COMPARING WEIGHTED AND INTEGRAL MEANS FOR CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

$$
\begin{aligned}
& \text { Abstract. Let } f \text { be a convex function on } I \text { and } a, b \in I \text { with } a<b \text {. If } \\
& p:[a, b] \rightarrow[0, \infty) \text { is Lebesgue integrable and symmetric, namely } p(b+a-t)= \\
& p(t) \text { for all } t \in[a, b] \text {, then we show in this paper among others that } \\
& \qquad\left|\frac{1}{\int_{a}^{b} p(x) d x} \int_{a}^{b} p(x) f(x) d x-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \\
& \quad \leq \frac{1}{2}\left[\frac{f_{-}^{\prime}(b)-f_{+}^{\prime}(a)}{b-a}\right] \frac{1}{\int_{a}^{b} p(x) d x} \int_{a}^{b} p(x)(x-a)^{2} d x .
\end{aligned}
$$

Some examples are given as well.

1. Introduction

The following inequality holds for any convex function f defined on \mathbb{R}

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \frac{f(a)+f(b)}{2}, \quad a, b \in \mathbb{R}, a<b \tag{1.1}
\end{equation*}
$$

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [8]). But this result was nowhere mentioned in the mathematical literature and was not widely known as Hermite's result.
E. F. Beckenbach, a leading expert on the history and the theory of convex functions, wrote that this inequality was proven by J. Hadamard in 1893 [1]. In 1974, D. S. Mitrinović found Hermite's note in Mathesis [8]. Since (1.1) was known as Hadamard's inequality, the inequality is now commonly referred as the HermiteHadamard inequality. For a monograph devoted to this result see [6]. Reverses of the Hermite-Hadamard inequality are provided in [2] and [3]. The recent survey paper [4] provides other related results.

In 1906, Fejér [7], while studying trigonometric polynomials, obtained inequalities which generalize that of Hermite \& Hadamard:

Theorem 1. Consider the integral $\int_{a}^{b} f(t) p(t) d t$, where f is a convex function in the interval (a, b) and p is a positive function in the same interval such that

$$
p(a+t)=p(b-t), \quad 0 \leq t \leq \frac{1}{2}(b-a)
$$

i.e., $y=p(t)$ is a symmetric curve with respect to the straight line which contains the point $\left(\frac{1}{2}(a+b), 0\right)$ and is normal to the t-axis. Under those conditions the

[^0]following inequalities are valid:
\[

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{\int_{a}^{b} p(t) d t} \int_{a}^{b} f(t) p(t) d t \leq \frac{f(a)+f(b)}{2} \tag{1.2}
\end{equation*}
$$

\]

If f is concave on (a, b), then the inequalities reverse in (1.2)
In the recent paper [5] we obtained the following refinement and reverse of Féjer's first inequality:
Theorem 2. Let f be a convex function on I and $a, b \in I$, with $a<b$. If p : $[a, b] \rightarrow[0, \infty)$ is Lebesgue integrable and symmetric, namely $p(b+a-t)=p(t)$ for all $t \in[a, b]$, then

$$
\begin{align*}
0 & \leq \frac{1}{2} \frac{1}{\int_{a}^{b} p(t) d t} \int_{a}^{b}\left|t-\frac{a+b}{2}\right| p(t) d t\left[f_{+}^{\prime}\left(\frac{a+b}{2}\right)-f_{-}^{\prime}\left(\frac{a+b}{2}\right)\right] \tag{1.3}\\
& \leq \frac{1}{\int_{a}^{b} p(t) d t} \int_{a}^{b} p(t) f(t) d t-f\left(\frac{a+b}{2}\right) \\
& \leq \frac{1}{2} \frac{1}{\int_{a}^{b} p(t) d t} \int_{a}^{b}\left|t-\frac{a+b}{2}\right| p(t) d t\left[f_{-}^{\prime}(b)-f_{+}^{\prime}(a)\right]
\end{align*}
$$

In the same paper [5] we also obtained the corresponding result for the second Féjer's inequality:

Theorem 3. Let f be a convex function on I and $a, b \in I$, with $a<b$. If p : $[a, b] \rightarrow[0, \infty)$ is Lebesgue integrable and symmetric, namely $p(b+a-t)=p(t)$ for all $t \in[a, b]$, then

$$
\begin{align*}
0 & \leq \frac{1}{2} \frac{1}{\int_{a}^{b} p(t) d t} \int_{a}^{b}\left[\frac{1}{2}(b-a)-\left|t-\frac{a+b}{2}\right|\right] p(t) d t \tag{1.4}\\
& \times\left[f_{+}^{\prime}\left(\frac{a+b}{2}\right)-f_{-}^{\prime}\left(\frac{a+b}{2}\right)\right] \\
& \leq \frac{f(a)+f(b)}{2}-\frac{1}{\int_{a}^{b} p(t) d t} \int_{a}^{b} p(t) f(t) d t \\
& \leq \frac{1}{2} \frac{1}{\int_{a}^{b} p(t) d t} \int_{a}^{b}\left[\frac{1}{2}(b-a)-\left|t-\frac{a+b}{2}\right|\right] p(t) d t \\
& \times\left[f_{-}^{\prime}(b)-f_{+}^{\prime}(a)\right]
\end{align*}
$$

Motivated by the above results, in this paper we compare the weighted integral mean

$$
\frac{1}{\int_{a}^{b} p(x) d x} \int_{a}^{b} p(x) f(x) d x
$$

with the integral mean

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

in the case of convex functions $f:[a, b] \rightarrow \mathbb{R}$ and integrable and nonnegative wight p. The case of symmetric weights p on $[a, b]$ is also analyzed. Some examples are given as well.

2. The Main Results

We have the following equality:
Lemma 1. Let $f:[a, b] \rightarrow \mathbb{C}$ be an absolutely continuous function on the interval $[a, b]$ and $g:[a, b] \rightarrow \mathbb{C}$ a Lebesgue integrable function, then

$$
\begin{align*}
& (b-a) \int_{a}^{b} g(x) f(x) d x-\int_{a}^{b} f(x) d x \int_{a}^{b} g(x) d x \tag{2.1}\\
& =\int_{a}^{b} g(x)\left(\int_{a}^{x}(t-a) f^{\prime}(t) d t\right) d x+\int_{a}^{b} g(x)\left(\int_{x}^{b}(t-b) f^{\prime}(t) d t\right) d x
\end{align*}
$$

Proof. We start to the Montgomery identity for an absolutely continuous function $f:[a, b] \rightarrow \mathbb{R}$

$$
f(x)(b-a)-\int_{a}^{b} f(t) d t=\int_{a}^{x}(t-a) f^{\prime}(t) d t+\int_{x}^{b}(t-b) f^{\prime}(t) d t
$$

that holds for all $x \in[a, b]$.
If we multiply this identity by $g(x)$ and integrate over x in $[a, b]$, then we get

$$
\begin{align*}
& (b-a) \int_{a}^{b} g(x) f(x) d x-\int_{a}^{b} f(t) d t \int_{a}^{b} g(x) d x \tag{2.2}\\
& =\int_{a}^{b} g(x)\left(\int_{a}^{x}(t-a) f^{\prime}(t) d t\right) d x+\int_{a}^{b} g(x)\left(\int_{x}^{b}(t-b) f^{\prime}(t) d t\right) d x
\end{align*}
$$

which proves the desired identity (2.1).
Theorem 4. If $f:[a, b] \rightarrow \mathbb{R}$ is convex and $p:[a, b] \rightarrow[0, \infty)$ is Lebesgue integrable, then

$$
\begin{align*}
& \frac{1}{2} \frac{1}{(b-a) \int_{a}^{b} p(x) d x} \int_{a}^{b} p(x)\left\{f_{+}^{\prime}(a)(x-a)^{2}-f_{-}^{\prime}(b)(b-x)^{2}\right\} d x \tag{2.3}\\
& \leq \frac{1}{2} \frac{1}{(b-a) \int_{a}^{b} p(x) d x} \\
& \times \int_{a}^{b} p(x)\left\{(x-a)^{2} \Delta(f ; a, x)-(b-x)^{2} \Delta(f ; x, b)\right\} d x \\
& \leq \frac{1}{\int_{a}^{b} p(x) d x} \int_{a}^{b} p(x) f(x) d x-\frac{1}{b-a} \int_{a}^{b} f(x) d x
\end{align*}
$$

where $\Delta(f ; \alpha, \beta)$ is the divided difference, namely

$$
\Delta(f ; \alpha, \beta)=\frac{f(\alpha)-f(\beta)}{\alpha-\beta}
$$

Proof. Since f is convex, then f^{\prime} exists everywhere on $[a, b]$ except a countable number of points and is nondecreasing, then by Cebyšev's inequality for synchronous functions, we have

$$
\begin{aligned}
\int_{a}^{x}(t-a) f^{\prime}(t) d t & \geq \frac{1}{x-a} \int_{a}^{x}(t-a) d t \int_{a}^{x} f^{\prime}(t) d t \\
& =\frac{1}{2}(x-a)[f(x)-f(a)]
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{x}^{b}(t-b) f^{\prime}(t) d t & \geq \frac{1}{b-x} \int_{x}^{b}(t-b) d t[f(b)-f(x)] \\
& =-\frac{1}{2}(b-x)[f(b)-f(x)]
\end{aligned}
$$

for $x \in(a, b)$.
These imply that

$$
\int_{a}^{b} p(x)\left(\int_{a}^{x}(t-a) f^{\prime}(t) d t\right) d x \geq \frac{1}{2} \int_{a}^{b} p(x)(x-a)[f(x)-f(a)] d x
$$

and

$$
\int_{a}^{b} p(x)\left(\int_{x}^{b}(t-b) f^{\prime}(t) d t\right) d x \geq-\frac{1}{2} \int_{a}^{b} p(x)(b-x)[f(b)-f(x)] d x
$$

If we add these inequalities, then we get

$$
\begin{aligned}
& \int_{a}^{b} p(x)\left(\int_{a}^{x}(t-a) f^{\prime}(t) d t\right) d x+\int_{a}^{b} p(x)\left(\int_{x}^{b}(t-b) f^{\prime}(t) d t\right) d x \\
& \geq \frac{1}{2} \int_{a}^{b} p(x)(x-a)[f(x)-f(a)] d x-\frac{1}{2} \int_{a}^{b} p(x)(b-x)[f(b)-f(x)] d x \\
& =\frac{1}{2} \int_{a}^{b} p(x)\{(x-a)[f(x)-f(a)]-(b-x)[f(b)-f(x)]\} d x \\
& =\frac{1}{2} \int_{a}^{b} p(x)\left\{(x-a)^{2} \frac{f(x)-f(a)}{x-a}-(b-x)^{2} \frac{f(b)-f(x)}{b-x}\right\} d x \\
& =\frac{1}{2} \int_{a}^{b} p(x)\left\{(x-a)^{2} \Delta(f ; a, x)-(b-x)^{2} \Delta(f ; x, b)\right\} d x .
\end{aligned}
$$

By using the first identity in (2.1) for $g=p$, we get the second inequality in (2.3).
By the convexity of f we have

$$
\Delta(f ; a, x) \geq f_{+}^{\prime}(a) \text { and } f_{-}^{\prime}(b) \geq \Delta(f ; x, b)
$$

which proves the first inequality in (2.3).
In the following we provide another direct proof of the inequality between the first and last term in (2.3) and a reverse inequality as well.

Theorem 5. If $f:[a, b] \rightarrow \mathbb{R}$ is convex and $p:[a, b] \rightarrow[0, \infty)$ is Lebesgue integrable, then

$$
\begin{align*}
& \frac{1}{2} \frac{1}{(b-a) \int_{a}^{b} p(x) d x} \int_{a}^{b} p(x)\left\{f_{+}^{\prime}(a)(x-a)^{2}-f_{-}^{\prime}(b)(b-x)^{2}\right\} d x \tag{2.4}\\
& \leq \frac{1}{\int_{a}^{b} p(x) d x} \int_{a}^{b} p(x) f(x) d x-\frac{1}{b-a} \int_{a}^{b} f(x) d x \\
& \leq \frac{1}{\int_{a}^{b} p(x) d x} \int_{a}^{b} p(x) f^{\prime}(x)\left(x-\frac{a+b}{2}\right) d x
\end{align*}
$$

We also have

$$
\begin{align*}
& \frac{1}{\int_{a}^{b} p(x) d x} \int_{a}^{b} p(x) f(x) d x-\frac{1}{b-a} \int_{a}^{b} f(x) d x \tag{2.5}\\
& \leq \frac{1}{2} \frac{1}{(b-a) \int_{a}^{b} p(x) d x} \int_{a}^{b} p(x)\left[f_{-}^{\prime}(b)(x-a)^{2}-f_{+}^{\prime}(a)(b-x)^{2}\right] d x
\end{align*}
$$

Proof. Using the convexity of f we get

$$
f_{-}^{\prime}(x) \int_{a}^{x}(t-a) d t \geq \int_{a}^{x}(t-a) f^{\prime}(t) d t \geq f_{+}^{\prime}(a) \int_{a}^{x}(t-a) d t
$$

and

$$
f_{-}^{\prime}(b) \int_{x}^{b}(b-t) d t \geq \int_{x}^{b}(b-t) f^{\prime}(t) d t \geq f_{+}^{\prime}(x) \int_{x}^{b}(b-t) d t
$$

namely

$$
\frac{1}{2} f_{-}^{\prime}(x)(x-a)^{2} \geq \int_{a}^{x}(t-a) f^{\prime}(t) d t \geq \frac{1}{2} f_{+}^{\prime}(a)(x-a)^{2}
$$

and

$$
\frac{1}{2} f_{-}^{\prime}(b)(b-x)^{2} \geq \int_{x}^{b}(b-t) f^{\prime}(t) d t \geq \frac{1}{2} f_{+}^{\prime}(x)(b-x)^{2}
$$

for $x \in(a, b)$.
These imply that

$$
\begin{aligned}
& \frac{1}{2} \int_{a}^{b} p(x) f_{-}^{\prime}(x)(x-a)^{2} d x \\
& \geq \int_{a}^{b} p(x)\left(\int_{a}^{x}(t-a) f^{\prime}(t) d t\right) d x \geq \frac{1}{2} f_{+}^{\prime}(a) \int_{a}^{b} p(x)(x-a)^{2} d x
\end{aligned}
$$

and

$$
\begin{aligned}
& -\frac{1}{2} \int_{a}^{b} p(x) f_{+}^{\prime}(x)(b-x)^{2} d x \\
& \geq-\int_{a}^{b} p(x)\left(\int_{x}^{b}(b-t) f^{\prime}(t) d t\right) d x \geq-\frac{1}{2} f_{-}^{\prime}(b) \int_{a}^{b} p(x)(b-x)^{2} d x
\end{aligned}
$$

and, by addition

$$
\begin{align*}
& \frac{1}{2} \int_{a}^{b} p(x) f_{-}^{\prime}(x)(x-a)^{2} d x-\frac{1}{2} \int_{a}^{b} p(x) f_{+}^{\prime}(x)(b-x)^{2} d x \tag{2.6}\\
& \geq \int_{a}^{b} p(x)\left(\int_{a}^{x}(t-a) f^{\prime}(t) d t\right) d x-\int_{a}^{b} p(x)\left(\int_{x}^{b}(b-t) f^{\prime}(t) d t\right) d x \\
& \geq \frac{1}{2} f_{+}^{\prime}(a) \int_{a}^{b} p(x)(x-a)^{2} d x-\frac{1}{2} f_{-}^{\prime}(b) \int_{a}^{b} p(x)(b-x)^{2} d x \\
& =\frac{1}{2} \int_{a}^{b} p(x)\left\{f_{+}^{\prime}(a)(x-a)^{2} d x-f_{-}^{\prime}(b)(b-x)^{2}\right\} d x
\end{align*}
$$

Since $f_{-}^{\prime}(x)=f_{+}^{\prime}(x)$ for every $x \in(a, b)$ except a countable number of points, we can write $f^{\prime}(x)$ for either $f_{-}^{\prime}(x)$ or $f_{+}^{\prime}(x)$. Then

$$
\begin{aligned}
& \frac{1}{2} \int_{a}^{b} p(x) f_{-}^{\prime}(x)(x-a)^{2} d x-\frac{1}{2} \int_{a}^{b} p(x) f_{+}^{\prime}(x)(b-x)^{2} d x \\
& =\frac{1}{2} \int_{a}^{b} p(x) f^{\prime}(x)\left[(x-a)^{2}-(b-x)^{2}\right] d x \\
& =(b-a) \int_{a}^{b} p(x) f^{\prime}(x)\left(x-\frac{a+b}{2}\right) d x
\end{aligned}
$$

By making use of the first identity in (2.1) for $g=f$ and the inequality (2.6) we get the second inequality in (2.4).

By the convexity of f we also have

$$
\int_{a}^{b} p(x) f_{-}^{\prime}(x)(x-a)^{2} d x \leq f_{-}^{\prime}(b) \int_{a}^{b} p(x)(x-a)^{2} d x
$$

and

$$
f_{+}^{\prime}(a) \int_{a}^{b} p(x)(b-x)^{2} d x \leq \int_{a}^{b} p(x) f_{+}^{\prime}(x)(b-x)^{2} d x
$$

These imply that

$$
\begin{aligned}
& \frac{1}{2} \int_{a}^{b} p(x) f_{-}^{\prime}(x)(x-a)^{2} d x-\frac{1}{2} \int_{a}^{b} p(x) f_{+}^{\prime}(x)(b-x)^{2} d x \\
& \leq \frac{1}{2} f_{-}^{\prime}(b) \int_{a}^{b} p(x)(x-a)^{2} d x-\frac{1}{2} f_{+}^{\prime}(a) \int_{a}^{b} p(x)(b-x)^{2} d x
\end{aligned}
$$

and by (2.6) we get

Corollary 1. If $f:[a, b] \rightarrow \mathbb{R}$ is convex and $p:[a, b] \rightarrow[0, \infty)$ is Lebesgue integrable and symmetric, namely $p(a+b-x)=p(x)$ for all $x \in[a, b]$, then

$$
\begin{align*}
& \frac{1}{2}\left[\frac{f_{+}^{\prime}(a)-f_{-}^{\prime}(b)}{b-a}\right] \frac{1}{\int_{a}^{b} p(x) d x} \int_{a}^{b} p(x)(x-a)^{2} d x \tag{2.7}\\
& \leq \frac{1}{\int_{a}^{b} p(x) d x} \int_{a}^{b} p(x) f(x) d x-\frac{1}{b-a} \int_{a}^{b} f(x) d x \\
& \leq \frac{1}{2}\left[f_{-}^{\prime}(b)-f_{+}^{\prime}(a)\right] \frac{1}{\int_{a}^{b} p(x) d x} \int_{a}^{b} p(x)\left|x-\frac{a+b}{2}\right| d x
\end{align*}
$$

We also have

$$
\begin{align*}
& \frac{1}{\int_{a}^{b} p(x) d x} \int_{a}^{b} p(x) f(x) d x-\frac{1}{b-a} \int_{a}^{b} f(x) d x \tag{2.8}\\
& \leq \frac{1}{2}\left[\frac{f_{-}^{\prime}(b)-f_{+}^{\prime}(a)}{b-a}\right] \frac{1}{\int_{a}^{b} p(x) d x} \int_{a}^{b} p(x)(x-a)^{2} d x .
\end{align*}
$$

Proof. We have

$$
\begin{aligned}
& \int_{a}^{b} p(x)\left\{f_{+}^{\prime}(a)(x-a)^{2}-f_{-}^{\prime}(b)(b-x)^{2}\right\} d x \\
& =f_{+}^{\prime}(a) \int_{a}^{b} p(x)(x-a)^{2} d x-f_{-}^{\prime}(b) \int_{a}^{b} p(x)(b-x)^{2} d x \\
& =f_{+}^{\prime}(a) \int_{a}^{b} p(x)(x-a)^{2} d x-f_{-}^{\prime}(b) \int_{a}^{b} p(a+b-y)(y-a)^{2} d y \\
& =f_{+}^{\prime}(a) \int_{a}^{b} p(x)(x-a)^{2} d x-f_{-}^{\prime}(b) \int_{a}^{b} p(x)(x-a)^{2} d x \\
& =\left[f_{+}^{\prime}(a)-f_{-}^{\prime}(b)\right] \int_{a}^{b} p(x)(x-a)^{2} d x
\end{aligned}
$$

which proves the first inequality in (2.7).
Also,

$$
\begin{aligned}
& \int_{a}^{b} p(x) f^{\prime}(x)\left(x-\frac{a+b}{2}\right) d x \\
& =\frac{1}{2} \int_{a}^{b} p(x) f^{\prime}(x)\left(x-\frac{a+b}{2}\right) d x+\frac{1}{2} \int_{a}^{b} p(x) f^{\prime}(x)\left(x-\frac{a+b}{2}\right) d x \\
& =\frac{1}{2} \int_{a}^{b} p(x) f^{\prime}(x)\left(x-\frac{a+b}{2}\right) d x \\
& +\frac{1}{2} \int_{a}^{b} p(a+b-y) f^{\prime}(a+b-y)\left(\frac{a+b}{2}-y\right) d y \\
& =\frac{1}{2} \int_{a}^{b} p(x) f^{\prime}(x)\left(x-\frac{a+b}{2}\right) d x \\
& -\frac{1}{2} \int_{a}^{b} p(x) f^{\prime}(a+b-x)\left(x-\frac{a+b}{2}\right) d x \\
& =\frac{1}{2} \int_{a}^{b} p(x)\left[f^{\prime}(x)-f^{\prime}(a+b-x)\right]\left(x-\frac{a+b}{2}\right) d x
\end{aligned}
$$

By the Čebyšev's weighted inequality for synchronous functions, since both $f^{\prime}(x)$ and $g(x):=x-\frac{a+b}{2}$ are nondecreasing, hence

$$
\begin{aligned}
& \int_{a}^{b} p(x) f^{\prime}(x)\left(x-\frac{a+b}{2}\right) d x \\
& \geq \frac{1}{\int_{a}^{b} p(x)} \int_{a}^{b} p(x) f^{\prime}(x) d x \int_{a}^{b} p(x)\left(x-\frac{a+b}{2}\right) d x=0
\end{aligned}
$$

since the function $p(x)\left(x-\frac{a+b}{2}\right)$ is asymmetric on $[a, b]$.

Therefore

$$
\begin{aligned}
0 & \leq \int_{a}^{b} p(x) f^{\prime}(x)\left(x-\frac{a+b}{2}\right) d x=\left|\int_{a}^{b} p(x) f^{\prime}(x)\left(x-\frac{a+b}{2}\right) d x\right| \\
& =\frac{1}{2}\left|\int_{a}^{b} p(x)\left[f^{\prime}(x)-f^{\prime}(a+b-x)\right]\left(x-\frac{a+b}{2}\right) d x\right| \\
& \leq \frac{1}{2} \int_{a}^{b} p(x)\left|f^{\prime}(x)-f^{\prime}(a+b-x)\right|\left|x-\frac{a+b}{2}\right| d x \\
& \leq \frac{1}{2}\left[f_{-}^{\prime}(b)-f_{+}^{\prime}(a)\right] \int_{a}^{b} p(x)\left|x-\frac{a+b}{2}\right| d x
\end{aligned}
$$

which proves the second part of (2.7).
Now, observe that by the symmetry of p we have

$$
\int_{a}^{b} p(x)(b-x)^{2} d x=\int_{a}^{b} p(a+b-y)(y-a)^{2} d y=\int_{a}^{b} p(x)(x-a)^{2} d x
$$

which gives that

$$
\begin{aligned}
& f_{-}^{\prime}(b) \int_{a}^{b} p(x)(x-a)^{2} d x-f_{+}^{\prime}(a) \int_{a}^{b} p(x)(b-x)^{2} d x \\
& =f_{-}^{\prime}(b) \int_{a}^{b} p(x)(x-a)^{2} d x-f_{+}^{\prime}(a) \int_{a}^{b} p(x)(x-a)^{2} d x \\
& =\left[f_{-}^{\prime}(b)-f_{+}^{\prime}(a)\right] \int_{a}^{b} p(x)(x-a)^{2} d x
\end{aligned}
$$

and by (2.5) we get (2.8).
By utilising the first inequality in (2.7) and the inequality (2.8) we can state the following result as well:

Corollary 2. If $f:[a, b] \rightarrow \mathbb{R}$ is convex and $p:[a, b] \rightarrow[0, \infty)$ is Lebesgue integrable and symmetric, then

$$
\begin{align*}
& \left|\frac{1}{\int_{a}^{b} p(x) d x} \int_{a}^{b} p(x) f(x) d x-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \tag{2.9}\\
& \leq \frac{1}{2}\left[\frac{f_{-}^{\prime}(b)-f_{+}^{\prime}(a)}{b-a}\right] \frac{1}{\int_{a}^{b} p(x) d x} \int_{a}^{b} p(x)(x-a)^{2} d x .
\end{align*}
$$

3. Some Examples

We consider the symmetric weight $p(x)=\left|x-\frac{a+b}{2}\right|, x \in[a, b]$. We have

$$
\begin{gathered}
\int_{a}^{b} p(x) d x=\int_{a}^{b}\left|x-\frac{a+b}{2}\right| d x=\frac{1}{4}(b-a)^{2} \\
\int_{a}^{b} p(x)(x-a)^{2} d x=\int_{a}^{b}\left|x-\frac{a+b}{2}\right|(x-a)^{2} d x=\frac{3}{32}(b-a)^{4}
\end{gathered}
$$

and

$$
\int_{a}^{b} p(x)\left|x-\frac{a+b}{2}\right| d x=\int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} d x=\frac{1}{12}(b-a)^{3}
$$

By the inequality (2.7) for the convex function $f:[a, b] \rightarrow \mathbb{R}$ we have

$$
\begin{align*}
& -\frac{3}{16}(b-a)\left[f_{-}^{\prime}(b)-f_{+}^{\prime}(a)\right] \tag{3.1}\\
& \leq \frac{4}{(b-a)^{2}} \int_{a}^{b}\left|x-\frac{a+b}{2}\right| f(x) d x-\frac{1}{b-a} \int_{a}^{b} f(x) d x \\
& \leq \frac{1}{6}\left[f_{-}^{\prime}(b)-f_{+}^{\prime}(a)\right](b-a),
\end{align*}
$$

while from (2.9) we get

$$
\begin{align*}
& \left|\frac{4}{(b-a)^{2}} \int_{a}^{b}\right| x-\frac{a+b}{2}\left|f(x) d x-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \tag{3.2}\\
& \leq \frac{3}{16}(b-a)\left[f_{-}^{\prime}(b)-f_{+}^{\prime}(a)\right] .
\end{align*}
$$

The second inequality in (3.1) is better than the corresponding inequality in (3.2).

Consider the symmetric weight $p(x)=(b-x)(x-a), x \in[a, b]$. We have

$$
\begin{gathered}
\int_{a}^{b} p(x) d x=\int_{a}^{b}(b-x)(x-a) d x=\frac{1}{6}(b-a)^{3} \\
\int_{a}^{b} p(x)(x-a)^{2} d x=\int_{a}^{b}(b-x)(x-a)^{3} d x=\frac{1}{20}(b-a)^{5}
\end{gathered}
$$

and

$$
\int_{a}^{b} p(x)\left|x-\frac{a+b}{2}\right| d x=\int_{a}^{b}(b-x)(x-a)\left|x-\frac{a+b}{2}\right| d x=\frac{1}{32}(b-a)^{4} .
$$

By the inequality (2.7) for the convex function $f:[a, b] \rightarrow \mathbb{R}$ we have

$$
\begin{align*}
& -\frac{3}{20}\left[f_{-}^{\prime}(b)-f_{+}^{\prime}(a)\right](b-a) \tag{3.3}\\
& \leq \frac{6}{(b-a)^{3}} \int_{a}^{b}(b-x)(x-a) f(x) d x-\frac{1}{b-a} \int_{a}^{b} f(x) d x \\
& \leq\left[f_{-}^{\prime}(b)-f_{+}^{\prime}(a)\right] \frac{3}{32}(b-a)
\end{align*}
$$

while from (2.9) we get

$$
\begin{align*}
& \left|\frac{6}{(b-a)^{3}} \int_{a}^{b}(b-x)(x-a) f(x) d x-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \tag{3.4}\\
& \leq \frac{3}{20}\left[f_{-}^{\prime}(b)-f_{+}^{\prime}(a)\right](b-a)
\end{align*}
$$

The second inequality in (3.3) is better than the corresponding inequality in (3.4).

References

[1] E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54 (1948), 439-460.
[2] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), No. 2, Article 31. [Online https://www.emis.de/journals/JIPAM/article183.html?sid=183].
[3] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), No. 3, Article 35. [Online https://www.emis.de/journals/JIPAM/article187.html?sid=187].
[4] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results. Aust. J. Math. Anal. Appl. 14 (2017), no. 1, Art. 1, 283 pp. [Online http://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P1.tex].
[5] S. S. Dragomir. Reverses of Fejer's inequalities for convex functions, RGMIA Res. Rep. Coll. 22 (2019), Art. 88, 11pp. [Online http://rgmia.org/papers/v22/v22a88.pdf].
[6] S. S. Dragomir and C. E. M. Pearce, Selected Topics on HermiteHadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online http://rgmia.org/monographs/hermite_hadamard.html].
[7] L. Féjer, Über die Fourierreihen, II, (In Hungarian). Math. Naturwiss, Anz. Ungar. Akad. Wiss., 24 (1906), 369-390.
[8] D. S. Mitrinović and I. B. Lacković, Hermite and convexity, Aequationes Math. 28 (1985), 229-232.
[9] A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, 1973.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428 , Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand, Johanesburg, South Africa.

[^0]: 1991 Mathematics Subject Classification. 26D15, 26D10.
 Key words and phrases. Convex functions, Integral inequalities, Hermite-Hadamard inequality, Féjer's inequalities, Integral mean, Weighted integral mean.

