REVERSES OF FEJER’S INEQUALITIES FOR CONVEX
FUNCTIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let f be a convex function on I and a, b € I with a < b. If
p: [a,b] — [a, 00) is Lebesgue integrable and symmetric, namely p (b+a —t) =
p(t) for all ¢t € [a,b], then we show in this paper that
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1. INTRODUCTION

The following inequality holds for any convex function f defined on R

b
(1.1) f<a;rb)§bia/f(t)dt§f(a);rf(b), 0 bER, a<b.

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [7]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of convex
functions, wrote that this inequality was proven by J. Hadamard in 1893 [1]. In
1974, D. S. Mitrinovi¢ found Hermite’s note in Mathesis [7]. Since (1.1) was known
as Hadamard’s inequality, the inequality is now commonly referred as the Hermite-
Hadamard inequality. For a monograph devoted to this result see [5]. The recent
survey paper [4] provides other related results.

Let f : [a,b] — R be a convex function on [a,b] and assume that f) (a) and
fL (b) are finite. We recall the following improvement and reverse inequality for
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the first Hermite-Hadamard result that has been established in [2]

1n o<t {J; <“+b> f (;”)] b—a)
< /f t)dt - <a+b>;(b—a)[f’(b)—fjr(a)].

The following inequality that provides a reverse and improvement of the second
Hermite-Hadamard result has been obtained in [3]

(1.3) ogl[;<“;b> /_<a42rb>

8
L@ IO L [ pwa< -0 [ 0) - 7} @),

The constant § is best possible in both (1.2) and (1.3).
In 1906, Fejér [6], while studying trigonometric polynomials, obtained inequali-
ties which generalize that of Hermite & Hadamard:

Theorem 1. Consider the integral f[f f (&) p(t)dt, where f is a convex function in
the interval (a,b) and p is a positive function in the same interval such that

1
pla+t)=pb—-1t), 0<t<

= —E(b_a)a

,Y=Dp (t) 18 a symmetric curve with respect to the straight line which contains

the point ( (a+b), ) and is normal to the t-axis. Under those conditions the
following inequalities are valid:

(1.4) f(“+b>/ dt</ F)p(t)dt < f(a);f(b) /abp(t)dt.

If f is concave on (a,b), then the inequalities reverse in (1.4).

Clearly, for p( ) =1 on [a,b] we get 1.1.

If we take p (¢ — @] ¢ € [a,b] in Theorem 1, then we have
b
(15) flf(a;b)w—a)%/ - e < OO g oy,

for any convex function f : [a,b] — R.
We observe that, if we take p(t) = (b—1t) (t —a), t € [a,b], then p satisfies the
conditions in Theorem 1, and by (1.4) we have the following inequality as well

fla)+ f(b)

“b) o-af< [ 0-nu-as@a<s OO G g,

(16) f(

for any convex function f : [a,b] — R.

Motivated by the above results, in this paper we obtain an improvement and a
reverse for each inequality in (1.4) and therefore generalize the Hermite-Hadamard
inequalities (1.2) and (1.3).



REVERSES OF FEJER’S INEQUALITIES 3

2. IMPROVEMENTS AND REVERSE OF FEJER INEQUALITIES

Following Roberts and Varberg [8, p. 5 |, we recall that if f : I — R is a convex
function, then for any z¢ € I (the interior of the interval I) the limits

L (zg) == lim fl@) = f (@) and f (o) := lim f (@) = f(@0)

T—xo— T — Xo r—x0+ T — Xo

exists and f (zo) < f/ (20) . The functions f” and f/ are monotonic nondecreasing

on I and this property can be extended to the whole interval I (see [8, p. 7 ]).
From the monotonicity of the lateral derivatives f and f| we also have the
gradient inequality

fL@)(@—y) = f@) = fy) = fi@-y)

for any z, y € I.
If I = [a,b], then at the end points we also have the inequalities

f @)= f(a) = [ (a) (x—a)
for any x € (a,b] and
fly)—f0) = f0)(y—b)

for any y € [a, ).
We have the following refinement and reverse of Fejer’s first inequality:

Theorem 2. Let f be a convex function on I and a, b € I, with a < b. If p :
[a,b] — [0,00) is Lebesgue integrable and symmetric, namely p(b+a —t) = p(t)

for allt € [a,b], then
b
o st ol (45 £ (45)

g/abp(wf(t)dt— (/abp@)dt)f(a;b)
b
A

Proof. Let a, b € I, with a < b. Using the integration by parts formula for Lebesgue
integral, we have

/ib (/tbp(s) dS) £ (t)dt
— (/tbp(S)ds>f(t)
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B </a 2 p(s)d8>f<a;b> _/aa;rbp(t)f(t)dt.

By subtracting the second identity from the first, we get

/i (/tbp(s)ds> f’(t)dt/aa;b </atp(s)ds) £ (t) dt

b
:/pr(t)f(t)dt+/ p(t) f(t)dt

a5 a

- (/;ms)ds)f(“jb) - (/ﬁp@)ds)f(“jb).

By the symmetry of p we get

a+b
2

/;p(S)dS=/a p(S)ds:;/abp(s)ds

2

and then we can state the following identity of interest in itself

ey [voroa-s (5 [ s

:/i (/tbp(s)ds> f/(t)dt—/am

t
’ ( / p(s) ds) £ () dt.
By the monotonicity of the derivative we have

fi(a) < f1(t) < fL (a ;_ b) , for almost every t € (a, a;—b)

and

i <a2+b> < f'(t) < f(b), for almost every t € (CLQ—H)J?) .

This implies

([ pera)< o[ peas)
1 () fros) o)
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and

(%32) (/tbms)ds) <7 (/tbms)ds)
< f () (/fp(s)ds), te [a;—b,b} ,

and by integration

f;(”;”)) / </tbp<s>ds> dté/:b (/tbms)ds) 7 () dt

and

If we add these inequalities, then we get

23) f (“;b> /i (/fp(s)ds) dt— f. <“;b> /+ </atp(s)ds>dt
g/ (/tbp@)ds)f(t)dt—/aa;b (/atms)ds)f(t)dt
</ <b>/; (/tbms)ds) dt 1. <a>/aa;b (/:ms)ds) dt.

Integrating by parts in the Lebesgue integral, we have

/i </tbp(s)ds> dt = (/tbp(s)ds>t b

b
+ / tp (t) dt
= wtd a+b
2

where for the last equality we used the symmetry of p.
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Similarly,

J

a+b
2

+b aTer 2
:a2 / p(s)ds—/ p(t) tdt

a+b
2 fa+b 1 /b
_/a < 2 t>p(t)dt—2/a t

Then by (2.3) we obtain the desired result (2.1).

a+b
2

‘ p(t) dt.

Remark 1. If we take p =1 in (2.1) and since ff |t — | =1 (b— a)?, hence

by (2.1) we recapture the inequalities (1.2) from Introduction.

We also have the following refinement and reverse of Fejer’s second inequality:

Theorem 3. Let f be a convex function on I and a, b € I, with a < b. If p :
[a,b] — [0,00) is Lebesgue integrable and symmetric, namely p(b+a —t) = p(t)

for allt € [a,b], then

o os3f a5t (52) 7 (5
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Proof. Using the integration by parts for Lebesgue integral, we have

/ab </atp (s)ds - ;/abp (5) dS) () dt
b
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b t b
(/apw)ds;/a p(s)ds> £ (1) dt

We also have

T~

Observe that

/p(s)ds—/ p(s)ds >0 forte {a;b,b}
atb t
/ p(s)dsf/ p(s)ds >0 fort e [a,a;b}

By the monotonicity of the derivative we have

£ () o ([ e [ e )
< [ ([ren= [T poa )
Sf’(b)/;</ap() —/a p<s>ds>dt

_ (“;b) /aﬂ (/aa;bp(s)ds/atp(s)ds> dt

and

and
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If we add these inequalities, then we get

(2.5)

[f; () /b (/:ms)ds—/aa;bp(s)ds) at
- () / (/ﬁp@)ds—/:p(s)ds) dt]
g/ (/atp<s>ds—LTp<s>ds> o

—/ (/atp@ds_/a“#p(s)ds) o’
sf’(b)/a; (/:p@ds_/fp(s)ds) @
[ (/fpw)ds—/:p(s)ds) .

Observe that

/b+b (/atp(s)ds/aclgbp@)ds) dt
/; </atp(s)ds) dt — bQG/GTp(S)dS
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b a+b +b a+b a+b
—a 2 a 2 2
= [ e [T pdss [T @

_/aazﬁtp(t)dta/aa;bp(s)ds_/aa? (t —a)p(t) dt.

If we change the variable s = b+ a — t, then

+b
= b b

/a (ta)p(t)dt—/a;b(bs)p(bms)ds—Lb (b—s)p(s)ds.

=
Finally, observe that

1 b
2

B(b—a)—‘t—a;—bup(t)dt

]

1 [ [1 a+b
_§/a [Q(b—a)—‘t— : Hp(t)dt
1/ I a+b
+2/a;b [Q(b—a)—’t— 5 Hp(t)dt
a+b

:%/ ’ [;(b—a)—a;b-i-t]P(t)dt

1/ a+b
— —(b—a)—t+ —— t)dt
+2/a2b[2< 0-t+ 252 ne)
a;b 1 b
/ (t*a)p(t)dtﬂ’*\/ (b—t)p(t)dt
a 2 Jagp
atb atb a+b

;/ i (t—a)p(t)dt—f—%/aT (t—a)p(t)dt:/aT (t—a)p(t) dt

and by (2.5) we get (2.4). O

Remark 2. Observe that for p = 1 we recapture the inequalities (1.3) from Intro-
duction.

If we consider the symmetric weight p (t) = [t — 2$2|, t € [a,b] we obtain from
Theorem 2 that

wvsgeea ()£ ()




10

S.S. DRAGOMIR

and from Theorem 3 that

e (5) - ()

a ’ a
S(b*a)Qw*/ t— ;b'f(t)dt
< %(bfa)“q' 12 ®) = £ (a)],

where f is convex on [a,b] . These provide refinements and reverses of the inequal-
ities (1.5).

If we consider the symmetric weight p(t) = (t —a)(b—1t), t € [a,b] we obtain

from Theorem 2 that

o osguen[n(5)r (5)

g/ab(ta)(bt)f(t)dté(ba)?)f(a;rl))

< &i (=)' [/ (0) - £} (@)

and from Theorem 3 that

oo (439 (3

b
<o-o O g o-ns0a
12 .
< =0 [1 () - 1 (@)
~ 192 - + ’
where f is convex on [a,b] . These provide refinements and reverses of the inequal-
ities (1.6).
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