BOUNDS FOR THE DIFFERENCE BETWEEN WEIGHTED AND INTEGRAL MEANS OF CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

$$
\begin{aligned}
& \text { Abstract. Let } f:[a, b] \rightarrow \mathbb{R} \text { be convex and } p:[a, b] \rightarrow \mathbb{R} \text { a Lebesgue inte- } \\
& \text { grable function such that } \\
& \qquad \frac{1}{x-a} \int_{a}^{x} p(s) d s \leq \frac{1}{b-x} \int_{x}^{b} p(s) d s \text { for all } x \in(a, b) .
\end{aligned}
$$

Then we have the inequalities

$$
\begin{aligned}
& f_{+}^{\prime}(a)\left[\int_{a}^{b} x p(x) d x-\frac{a+b}{2} \int_{a}^{b} p(x) d x\right] \\
& \leq \int_{a}^{b} p(x) f(x) d x-\frac{1}{b-a} \int_{a}^{b} f(x) d x \int_{a}^{b} p(x) d x \\
& \leq f_{-}^{\prime}(b)\left[\int_{a}^{b} x p(x) d x-\frac{a+b}{2} \int_{a}^{b} p(x) d x\right] .
\end{aligned}
$$

Some examples are also given.

1. Introduction

The following inequality holds for any convex function f defined on \mathbb{R}

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \frac{f(a)+f(b)}{2}, \quad a, b \in \mathbb{R}, a<b \tag{1.1}
\end{equation*}
$$

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [8]). But this result was nowhere mentioned in the mathematical literature and was not widely known as Hermite's result.
E. F. Beckenbach, a leading expert on the history and the theory of convex functions, wrote that this inequality was proven by J. Hadamard in 1893 [1]. In 1974, D. S. Mitrinović found Hermite's note in Mathesis [8]. Since (1.1) was known as Hadamard's inequality, the inequality is now commonly referred as the HermiteHadamard inequality. For a monograph devoted to this result see [6]. Reverses of the Hermite-Hadamard inequality are provided in [2] and [3]. The recent survey paper [4] provides other related results.

In 1906, Fejér [7], while studying trigonometric polynomials, obtained inequalities which generalize that of Hermite \& Hadamard:

Theorem 1. Consider the integral $\int_{a}^{b} f(t) p(t) d t$, where f is a convex function in the interval (a, b) and p is a positive function in the same interval such that

$$
p(a+t)=p(b-t), \quad 0 \leq t \leq \frac{1}{2}(b-a),
$$

[^0]i.e., $y=p(t)$ is a symmetric curve with respect to the straight line which contains the point $\left(\frac{1}{2}(a+b), 0\right)$ and is normal to the t-axis. Under those conditions the following inequalities are valid:
\[

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{\int_{a}^{b} p(t) d t} \int_{a}^{b} f(t) p(t) d t \leq \frac{f(a)+f(b)}{2} \tag{1.2}
\end{equation*}
$$

\]

If f is concave on (a, b), then the inequalities reverse in (1.2)
In the recent paper [5] we obtained the following refinement and reverse of Féjer's first inequality:

Theorem 2. Let f be a convex function on I and $a, b \in I$, with $a<b$. If p : $[a, b] \rightarrow[0, \infty)$ is Lebesgue integrable and symmetric, namely $p(b+a-t)=p(t)$ for all $t \in[a, b]$, then

$$
\begin{align*}
0 & \leq \frac{1}{2} \frac{1}{\int_{a}^{b} p(t) d t} \int_{a}^{b}\left|t-\frac{a+b}{2}\right| p(t) d t\left[f_{+}^{\prime}\left(\frac{a+b}{2}\right)-f_{-}^{\prime}\left(\frac{a+b}{2}\right)\right] \tag{1.3}\\
& \leq \frac{1}{\int_{a}^{b} p(t) d t} \int_{a}^{b} p(t) f(t) d t-f\left(\frac{a+b}{2}\right) \\
& \leq \frac{1}{2} \frac{1}{\int_{a}^{b} p(t) d t} \int_{a}^{b}\left|t-\frac{a+b}{2}\right| p(t) d t\left[f_{-}^{\prime}(b)-f_{+}^{\prime}(a)\right]
\end{align*}
$$

In the same paper [5] we also obtained the corresponding result for the second Féjer's inequality:

Theorem 3. Let f be a convex function on I and $a, b \in I$, with $a<b$. If p : $[a, b] \rightarrow[0, \infty)$ is Lebesgue integrable and symmetric, namely $p(b+a-t)=p(t)$ for all $t \in[a, b]$, then

$$
\begin{align*}
0 & \leq \frac{1}{2} \frac{1}{\int_{a}^{b} p(t) d t} \int_{a}^{b}\left[\frac{1}{2}(b-a)-\left|t-\frac{a+b}{2}\right|\right] p(t) d t \tag{1.4}\\
& \times\left[f_{+}^{\prime}\left(\frac{a+b}{2}\right)-f_{-}^{\prime}\left(\frac{a+b}{2}\right)\right] \\
& \leq \frac{f(a)+f(b)}{2}-\frac{1}{\int_{a}^{b} p(t) d t} \int_{a}^{b} p(t) f(t) d t \\
& \leq \frac{1}{2} \frac{1}{\int_{a}^{b} p(t) d t} \int_{a}^{b}\left[\frac{1}{2}(b-a)-\left|t-\frac{a+b}{2}\right|\right] p(t) d t \\
& \times\left[f_{-}^{\prime}(b)-f_{+}^{\prime}(a)\right] .
\end{align*}
$$

Motivated by the above results, in this paper we establish upper and lower bounds for the difference

$$
\int_{a}^{b} p(x) f(x) d x-\frac{1}{b-a} \int_{a}^{b} f(x) d x \int_{a}^{b} p(x) d x
$$

in the case of convex functions $f:[a, b] \rightarrow \mathbb{R}$ and integrable wight p satisfying the condition

$$
\frac{1}{x-a} \int_{a}^{x} p(s) d s \leq \frac{1}{b-x} \int_{x}^{b} p(s) d s \text { for all } x \in(a, b)
$$

The case of monotonic nondecreasing weights p on $[a, b]$ is also analyzed. Some examples are given as well.

2. Main Results

We start with the following identity:
Lemma 1. Let $f:[a, b] \rightarrow \mathbb{C}$ be an absolutely continuous function on the interval $[a, b]$ and $g:[a, b] \rightarrow \mathbb{C}$ a Lebesgue integrable function, then we have the equality

$$
\begin{align*}
& (b-a) \int_{a}^{b} g(x) f(x) d x-\int_{a}^{b} f(x) d x \int_{a}^{b} g(x) d x \tag{2.1}\\
& =\int_{a}^{b}(x-a)(b-x)\left(\frac{\int_{x}^{b} g(s) d s}{b-x}-\frac{\int_{a}^{x} g(s) d s}{x-a}\right) f^{\prime}(x) d x
\end{align*}
$$

Proof. We start to the Montgomery identity for an absolutely continuous function $f:[a, b] \rightarrow \mathbb{R}$

$$
f(x)(b-a)-\int_{a}^{b} f(t) d t=\int_{a}^{x}(t-a) f^{\prime}(t) d t+\int_{x}^{b}(t-b) f^{\prime}(t) d t
$$

that holds for all $x \in[a, b]$.
If we multiply this identity by $g(x)$ and integrate over x in $[a, b]$, then we get

$$
\begin{align*}
& (b-a) \int_{a}^{b} g(x) f(x) d x-\int_{a}^{b} f(t) d t \int_{a}^{b} g(x) d x \tag{2.2}\\
& =\int_{a}^{b} g(x)\left(\int_{a}^{x}(t-a) f^{\prime}(t) d t\right) d x+\int_{a}^{b} g(x)\left(\int_{x}^{b}(t-b) f^{\prime}(t) d t\right) d x
\end{align*}
$$

Using integration by parts, we get

$$
\begin{align*}
& \int_{a}^{b} g(x)\left(\int_{a}^{x}(t-a) f^{\prime}(t) d t\right) d x \tag{2.3}\\
& =\int_{a}^{b}\left(\int_{a}^{x}(t-a) f^{\prime}(t) d t\right) d\left(\int_{a}^{x} g(s) d s\right) \\
& =\left.\left(\int_{a}^{x}(t-a) f^{\prime}(t) d t\right)\left(\int_{a}^{x} g(s) d s\right)\right|_{a} ^{b} \\
& -\int_{a}^{b}\left(\int_{a}^{x} g(s) d s\right)(x-a) f^{\prime}(x) d x \\
= & \left(\int_{a}^{b}(t-a) f^{\prime}(t) d t\right)\left(\int_{a}^{b} g(s) d s\right) \\
- & \int_{a}^{b}\left(\int_{a}^{x} g(s) d s\right)(x-a) f^{\prime}(x) d x \\
= & \int_{a}^{b}\left(\int_{a}^{b} g(s) d s-\int_{a}^{x} g(s) d s\right)(x-a) f^{\prime}(x) d x \\
= & \int_{a}^{b}\left(\int_{x}^{b} g(s) d s\right)(x-a) f^{\prime}(x) d x
\end{align*}
$$

and

$$
\begin{align*}
& \int_{a}^{b} g(x)\left(\int_{x}^{b}(t-b) f^{\prime}(t) d t\right) d x \tag{2.4}\\
& =\int_{a}^{b}\left(\int_{x}^{b}(t-b) f^{\prime}(t) d t\right) d\left(\int_{a}^{x} g(s) d s\right) \\
& =\left.\left(\int_{x}^{b}(t-b) f^{\prime}(t) d t\right)\left(\int_{a}^{x} g(s) d s\right)\right|_{a} ^{b} \\
& +\int_{a}^{b}\left(\int_{a}^{x} g(s) d s\right)(x-b) f^{\prime}(x) d x \\
& =\int_{a}^{b}\left(\int_{a}^{x} g(s) d s\right)(x-b) f^{\prime}(x) d x
\end{align*}
$$

Therefore

$$
\begin{aligned}
& (b-a) \int_{a}^{b} g(x) f(x) d x-\int_{a}^{b} f(t) d t \int_{a}^{b} g(x) d x \\
& =\int_{a}^{b}\left(\int_{x}^{b} g(s) d s\right)(x-a) f^{\prime}(x) d x-\int_{a}^{b}\left(\int_{a}^{x} g(s) d s\right)(b-x) f^{\prime}(x) d x \\
& =\int_{a}^{b}(x-a)(b-x)\left(\frac{\int_{x}^{b} g(s) d s}{b-x}-\frac{\int_{a}^{x} g(s) d s}{x-a}\right) f^{\prime}(x) d x
\end{aligned}
$$

and the identity (2.1) is proved.

We have:
Theorem 4. Let $f:[a, b] \rightarrow \mathbb{R}$ be convex and $p:[a, b] \rightarrow \mathbb{R}$ a Lebesgue integrable function such that

$$
\begin{equation*}
\frac{1}{x-a} \int_{a}^{x} p(s) d s \leq \frac{1}{b-x} \int_{x}^{b} p(s) d s \text { for all } x \in(a, b) \tag{2.5}
\end{equation*}
$$

Then we have the inequalities

$$
\begin{align*}
& f_{+}^{\prime}(a)\left[\int_{a}^{b} x p(x) d x-\frac{a+b}{2} \int_{a}^{b} p(x) d x\right] \tag{2.6}\\
& \leq \int_{a}^{b} p(x) f(x) d x-\frac{1}{b-a} \int_{a}^{b} f(x) d x \int_{a}^{b} p(x) d x \\
& \leq f_{-}^{\prime}(b)\left[\int_{a}^{b} x p(x) d x-\frac{a+b}{2} \int_{a}^{b} p(x) d x\right] .
\end{align*}
$$

Proof. Since f is convex, then $f_{+}^{\prime}(a) \leq f^{\prime}(x) \leq f_{-}^{\prime}(b)$ for almost every $x \in[a, b]$. By the condition (2.5) we get

$$
\begin{align*}
& f_{+}^{\prime}(a) \int_{a}^{b}(x-a)(b-x)\left(\frac{\int_{x}^{b} p(s) d s}{b-x}-\frac{\int_{a}^{x} p(s) d s}{x-a}\right) d x \tag{2.7}\\
& \leq \int_{a}^{b}(x-a)(b-x)\left(\frac{\int_{x}^{b} p(s) d s}{b-x}-\frac{\int_{a}^{x} p(s) d s}{x-a}\right) f^{\prime}(x) d x \\
& \leq f_{-}^{\prime}(b) \int_{a}^{b}(x-a)(b-x)\left(\frac{\int_{x}^{b} p(s) d s}{b-x}-\frac{\int_{a}^{x} p(s) d s}{x-a}\right) d x
\end{align*}
$$

Observe that, for $f(x)=x$ in Lemma 1 we have

$$
\begin{aligned}
& \int_{a}^{b}(x-a)(b-x)\left(\frac{\int_{x}^{b} p(s) d s}{b-x}-\frac{\int_{a}^{x} p(s) d s}{x-a}\right) d x \\
& =(b-a) \int_{a}^{b} p(x) x d x-\int_{a}^{b} x d x \int_{a}^{b} p(x) d x \\
& =(b-a)\left[\int_{a}^{b} p(x) x d x-\frac{a+b}{2} \int_{a}^{b} p(x) d x\right]
\end{aligned}
$$

while for $g=p$ we get

$$
\begin{aligned}
& \int_{a}^{b}(x-a)(b-x)\left(\frac{\int_{x}^{b} p(s) d s}{b-x}-\frac{\int_{a}^{x} p(s) d s}{x-a}\right) f^{\prime}(x) d x \\
& =(b-a) \int_{a}^{b} p(x) f(x) d x-\int_{a}^{b} f(x) d x \int_{a}^{b} p(x) d x .
\end{aligned}
$$

By (2.7) we then get (2.6).
Corollary 1. Let $f:[a, b] \rightarrow \mathbb{R}$ be convex and $p:[a, b] \rightarrow \mathbb{R}$ a monotonic nondecreasing function, then we have the inequalities

$$
\begin{align*}
& f_{+}^{\prime}(a)\left[\int_{a}^{b} x p(x) d x-\frac{a+b}{2} \int_{a}^{b} p(x) d x\right] \tag{2.8}\\
& \leq \int_{a}^{b} p(x) f(x) d x-\frac{1}{b-a} \int_{a}^{b} f(x) d x \int_{a}^{b} p(x) d x \\
& \leq f_{-}^{\prime}(b)\left[\int_{a}^{b} x p(x) d x-\frac{a+b}{2} \int_{a}^{b} p(x) d x\right]
\end{align*}
$$

Proof. If $p:[a, b] \rightarrow \mathbb{R}$ is a monotonic nondecreasing function, then

$$
\frac{1}{x-a} \int_{a}^{x} p(s) d s \leq p(x) \leq \frac{1}{b-x} \int_{x}^{b} p(s) d s
$$

for $x \in(a, b)$. Then by applying Theorem 4 we get the desired result (2.8).

Corollary 2. Let $f:[a, b] \rightarrow \mathbb{R}$ be convex and monotonic nondecreasing and $p:[a, b] \rightarrow \mathbb{R}$ a monotonic nondecreasing function, then we have the inequalities

$$
\begin{align*}
0 & \leq f_{+}^{\prime}(a)\left[\int_{a}^{b} x p(x) d x-\frac{a+b}{2} \int_{a}^{b} p(x) d x\right] \tag{2.9}\\
& \leq \int_{a}^{b} p(x) f(x) d x-\frac{1}{b-a} \int_{a}^{b} f(x) d x \int_{a}^{b} p(x) d x \\
& \leq f_{-}^{\prime}(b)\left[\int_{a}^{b} x p(x) d x-\frac{a+b}{2} \int_{a}^{b} p(x) d x\right]
\end{align*}
$$

If $\int_{a}^{b} p(x) d x>0$, then

$$
\begin{align*}
0 & \leq f_{+}^{\prime}(a)\left[\frac{1}{\int_{a}^{b} p(x) d x} \int_{a}^{b} x p(x) d x-\frac{a+b}{2}\right] \tag{2.10}\\
& \leq \frac{1}{\int_{a}^{b} p(x) d x} \int_{a}^{b} p(x) f(x) d x-\frac{1}{b-a} \int_{a}^{b} f(x) d x \\
& \leq f_{-}^{\prime}(b)\left[\frac{1}{\int_{a}^{b} p(x) d x} \int_{a}^{b} x p(x) d x-\frac{a+b}{2}\right]
\end{align*}
$$

Proof. Since f is nondecreasing convex, hence $f_{+}^{\prime}(a) \geq 0$. Also, by the Čebyšev's inequality for synchronous functions we have

$$
\int_{a}^{b} x p(x) d x-\frac{a+b}{2} \int_{a}^{b} p(x) d x \geq 0
$$

By employing (2.8) we derive (2.9).
We say that the function $p:[a, b] \rightarrow \mathbb{R}$ is asymmetric if

$$
p(a+b-x)=-p(x) \text { for all } x \in[a, b]
$$

If $p:[a, b] \rightarrow \mathbb{R}$ is asymmetric and Lebesgue integrable, then $\int_{a}^{b} p(s) d s=0$. If $x \in$ $[a, b]$ then $\int_{a}^{x} p(s) d s+\int_{x}^{b} p(s) d s=0$, which implies that $\int_{x}^{b} p(s) d s=-\int_{a}^{x} p(s) d s$.
Corollary 3. Let $f:[a, b] \rightarrow \mathbb{R}$ be convex and $p:[a, b] \rightarrow \mathbb{R}$ an asymmetric Lebesgue integrable function such that

$$
\begin{equation*}
\int_{a}^{x} p(s) d s \leq 0 \text { for all } x \in[a, b] \tag{2.11}
\end{equation*}
$$

or, equivalently

$$
\begin{equation*}
0 \leq \int_{x}^{b} p(s) d s \text { for all } x \in[a, b] \tag{2.12}
\end{equation*}
$$

then we have the inequalities

$$
\begin{equation*}
f_{+}^{\prime}(a) \int_{a}^{b} x p(x) d x \leq \int_{a}^{b} p(x) f(x) d x \leq f_{-}^{\prime}(b) \int_{a}^{b} x p(x) d x \tag{2.13}
\end{equation*}
$$

Proof. The condition

$$
\frac{1}{x-a} \int_{a}^{x} p(s) d s \leq \frac{1}{b-x} \int_{x}^{b} p(s) d s \text { for all } x \in(a, b)
$$

BOUNDS FOR THE DIFFERENCE BETWEEN WEIGHTED AND INTEGRAL MEANS 7
is equivalent to

$$
\frac{1}{x-a} \int_{a}^{x} p(s) d s \leq-\frac{1}{b-x} \int_{a}^{x} p(s) d s
$$

namely

$$
\frac{1}{x-a} \int_{a}^{x} p(s) d s+\frac{1}{b-x} \int_{a}^{x} p(s) d s \leq 0
$$

which is equivalent to (2.11).
By utilising (2.6) we derive the desired result (2.13).
If $q:[a, b] \rightarrow \mathbb{R}$ is integrable, then the function $p(s)=q(s)-q(a+b-s)$ is asymmetric. By the condition (2.11) we have

$$
\int_{a}^{x}[q(s)-q(a+b-s)] d s \leq 0
$$

namely

$$
\begin{equation*}
\int_{a}^{x} q(s) d s \leq \int_{a}^{x} q(a+b-s) d s, x \in[a, b] \tag{2.14}
\end{equation*}
$$

If we put $u=a+b-s$, then

$$
\int_{a}^{x} q(a+b-s) d s=\int_{a+b-x}^{b} q(s) d s
$$

and we obtain

$$
\begin{equation*}
\int_{a}^{x} q(s) d s \leq \int_{a+b-x}^{b} q(s) d s, x \in[a, b] \tag{2.15}
\end{equation*}
$$

We also have

$$
\begin{aligned}
\int_{a}^{b} x p(x) d x & =\int_{a}^{b} s[q(s)-q(a+b-s)] d s \\
& =\int_{a}^{b} s q(s) d s-\int_{a}^{b}(a+b-s) q(s) d s \\
& =\int_{a}^{b}[2 s-(a+b)] q(s) d s=2 \int_{a}^{b}\left(s-\frac{a+b}{2}\right) q(s) d s
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{a}^{b} p(s) f(s) d s & =\int_{a}^{b}[q(s)-q(a+b-s)] f(s) d s \\
& =\int_{a}^{b} q(s) f(s) d s-\int_{a}^{b} q(a+b-s) f(s) d s \\
& =\int_{a}^{b} q(s) f(s) d s-\int_{a}^{b} q(s) f(a+b-s) d s \\
& =\int_{a}^{b} q(s)[f(s)-f(a+b-s)] d s
\end{aligned}
$$

We can state:

Corollary 4. Let $f:[a, b] \rightarrow \mathbb{R}$ be convex and $q:[a, b] \rightarrow \mathbb{R}$ a Lebesgue integrable function such that (2.14) holds, then we have the inequalities

$$
\begin{align*}
f_{+}^{\prime}(a) \int_{a}^{b}\left(s-\frac{a+b}{2}\right) q(s) d s & \leq \int_{a}^{b} q(x) \tilde{f}(x) d x \tag{2.16}\\
& \leq f_{-}^{\prime}(b) \int_{a}^{b}\left(s-\frac{a+b}{2}\right) q(s) d s
\end{align*}
$$

where

$$
\tilde{f}(x):=\frac{1}{2}[f(x)-f(a+b-x)], x \in[a, b]
$$

3. Some Examples

We consider the function $p(x)=x, x \in[a, b]$. Observe that

$$
\begin{aligned}
\int_{a}^{b} x p(x) d x-\frac{a+b}{2} \int_{a}^{b} p(x) d x & =\int_{a}^{b} x^{2} d x-\frac{a+b}{2} \int_{a}^{b} x d x \\
& =(b-a)\left[\frac{b^{2}+a b+a^{2}}{3}-\left(\frac{a+b}{2}\right)^{2}\right] \\
& =\frac{1}{12}(b-a)^{3}
\end{aligned}
$$

Let $f:[a, b] \rightarrow \mathbb{R}$ be convex, then by (2.9) we get

$$
\begin{equation*}
\frac{1}{12}(b-a)^{3} f_{+}^{\prime}(a) \leq \int_{a}^{b} x f(x) d x-\frac{a+b}{2} \int_{a}^{b} f(x) d x \leq \frac{1}{12}(b-a)^{3} f_{-}^{\prime}(b) \tag{3.1}
\end{equation*}
$$

For n a natural number, the function $p(x)=\left(x-\frac{a+b}{2}\right)^{2 n+1}$, is increasing, then for $f:[a, b] \rightarrow \mathbb{R}$ a convex function, we have by (2.9)

$$
\begin{aligned}
0 & \leq f_{+}^{\prime}(a)\left[\int_{a}^{b} x\left(x-\frac{a+b}{2}\right)^{2 n+1} d x-\frac{a+b}{2} \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2 n+1} d x\right] \\
& \leq \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2 n+1} f(x) d x-\frac{1}{b-a} \int_{a}^{b} f(x) d x \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2 n+1} d x \\
& \leq f_{-}^{\prime}(b)\left[\int_{a}^{b} x\left(x-\frac{a+b}{2}\right)^{2 n+1} d x-\frac{a+b}{2} \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2 n+1} d x\right]
\end{aligned}
$$

Observe that

$$
\begin{aligned}
& \int_{a}^{b} x\left(x-\frac{a+b}{2}\right)^{2 n+1} d x-\frac{a+b}{2} \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2 n+1} d x \\
& =\int_{a}^{b}\left(x-\frac{a+b}{2}\right)\left(x-\frac{a+b}{2}\right)^{2 n+1} d x=\int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2 n+2} d x \\
& =\frac{2}{2 n+3}\left(\frac{b-a}{2}\right)^{2 n+3}=\frac{(b-a)^{2 n+3}}{(2 n+3) 2^{2 n+2}}
\end{aligned}
$$

and

$$
\int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2 n+1} d x=0
$$

which gives

$$
\begin{align*}
0 & \leq f_{+}^{\prime}(a) \frac{(b-a)^{2 n+3}}{(2 n+3) 2^{2 n+2}} \leq \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2 n+1} f(x) d x \tag{3.2}\\
& \leq f_{-}^{\prime}(b) \frac{(b-a)^{2 n+3}}{(2 n+3) 2^{2 n+2}}
\end{align*}
$$

for $f:[a, b] \rightarrow \mathbb{R}$ a convex function and n a natural number.
Consider the function $p(x)=-\frac{1}{x}$ for $x \in[a, b] \subset(0, \infty)$. Then p is increasing on $[a, b]$ and by (2.9) we get

$$
\begin{aligned}
& f_{+}^{\prime}(a)\left[\frac{a+b}{2} \int_{a}^{b} \frac{d x}{x}-\int_{a}^{b} d x\right] \\
& \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \int_{a}^{b} \frac{d x}{x}-\int_{a}^{b} \frac{f(x)}{x} d x \\
& \leq f_{-}^{\prime}(b)\left[\frac{a+b}{2} \int_{a}^{b} \frac{d x}{x}-\int_{a}^{b} d x\right]
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
& f_{+}^{\prime}(a)\left[\frac{a+b}{2}(\ln b-\ln a)-(b-a)\right] \\
& \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x(\ln b-\ln a)-\int_{a}^{b} \frac{f(x)}{x} d x \\
& \leq f_{-}^{\prime}(b)\left[\frac{a+b}{2}(\ln b-\ln a)-(b-a)\right]
\end{aligned}
$$

namely

$$
\begin{align*}
& f_{+}^{\prime}(a)[A(a, b)-L(a, b)] \tag{3.3}\\
& \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x-\frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(x)}{x} d x \\
& \leq f_{-}^{\prime}(b)[A(a, b)-L(a, b)]
\end{align*}
$$

where $A(a, b)=\frac{a+b}{2}$ is the arithmetic mean and $L(a, b)=\frac{b-a}{\ln b-\ln a}$ is the logarithmic mean of the positive numbers $a<b$.

References

[1] E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54 (1948), 439-460.
[2] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), No. 2, Article 31. [Online https://www.emis.de/journals/JIPAM/article183.html?sid=183].
[3] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), No. 3, Article 35. [Online https://www.emis.de/journals/JIPAM/article187.html?sid=187].
[4] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results. Aust. J. Math. Anal. Appl. 14 (2017), no. 1, Art. 1, 283 pp. [Online http://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P1.tex].
[5] S. S. Dragomir. Reverses of Fejer's inequalities for convex functions, RGMIA Res. Rep. Coll. 22 (2019), Art. 88, 11pp. [Online http://rgmia.org/papers/v22/v22a88.pdf].
[6] S. S. Dragomir and C. E. M. Pearce, Selected Topics on HermiteHadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online http://rgmia.org/monographs/hermite_hadamard.html].
[7] L. Féjer, Über die Fourierreihen, II, (In Hungarian). Math. Naturwiss, Anz. Ungar. Akad. Wiss., 24 (1906), 369-390.
[8] D. S. Mitrinović and I. B. Lacković, Hermite and convexity, Aequationes Math. 28 (1985), 229-232.
[9] A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, 1973.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, \& Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa.

[^0]: 1991 Mathematics Subject Classification. 26D15, 26D10.
 Key words and phrases. Convex functions, Integral inequalities, Hermite-Hadamard inequality, Féjer's inequalities, Integral mean, Weighted integral mean.

