
BOUNDS FOR THE DIFFERENCE BETWEEN WEIGHTED AND
INTEGRAL MEANS OF CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. Let f : [a; b] ! R be convex and p : [a; b] ! R a Lebesgue inte-
grable function such that
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Then we have the inequalities
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2
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�
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Some examples are also given.

1. Introduction

The following inequality holds for any convex function f de�ned on R

(1.1) f

�
a+ b

2

�
� 1

b� a

Z b

a

f(t)dt � f(a) + f(b)

2
; a; b 2 R, a < b:

It was �rstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [8]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite�s result.
E. F. Beckenbach, a leading expert on the history and the theory of convex

functions, wrote that this inequality was proven by J. Hadamard in 1893 [1]. In
1974, D. S. Mitrinovíc found Hermite�s note in Mathesis [8]. Since (1.1) was known
as Hadamard�s inequality, the inequality is now commonly referred as the Hermite-
Hadamard inequality. For a monograph devoted to this result see [6]. Reverses of
the Hermite-Hadamard inequality are provided in [2] and [3]. The recent survey
paper [4] provides other related results.
In 1906, Fejér [7], while studying trigonometric polynomials, obtained inequali-

ties which generalize that of Hermite & Hadamard:

Theorem 1. Consider the integral
R b
a
f (t) p (t) dt, where f is a convex function in

the interval (a; b) and p is a positive function in the same interval such that

p (a+ t) = p (b� t) ; 0 � t � 1

2
(b� a) ;
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i.e., y = p (t) is a symmetric curve with respect to the straight line which contains
the point

�
1
2 (a+ b) ; 0

�
and is normal to the t-axis. Under those conditions the

following inequalities are valid:

(1.2) f

�
a+ b

2

�
� 1R b

a
p (t) dt

Z b

a

f (t) p (t) dt � f (a) + f (b)

2
:

If f is concave on (a; b), then the inequalities reverse in (1.2)

In the recent paper [5] we obtained the following re�nement and reverse of Féjer�s
�rst inequality:

Theorem 2. Let f be a convex function on I and a; b 2 I; with a < b: If p :
[a; b] ! [0;1) is Lebesgue integrable and symmetric, namely p (b+ a� t) = p (t)
for all t 2 [a; b] ; then

0 � 1

2

1R b
a
p (t) dt

Z b

a

����t� a+ b2
���� p (t) dt �f 0+�a+ b2

�
� f 0�

�
a+ b

2

��
(1.3)

� 1R b
a
p (t) dt

Z b

a

p (t) f (t) dt� f
�
a+ b

2

�

� 1

2

1R b
a
p (t) dt

Z b

a

����t� a+ b2
���� p (t) dt �f 0� (b)� f 0+ (a)� :

In the same paper [5] we also obtained the corresponding result for the second
Féjer�s inequality:

Theorem 3. Let f be a convex function on I and a; b 2 I; with a < b: If p :
[a; b] ! [0;1) is Lebesgue integrable and symmetric, namely p (b+ a� t) = p (t)
for all t 2 [a; b] ; then

0 � 1

2

1R b
a
p (t) dt

Z b

a

�
1

2
(b� a)�

����t� a+ b2
����� p (t) dt(1.4)

�
�
f 0+

�
a+ b

2

�
� f 0�

�
a+ b

2

��
� f (a) + f (b)

2
� 1R b

a
p (t) dt

Z b

a

p (t) f (t) dt

� 1

2

1R b
a
p (t) dt

Z b

a

�
1

2
(b� a)�

����t� a+ b2
����� p (t) dt

�
�
f 0� (b)� f 0+ (a)

�
:

Motivated by the above results, in this paper we establish upper and lower
bounds for the di¤erenceZ b

a

p (x) f (x) dx� 1

b� a

Z b

a

f (x) dx

Z b

a

p (x) dx

in the case of convex functions f : [a; b] ! R and integrable wight p satisfying the
condition

1

x� a

Z x

a

p (s) ds � 1

b� x

Z b

x

p (s) ds for all x 2 (a; b) :
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The case of monotonic nondecreasing weights p on [a; b] is also analyzed. Some
examples are given as well.

2. Main Results

We start with the following identity:

Lemma 1. Let f : [a; b]! C be an absolutely continuous function on the interval
[a; b] and g : [a; b]! C a Lebesgue integrable function, then we have the equality

(b� a)
Z b

a

g (x) f (x) dx�
Z b

a

f (x) dx

Z b

a

g (x) dx(2.1)

=

Z b

a

(x� a) (b� x)
 R b

x
g (s) ds

b� x �
R x
a
g (s) ds

x� a

!
f 0 (x) dx:

Proof. We start to the Montgomery identity for an absolutely continuous function
f : [a; b]! R

f (x) (b� a)�
Z b

a

f (t) dt =

Z x

a

(t� a) f 0 (t) dt+
Z b

x

(t� b) f 0 (t) dt

that holds for all x 2 [a; b] :
If we multiply this identity by g (x) and integrate over x in [a; b] ; then we get

(b� a)
Z b

a

g (x) f (x) dx�
Z b

a

f (t) dt

Z b

a

g (x) dx(2.2)

=

Z b

a

g (x)

�Z x

a

(t� a) f 0 (t) dt
�
dx+

Z b

a

g (x)

 Z b

x

(t� b) f 0 (t) dt
!
dx:

Using integration by parts, we getZ b

a

g (x)

�Z x

a

(t� a) f 0 (t) dt
�
dx(2.3)

=

Z b

a

�Z x

a

(t� a) f 0 (t) dt
�
d

�Z x

a

g (s) ds

�
=

�Z x

a

(t� a) f 0 (t) dt
��Z x

a

g (s) ds

�����b
a

�
Z b

a

�Z x

a

g (s) ds

�
(x� a) f 0 (x) dx

=

 Z b

a

(t� a) f 0 (t) dt
! Z b

a

g (s) ds

!

�
Z b

a

�Z x

a

g (s) ds

�
(x� a) f 0 (x) dx

=

Z b

a

 Z b

a

g (s) ds�
Z x

a

g (s) ds

!
(x� a) f 0 (x) dx

=

Z b

a

 Z b

x

g (s) ds

!
(x� a) f 0 (x) dx
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and

Z b

a

g (x)

 Z b

x

(t� b) f 0 (t) dt
!
dx(2.4)

=

Z b

a

 Z b

x

(t� b) f 0 (t) dt
!
d

�Z x

a

g (s) ds

�

=

 Z b

x

(t� b) f 0 (t) dt
!�Z x

a

g (s) ds

������
b

a

+

Z b

a

�Z x

a

g (s) ds

�
(x� b) f 0 (x) dx

=

Z b

a

�Z x

a

g (s) ds

�
(x� b) f 0 (x) dx:

Therefore

(b� a)
Z b

a

g (x) f (x) dx�
Z b

a

f (t) dt

Z b

a

g (x) dx

=

Z b

a

 Z b

x

g (s) ds

!
(x� a) f 0 (x) dx�

Z b

a

�Z x

a

g (s) ds

�
(b� x) f 0 (x) dx

=

Z b

a

(x� a) (b� x)
 R b

x
g (s) ds

b� x �
R x
a
g (s) ds

x� a

!
f 0 (x) dx

and the identity (2.1) is proved. �

We have:

Theorem 4. Let f : [a; b] ! R be convex and p : [a; b] ! R a Lebesgue integrable
function such that

(2.5)
1

x� a

Z x

a

p (s) ds � 1

b� x

Z b

x

p (s) ds for all x 2 (a; b) :

Then we have the inequalities

f 0+ (a)

"Z b

a

xp (x) dx� a+ b
2

Z b

a

p (x) dx

#
(2.6)

�
Z b

a

p (x) f (x) dx� 1

b� a

Z b

a

f (x) dx

Z b

a

p (x) dx

� f 0� (b)
"Z b

a

xp (x) dx� a+ b
2

Z b

a

p (x) dx

#
:



BOUNDS FOR THE DIFFERENCE BETWEEN WEIGHTED AND INTEGRAL MEANS 5

Proof. Since f is convex, then f 0+ (a) � f 0 (x) � f 0� (b) for almost every x 2 [a; b] :
By the condition (2.5) we get

f 0+ (a)

Z b

a

(x� a) (b� x)
 R b

x
p (s) ds

b� x �
R x
a
p (s) ds

x� a

!
dx(2.7)

�
Z b

a

(x� a) (b� x)
 R b

x
p (s) ds

b� x �
R x
a
p (s) ds

x� a

!
f 0 (x) dx

� f 0� (b)
Z b

a

(x� a) (b� x)
 R b

x
p (s) ds

b� x �
R x
a
p (s) ds

x� a

!
dx:

Observe that, for f (x) = x in Lemma 1 we haveZ b

a

(x� a) (b� x)
 R b

x
p (s) ds

b� x �
R x
a
p (s) ds

x� a

!
dx

= (b� a)
Z b

a

p (x)xdx�
Z b

a

xdx

Z b

a

p (x) dx

= (b� a)
"Z b

a

p (x)xdx� a+ b
2

Z b

a

p (x) dx

#
;

while for g = p we getZ b

a

(x� a) (b� x)
 R b

x
p (s) ds

b� x �
R x
a
p (s) ds

x� a

!
f 0 (x) dx

= (b� a)
Z b

a

p (x) f (x) dx�
Z b

a

f (x) dx

Z b

a

p (x) dx:

By (2.7) we then get (2.6). �

Corollary 1. Let f : [a; b] ! R be convex and p : [a; b] ! R a monotonic nonde-
creasing function, then we have the inequalities

f 0+ (a)

"Z b

a

xp (x) dx� a+ b
2

Z b

a

p (x) dx

#
(2.8)

�
Z b

a

p (x) f (x) dx� 1

b� a

Z b

a

f (x) dx

Z b

a

p (x) dx

� f 0� (b)
"Z b

a

xp (x) dx� a+ b
2

Z b

a

p (x) dx

#
:

Proof. If p : [a; b]! R is a monotonic nondecreasing function, then

1

x� a

Z x

a

p (s) ds � p (x) � 1

b� x

Z b

x

p (s) ds

for x 2 (a; b) : Then by applying Theorem 4 we get the desired result (2.8). �
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Corollary 2. Let f : [a; b] ! R be convex and monotonic nondecreasing and
p : [a; b]! R a monotonic nondecreasing function, then we have the inequalities

0 � f 0+ (a)
"Z b

a

xp (x) dx� a+ b
2

Z b

a

p (x) dx

#
(2.9)

�
Z b

a

p (x) f (x) dx� 1

b� a

Z b

a

f (x) dx

Z b

a

p (x) dx

� f 0� (b)
"Z b

a

xp (x) dx� a+ b
2

Z b

a

p (x) dx

#
:

If
R b
a
p (x) dx > 0; then

0 � f 0+ (a)
"

1R b
a
p (x) dx

Z b

a

xp (x) dx� a+ b
2

#
(2.10)

� 1R b
a
p (x) dx

Z b

a

p (x) f (x) dx� 1

b� a

Z b

a

f (x) dx

� f 0� (b)
"

1R b
a
p (x) dx

Z b

a

xp (x) dx� a+ b
2

#
:

Proof. Since f is nondecreasing convex, hence f 0+ (a) � 0: Also, by the µCeby�ev�s
inequality for synchronous functions we haveZ b

a

xp (x) dx� a+ b
2

Z b

a

p (x) dx � 0:

By employing (2.8) we derive (2.9). �

We say that the function p : [a; b]! R is asymmetric if
p (a+ b� x) = �p (x) for all x 2 [a; b] :

If p : [a; b]! R is asymmetric and Lebesgue integrable, then
R b
a
p (s) ds = 0: If x 2

[a; b] then
R x
a
p (s) ds+

R b
x
p (s) ds = 0; which implies that

R b
x
p (s) ds = �

R x
a
p (s) ds:

Corollary 3. Let f : [a; b] ! R be convex and p : [a; b] ! R an asymmetric
Lebesgue integrable function such that

(2.11)
Z x

a

p (s) ds � 0 for all x 2 [a; b] ;

or, equivalently

(2.12) 0 �
Z b

x

p (s) ds for all x 2 [a; b] ;

then we have the inequalities

(2.13) f 0+ (a)

Z b

a

xp (x) dx �
Z b

a

p (x) f (x) dx � f 0� (b)
Z b

a

xp (x) dx:

Proof. The condition

1

x� a

Z x

a

p (s) ds � 1

b� x

Z b

x

p (s) ds for all x 2 (a; b)
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is equivalent to
1

x� a

Z x

a

p (s) ds � � 1

b� x

Z x

a

p (s) ds

namely
1

x� a

Z x

a

p (s) ds+
1

b� x

Z x

a

p (s) ds � 0;

which is equivalent to (2.11).
By utilising (2.6) we derive the desired result (2.13). �

If q : [a; b] ! R is integrable, then the function p (s) = q (s) � q (a+ b� s) is
asymmetric. By the condition (2.11) we haveZ x

a

[q (s)� q (a+ b� s)] ds � 0

namely

(2.14)
Z x

a

q (s) ds �
Z x

a

q (a+ b� s) ds; x 2 [a; b] :

If we put u = a+ b� s; thenZ x

a

q (a+ b� s) ds =
Z b

a+b�x
q (s) ds

and we obtain

(2.15)
Z x

a

q (s) ds �
Z b

a+b�x
q (s) ds; x 2 [a; b] :

We also haveZ b

a

xp (x) dx =

Z b

a

s [q (s)� q (a+ b� s)] ds

=

Z b

a

sq (s) ds�
Z b

a

(a+ b� s) q (s) ds

=

Z b

a

[2s� (a+ b)] q (s) ds = 2
Z b

a

�
s� a+ b

2

�
q (s) ds

and Z b

a

p (s) f (s) ds =

Z b

a

[q (s)� q (a+ b� s)] f (s) ds

=

Z b

a

q (s) f (s) ds�
Z b

a

q (a+ b� s) f (s) ds

=

Z b

a

q (s) f (s) ds�
Z b

a

q (s) f (a+ b� s) ds

=

Z b

a

q (s) [f (s)� f (a+ b� s)] ds:

We can state:
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Corollary 4. Let f : [a; b] ! R be convex and q : [a; b] ! R a Lebesgue integrable
function such that (2.14) holds, then we have the inequalities

f 0+ (a)

Z b

a

�
s� a+ b

2

�
q (s) ds �

Z b

a

q (x) ~f (x) dx(2.16)

� f 0� (b)
Z b

a

�
s� a+ b

2

�
q (s) ds;

where
~f (x) :=

1

2
[f (x)� f (a+ b� x)] ; x 2 [a; b] :

3. Some Examples

We consider the function p (x) = x; x 2 [a; b] : Observe thatZ b

a

xp (x) dx� a+ b
2

Z b

a

p (x) dx =

Z b

a

x2dx� a+ b
2

Z b

a

xdx

= (b� a)
"
b2 + ab+ a2

3
�
�
a+ b

2

�2#

=
1

12
(b� a)3 :

Let f : [a; b]! R be convex, then by (2.9) we get

(3.1)
1

12
(b� a)3 f 0+ (a) �

Z b

a

xf (x) dx� a+ b
2

Z b

a

f (x) dx � 1

12
(b� a)3 f 0� (b) :

For n a natural number, the function p (x) =
�
x� a+b

2

�2n+1
; is increasing, then

for f : [a; b]! R a convex function, we have by (2.9)

0 � f 0+ (a)
"Z b

a

x

�
x� a+ b

2

�2n+1
dx� a+ b

2

Z b

a

�
x� a+ b

2

�2n+1
dx

#

�
Z b

a

�
x� a+ b

2

�2n+1
f (x) dx� 1

b� a

Z b

a

f (x) dx

Z b

a

�
x� a+ b

2

�2n+1
dx

� f 0� (b)
"Z b

a

x

�
x� a+ b

2

�2n+1
dx� a+ b

2

Z b

a

�
x� a+ b

2

�2n+1
dx

#
:

Observe thatZ b

a

x

�
x� a+ b

2

�2n+1
dx� a+ b

2

Z b

a

�
x� a+ b

2

�2n+1
dx

=

Z b

a

�
x� a+ b

2

��
x� a+ b

2

�2n+1
dx =

Z b

a

�
x� a+ b

2

�2n+2
dx

=
2

2n+ 3

�
b� a
2

�2n+3
=

(b� a)2n+3

(2n+ 3) 22n+2

and Z b

a

�
x� a+ b

2

�2n+1
dx = 0;
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which gives

0 � f 0+ (a)
(b� a)2n+3

(2n+ 3) 22n+2
�
Z b

a

�
x� a+ b

2

�2n+1
f (x) dx(3.2)

� f 0� (b)
(b� a)2n+3

(2n+ 3) 22n+2

for f : [a; b]! R a convex function and n a natural number.
Consider the function p (x) = � 1

x for x 2 [a; b] � (0;1) : Then p is increasing
on [a; b] and by (2.9) we get

f 0+ (a)

"
a+ b

2

Z b

a

dx

x
�
Z b

a

dx

#

� 1

b� a

Z b

a

f (x) dx

Z b

a

dx

x
�
Z b

a

f (x)

x
dx

� f 0� (b)
"
a+ b

2

Z b

a

dx

x
�
Z b

a

dx

#
;

which is equivalent to

f 0+ (a)

�
a+ b

2
(ln b� ln a)� (b� a)

�
� 1

b� a

Z b

a

f (x) dx (ln b� ln a)�
Z b

a

f (x)

x
dx

� f 0� (b)
�
a+ b

2
(ln b� ln a)� (b� a)

�
;

namely

f 0+ (a) [A (a; b)� L (a; b)](3.3)

� 1

b� a

Z b

a

f (x) dx� 1

ln b� ln a

Z b

a

f (x)

x
dx

� f 0� (b) [A (a; b)� L (a; b)] ;

where A (a; b) = a+b
2 is the arithmetic mean and L (a; b) = b�a

ln b�ln a is the logarithmic
mean of the positive numbers a < b:
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