalities for operator convex functions. J. Inequal. Appl. 2013, 2013:262, 10 pp.
[3] V. Darvish, S. S. Dragomir, H. M. Nazari and A. Taghavi, Some inequalities associated with the Hermite-Hadamard inequalities for operator h-convex functions. Acta Comment. Univ. Tartu. Math. 21 (2017), no. 2, 287-297.
[4] S. S. Dragomir, Operator Inequalities of the Jensen, Čebyšev and Grüss Type. Springer Briefs in Mathematics. Springer, New York, 2012. xii+121 pp. ISBN: 978-1-4614-1520-6.
[5] S. S. Dragomir, Hermite-Hadamard's type inequalities for operator convex functions. Appl. Math. Comput. 218 (2011), no. 3, 766-772.
[6] S. S. Dragomir, Some Hermite-Hadamard type inequalities for operator convex functions and positive maps. Spec. Matrices 7 (2019), 38-51. Preprint RGMIA Res. Rep. Coll. 19 (2016), Art. 80. [Online http://rgmia.org/papers/v19/v19a80.pdf].
[7] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarićc Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
[8] A. G. Ghazanfari, Hermite-Hadamard type inequalities for functions whose derivatives are operator convex. Complex Anal. Oper. Theory 10 (2016), no. 8, 1695-1703.
[9] A. G. Ghazanfari, The Hermite-Hadamard type inequalities for operator s-convex functions. J. Adv. Res. Pure Math. 6 (2014), no. 3, 52-61.
[10] J. Han and J. Shi, Refinements of Hermite-Hadamard inequality for operator convex function. J. Nonlinear Sci. Appl. 10 (2017), no. 11, 6035-6041.
[11] B. Li, Refinements of Hermite-Hadamard's type inequalities for operator convex functions. Int. J. Contemp. Math. Sci. 8 (2013), no. 9-12, 463-467.
[12] G. K. Pedersen, Operator differentiable functions. Publ. Res. Inst. Math. Sci. 36 (1) (2000), 139-157.
[13] A. Taghavi, V. Darvish, H. M. Nazari and S. S. Dragomir, Hermite-Hadamard type inequalities for operator geometrically convex functions. Monatsh. Math. 181 (2016), no. 1, 187-203.
[14] M. Vivas Cortez, H. Hernández and E. Jorge, Refinements for Hermite-Hadamard type inequalities for operator h-convex function. Appl. Math. Inf. Sci. 11 (2017), no. 5, 1299-1307.
[15] M. Vivas Cortez, H. Hernández and E. Jorge, On some new generalized Hermite-HadamardFejér inequalities for product of two operator h-convex functions. Appl. Math. Inf. Sci. 11 (2017), no. 4, 983-992.
[16] S.-H. Wang, Hermite-Hadamard type inequalities for operator convex functions on the coordinates. J. Nonlinear Sci. Appl. 10 (2017), no. 3, 1116-1125
[17] S.-H. Wang, New integral inequalities of Hermite-Hadamard type for operator m-convex and (α, m)-convex functions. J. Comput. Anal. Appl. 22 (2017), no. 4, 744-753.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand,, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 47A63; 47A99.
 Key words and phrases. Operator convex functions, Integral inequalities, Hermite-Hadamard inequality, Multivariate operator convex function.

[^1]: 1

