REVERSES AND REFINEMENTS OF FEJER’S FIRST
INEQUALITY FOR RIEMANN-STIELTJES INTEGRAL OF
CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let f be a continuous convex function on [a,b] and g : [a,b] — R
a function of bounded variation with the property that

g(a) < g(t) < g(b) forall ¢ € [a,b],

then we have the following refinement and reverse of Féjer’s first inequality

o< 3o () (2] [ 5

< ["Fwas® - () o -9

1 b a+b
<yl o-ri@) [ |-
a
where f (t) := % [f (t) + f (a+b—1t)]. Applications for functions of selfadjoint
operators in Hilbert spaces with examples for power function and logarithm
are also provided.

'dga),

1. INTRODUCTION

The following inequality holds for any convex function f defined on R

(1.1) f(“;rb>gbla/bf(t)dt§w, a, beR, a < b.

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [9]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of convex
functions, wrote that this inequality was proven by J. Hadamard in 1893 [2]. In
1974, D. S. Mitrinovié¢ found Hermite’s note in Mathesis [9]. Since (1.1) was known
as Hadamard’s inequality, the inequality is now commonly referred as the Hermite-
Hadamard inequality. For a monograph devoted to this result see [6]. The recent
survey paper [5] provides other related results.

Let f : [a,b] — R be a convex function on [a,b] and assume that f’ (a) and
fL (b) are finite. We recall the following improvement and reverse inequality for
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the first Hermite-Hadamard result that has been established in [3]

(12 [f+ (“30) - (5] e-o

<t [rwa-r(“F) < to-0 o - ).

The constant % is best possible in both sides of (1.2).
By the convexity of f : [a,b] — R we have

1y f(5) <F0= 5O+ fato-o]s

[f (a) + [ (0)]

N

for all ¢ € [a,b].

If g : [a,b] — R is monotonic nondecreasing on [a, b], then the Riemann-Stieltjes
integral f: f(t)dg (t) exists and by using the properties of Riemann-Stieltjes inte-
gral for monotonic nondreasing integrators, we deduce from (1.3) that the following
Féjer’s type inequalities for Riemann-Stieltjes integral

a b
w7 (%50) a0 gl < | f(t)dg(t)Sl[f(a)+f(b)][g(b)*g(a)]-

If g is expressed by a Riemann-Stieltjes integral g (¢ f p(s , with ¢ is
monotonic nondreasing, then (1.4) becomes

w) () [rewe < [ Forom

b
< 2[f<>+f<>1/ap<s>dv<s>.

If, for instance, p is continuous and nonnegative on [a,b] and v is monotonic non-
dreasing on [a, b], then the inequality (1.5) holds true.

Motivated by the above results, in this paper we establish some refinements
and reverses of the first Féjer’s inequality. Applications for functions of selfadjoint
operators in Hilbert spaces with examples for power function and logarithm are
also provided.

IN

2. THE MAIN RESULTS

Following Roberts and Varberg [10, p. 5 ], we recall that if f : I — R is a convex
function, then for any z¢ € I (the interior of the interval I) the limits
. f(z) = f(20) [ (@) — [ (%)
! = 1 —> - and f! = 1
fo(zo) = lim ——— M fi (o) = lim “——— 0
exists and f (z0) < f! (20) . The functions f” and f/ are monotonic nondecreasing

on I and this property can be extended to the whole interval I (see [10, p. 7).
From the monotonicity of the lateral derivatives f and f| we also have the
gradient inequality

fr@)(@—y) = f)—fy)=f@ -y

for any x, y € I.
If T = [a,b], then at the end points we also have the inequalities

f@)—f(a) > fi(a)(z—a)



FEJER’S FIRST INEQUALITY FOR RIEMANN-STIELTJES INTEGRAL 3

for any x € (a,b] and
fly)—f0) =) (y—0b)
for any y € [a, ).
We have:

Theorem 1. Let f be a continuous convex function on [a,b] and g : [a,b] — R a
function of bounded variation with the property that

1) 9(0) <9 (1) <g(b) forallt € [ah],
then

a b
(2:2) 7 (%32) 2<ba>g<b>/a+bg<t>dt]

or, equivalently,

03 <a+b>/ ( a—l—b> o)

(% ) NG
/f ) dg (1 (“*b)[g@—g(a)}
Sf_()/a;h<t—a;rb>dg(t)
—f@(a)/{la#@;b—t)dg(t)-

Proof. Using the integration by parts formula for Riemann-Stieltjes integral, we

have
/ e g (D] dt

= F O b) — g (1)) / £t 0 (t)]
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() oo ()] L ome
- [ rwan -1 (50) [ga»g(a;b)]

and

a+b

(50 [o(5Y) -s@] - [ rwas.

If we subtract the second equality from the first, then we get

a+b
2

[ r0aw-sola- [ robo-g@a

[ - s (25 por-a(55)

a+b

<a+b>[ <a+b) g(a)%/azf(t)dg(t)
/f g ¢ <“+b)[ (b) — g (a)],

namely, the following equality of interest

(2.4) / P~ 1 (57 a0 - g(a)

a+b

/ LI Ola®) - @]d- [ rwbo-g@a
By the monotonicity of the derivative we have

r@srosr (),

for almost every t € (a, %*b) and

n () s rasro,

for almost every t € (“25, b)
Since g (a) < g (t) < g(b) for all t € [a, b], then

@O -9@] < Ol -9@l <1 (50 b0 -s .

for almost every t € (a, “T'H)) and

7 (““’) 00 —g @] < ' ®) g ) —g(®) < £ ) g () — g (0)].
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for almost every t € (%52, b) .
These imply that

2

£ (@) / l9(t) — g (a)]dt < / (019 () — g ()] dt

a

a+b a+b
2

2
and
b b
fi (a ; b) /j [9(b) — g ()] dt < /ib 7 () [g(b) — g (b)) dt
2 : b
<5 o [ o) g )
Therefore

() [ o swa s (S50 [T w0 - sera

which is equivalent to (2.2).
Observe that

b b
[ awd=g@itn - [ s
a+b 2 aT«{»b

a+b\ a+bd b
g9 (1) 0 [ o).

2

Then
b

se-ag® - [ g

2

b
=50 asm —gwbrg(50) 50w [

a+b\a+bd a+b b
o (55) e +/@2+btdg(t>

:/;tdg(ﬂ— {g(b)_g(a;b)} ot

2

_/ib (ta;b)dg(t).

2
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Also,
aTb a-2f—b
[ awa=g@uF - [T gt
a+b\a+b =a
=9 5 —9(@a— tdg (t),

which implies that
atb
2

g(0)dt— 5 (b~ a)g(a)

~o () -s@a- [T g0 - S 0- 000

a+b
2

=2 o (57) ~et@] - [ s

a+b

:/(17 (a;b—t)dg(t).

By using (2.2) we get (2.3). O

Remark 1. If f is conver and differentiable at “TH’, then the first inequality in
(2.3) becomes
> dg (t)

(2.5) f’(“;b)/abct—a;b
< [10ar0 -7 (") b - s,

provided g satisfies the condition (2.1).

Corollary 1. Let p: [a,b] — R be continuous and v of bounded variation on [a,b]
and such that

t b
(2.6) 0< / p(s)dv(s) < / p(s)dv(s) for allt € [a,b],

then for any f a continuous convex function on [a,b], we have

27) (45 /b (- 2) prao
() o
sLbf<t>p<t>dv<t>f(“§b) /abp<s>dv<@
<o [, (- 0w

+b

QN

+b

i [ ().
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If f is differentiable in ‘%b, then

(238) (%) /ab (-5 pas)

S/abf(t)p(t)dv(t)—f<a;rb> pr(s>du<s>
<f’(b)ﬁbb<t—“;b)p(t)dv(t)

+
2

—fi(a)/aa;b (52 1)pao.

The proof follows by (2.3) for g (t) = fatp(s) dv (s) and on observing that, by
the properties of the Riemann-Stieltjes integral [1, p. 158-159], we have

/ib (t—a;b) dg(t)z[ib (t—a;—b)p(t)dv(t),

[ (5t ao- |

b b
/f(t)dg(t)=/ £ () p(t)dv(8).

and

Corollary 2. Let p: [a,b] — [0,00) be continuous and v monotonic nondecreasing
on [a,b], then the inequalities (2.7) and (2.8) hold true.
We provide now some Riemann-Stieltjes integral inequalities for the symmetric
transform of a convex function f : [a,b] — R defined by
Y 1
F(t) = [0+ Flatb—1).

Theorem 2. Let f be a continuous convex function on [a,b] and g : [a,b] — R a
function of bounded variation with the property (2.1), then

w0t () ()]

< [Fwaro -1 (") b0 -
1

t—a;b‘dg(t).

Proof. The function h : [a,b] — R defined by h (t) = f (a + b —t) is convex and
(ks -h@) S5 1)

hi(a) = sl—>0+ S N sl—i>0+ S
o fom) ) fw - ()
s—0+ —S u—0— u



and
h_ (b) = —f! (a).
By writing the inequality (2.3) for the function h we have

, fa+b b a+b
- t
h+( 2 )/;b(t 2 )

namely

< [rarv-0a0 -1 (") o) -

<f (b)/aa;b (C‘;b—t> dg ()
—fua)/; (1-“52) dato),

If we add this inequality and (2.3) and divide by 2, then we get
a+b
1 a+b , [a+Db 2 (a+b
(7)) (5w
1, [a+b a+b b a+b
Sl () ()] L (557w

< [Twasw -1 (“5*) bw g



FEJER’S FIRST INEQUALITY FOR RIEMANN-STIELTJES INTEGRAL 9

that is equivalent to the second and third inequality in (2.9).

Since
ogi(b—a>g<b>—/;g<t>dt=/; (t—a‘;b)dg@).

2

and
a+b a+b
2

o< [Tewa-j0-a9@-[ " (“;b—t)dga).

hence by addition we get

ogﬂib (t—a;b)dg(t)—l—/aa;b (a;—b—t)dg(t):/ab

2

which proves the first inequality in O

Corollary 3. Letp: [a,b] — R be continuous and v of bounded variation on [a,b]
and such that the condition (2.6) holds, then for any f a continuous convex function

on [a,b], we have
a+b , [a+Db b
(3) - L

< [Torwan -1 () [ rowo
1
>

a+b
2

(2.10) o<t [f+ 'pa) do (1)
b

t—a;b'p(t)dv(t).

3. APPLICATIONS FOR SELFADJOINT OPERATORS

We denote by B(H) the Banach algebra of all bounded linear operators on
a complex Hilbert space (H;(-,-)). Let A € B(H) be selfadjoint and let ¢, be
defined for all A € R as follows

1, for —oo0 < s < A,
px(s) =
0, for A < s < 4o0.

Then for every A € R the operator
(3.1) Ex =, (4)

is a projection which reduces A.

The properties of these projections are collected in the following fundamental
result concerning the spectral representation of bounded selfadjoint operators in
Hilbert spaces, see for instance [8, p. 256]:

Theorem 3 (Spectral Representation Theorem). Let A be a bounded selfadjoint
operator on the Hilbert space H and let m = min {\ |A € Sp (4) } =: minSp (A) and
M = max{\|A € Sp(A)} =: maxSp (A). Then there exists a family of projections
{Ex} e, called the spectral family of A, with the following properties

a) Ex < Ey for A< \;

b) En—0=0, Exy =1y and Exyo = Ey for all X € R;
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c) We have the representation

M
A= / \E}.

m—0
More generally, for every continuous complex-valued function ¢ defined on R
there exists a unique operator ¢ (A) € B(H) such that for every € > 0 there exists
a § > 0 satisfying the inequality

(A= o (N) [Br — B, ]| <¢

k=1

whenever
M<m=A<..< 1<\, =M,

A — Ag—1 <0 for 1 <k <,

N € [Mo1, M) for 1<k <n

this means that

(5:2) e = [ e(yap,

where the integral is of Riemann-Stieltjes type.

Corollary 4. With the assumptions of Theorem 3 for A, Ex and ¢ we have the
representations

M
LP(A).T:/ (AN dE\x forallx € H
m—0

and

M
(3.3) (p(A)x,y) = / B o (AN d(Exz,y) forallxz, ye€ H.

In particular,
M

(p(A)z,x) = / o (A d{(Exz,z) forallxz € H.

m—0
Moreover, we have the equality
M

o (A) 2|2 = / o (V2 d||Ere|? for allz € H.

1—0

We consider the continuous functions (( —miM ) 4 and (w — ﬁ) . defined by

<€mJ;M>+(t)_

M M
t_m-;— ’tzm-g ,

,+M
0, t < mEM
and M M
m+M m+4M
m+ M 2 htsTH
—t) @)=
2 + 0, t > mtM,

Let A be a bounded selfadjoint operator on the Hilbert space H and let m =
min {\|A € Sp(A)} =: minSp (A) and M = max{A|A € Sp(A)} =: maxSp(4).
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Also, assume that { F)}, . is the spectral family of the bounded selfadjoint operator
A. Then we can define the operators

M
(A_m+M1H> ::/ <€_m+M) () dEy
2 + m—0 2 +

M
(m+M1H_A) ::/ <m+M_£> () dE).
2 +  Jmo\ 2 +

where p is continuous on an open interval containing [m, M].
We can state the following result for functions of selfadjoint operators:

and

Theorem 4. Let A be a bounded selfadjoint operator on the Hilbert space H
and let m = min{A|A € Sp(4)} =: minSp(A) and M = max{A|\ € Sp(4)}
=: max Sp (A4). Also, assume that {Ex},cp is the spectral family of the bounded

selfadjoint operator A and f : I — R is continuous convex on I, [m, M] C I (the
interior of 1), then

3.4 , m+M) (A_m+M1> B ,<m+M> <m+M1 _A)
s f (™ ) (™ - a)

<r-f (")
< 1 (M) (A—m;M1H)+—f;<m> (mngH—A)+.

If f is differentiable in mgM, then

35 <m“;M> (A— m“;M1H>

<ra- s (M5 ) i

< f (M) (A—m_;MlH> — 1 (m) (m—;MlH—A> .
+ +

Proof. Using the inequality (2.3), we have

, (m—ec+ M M m—¢e+M
i <2 >[”;+M (t — d{Ez, )

m—e+M

— M 2 — M
— (m Z+ > /m_E (m 52+ —t) d{FE;x,x)
M M
< f@)d{Ezx,x) — f (W) / d(Ez, )
M
= fi (M> /m—EJrI\/I (t B W) d<Et$)$>

m—e+M
—f;(m—a)/ <m_62+M—t>d<Etx,a:>.

for small ¢ > 0 and for any « € H.
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Taking the limit over € — 0+, we get

M\ M M
(25 [, (-5

2

m4 M
_f/<m+M)/ <m+M—t)d<Etx,x>
2 - 2

g/iof(t)dwtx,@—f(m;M) /M d (e, )

m—0

<7 (M)/HM (t— m—;M)d<Etx,x)

2
m+M
2

M
m—0
which is equivalent to the operator inequality (3.4). O

By utilising the Riemann-Stieltjes integral inequality (2.9) we can also prove in
a similar way the result:

Theorem 5. With the assumptions of Theorem 4 we have

o2 () (St
< 3L+ (et At - ) - 7 (P51
<3l on -] |a- "5 1),

; ; ; - m+4M
If f is differentiable in %, then

1 m+ M
BN 0S U+t - a1 (5 1
1 m+ M
< 517 00— g ][ - 250
Consider the convex function f (¢t) = —Int, t > 0 and assume that 0 < mlg <
A< M1lpg < oo, then by (3.5) we have
2 m+ M
. lg—A
(38) m+ M < 2 " )

M
<1n(m—|2— >1H—lnA

§1<m+M1H—A> _1<A_m+M1H>
m 2 n M 2 T

-2 mM 2

and by (3.7)
M 1
(3.9) Ogln<m; >1H—21n[A((m+M)1H—A)]
<1M—m _m—I—MlH‘_



FEJER’S FIRST INEQUALITY FOR RIEMANN-STIELTJES INTEGRAL 13

Also, consider the convex function f (¢t) =t%, ¢ > 0 and a € (—00,0) U [1, 00),
and assume that 0 < mly < A< M1y < oo, then by (3.5) we get

M\*! M
(3.10) o2t M At
2 2
M «
< AY - (m—i—) 1y
2
<a|M*1 <A— M1H> —mo1 (MIH —A>
2 n 2 n
and by (3.7) we get
1 M\“
(3.11) 0< o [A%+ ((m+ M) 1y — A)Y] - (m—;—) i
1 o o m+ M
For a = —1 we get
M\ ? M
(3.12) <m+ ) <m+ 1HA>
2 2
—1
< A1 (M> 1y
2
M M
<m2 <m—|—1H A> — M2 <A m_lH)
2 n 2 n
and by (3.7) we get
1 _ M\
(3.13) 0<3 [A—l +((m+ M) 1y — A) 1] - (”ﬁ) i
1M? —m? m—|—M1
=2 mM? 2
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