BOUNDS FOR THE DIFFERENCE OF WEIGHTED AND
INTEGRAL MEANS OF CONVEX FUNCTIONS ON LINEAR
SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let f be a convex function on C and z, y € C, with « # y. If
p:[0,1] — R is a Lebesgue integrable function such that

1 1 1
7/ g(s)ds < / g (s)ds for all 7 € (0,1),
7 Jo 1—7 /-

then we have the inequalities

[/OITP(T)dT_%/OIp(T)dT

1 1 1
g/o p(T)f((l—T)erTy)dT—/o pde/O F(( =)+ ry)dr

Vifz(y—1)

< [/)lfp(r)dr—é/()lp<r>dv] V_fy(y—a).

Some applications for norms and semi-inner products are also provided.

1. INTRODUCTION

Let X be areal linear space, x,y € X, z # yandlet [z,y] := {(1 — Nz + Ay, A € [0,1]}
be the segment generated by = and y. We consider the function f : [z,y] — R and
the attached function ¢, ok 10,1 = R, ¢y (B) == fI1 =)z +ty], t €[0,1].

It is well known that f is convex on [z,y] iff ¢ (z,y) is convex on [0, 1], and the
following lateral derivatives exist and satisfy

() W) (5) = V- Sa-syasoy (v =), 5 € 0.1),
( ) <)0+(;1‘y) (0) v—l—fr( - )7

(i) @ (0, (1) = V_f, (y—2),
()

where V1 f, (y) are the Gdteaux lateral derivatives, we recall that

fz+hy) = f(x)

Vifa(y) @ = Jm N ,
V_foly) - =k1irgff(x+ki)_f(x)7 z, y € X.

The following inequality is the well-known Hermite-Hadamard integral inequality
for convex functions defined on a segment [z,y] C X :

(HIH) f(x‘f‘y) /f 1—t)x+ty}dt<w7
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which easily follows by the classical Hermite-Hadamard inequality for the convex
function ¢ (z,y) : [0,1] = R

Pay) <2> S/O Py (£) db < > :

For other related results see the monograph on line [8]. For some recent results in
linear spaces see [1], [2] and [9]-[12].

In the recent paper [7] we established the following refinements and reverses of
Féjer’s inequality for functions defined on linear spaces:

Theorem 1. Let f be an convexr function on C and x, y € C with x # y. If
p : [0,1] — [0,00) is Lebesgue integrable and symmetric, namely p(1 —t) = p(t)
for allt €10,1], then

(1.1) 0<;[V+fz;y(y—x)—vfz;y(y_x)]/ol
</Olf((l—t)x+ty)p(t>dt—f(x;ry>/Olp(t)dt

< - =0) - Ver - ([ i~ §|p0 )

and

(12) OS;[fo;y(y—x)—Vfm;y(y—w)]/ol(;—‘t—;Dp(t)dt
gW/01p<t>dt—/01f<<1—t):c+ty>p<t>dt
<3y -Vehw-o) [ (5|3} e

(
If we take p =1 in (1.1), then we get

(1.3 05 5 [Vafems h=2) = V- fusa (v - 0)]
/0 f[(1—t)x+ty]dt—f<x;w>

S SACEOEL AR

that was firstly obtained in [4], while from (1.2) we recapture the result obtained
in [5]

IN

IN

(1.4 05 5 [ViSeps (4= 2) = V- fepu (y— )
< f(m);rf(y)_/o FlA—t)z+ty]dt
<V Sy ly—0) - Vele -2,

Motivated by the above results, we establish in this paper some upper and lower
bounds for the difference

/Op(T)f((l—T)erTy)dT—/O pde/O F((1=7)a+ry)dr
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where f is a convex function on C and z, y € C, with x # y while p: [0,1] —» R is
a Lebesgue integrable function such that

1 /7 1 1
;/o p(s)dsﬁﬁ/T p(s)ds for all T € (0,1).

Some applications for norms and semi-inner products are also provided.

2. MAIN RESULTS

We start to the following identity that is of interest in itself as well:

Lemma 1. Let f be a convexr function on C and z, y € C, with x # y. If g :
[0,1] — C is a Lebesgue integrable function, then we have the equality

(2.1) / 6(r) 9oy () dr — / g(r)dr / oy (T dr

1—71 T

Proof. Integrating by parts in the Lebesgue integral, we have

T 1
/0 bl (B dE + / (t—1) ¢l (B)dt
T 1
= TPy (1) — / Gty Dt — (7~ 1) ey (7) — / oy (D) dE

1

that holds for all 7 € [0,1].
If we multiply this identity by ¢ (7) and integrate over 7 in [0,1], then we get

(2.2) / 9(7) Pay) (7) dr — / g (r)dr / o (1) dt

_ /01 () (/OT N0 dt) dr + /01 () (/1 (t—1) ¢y, ®) dt) dr.

Using integration by parts, we derive

23) [ oo ([ 9l @t) ar
L ([ o)
= ([[s@as) ([ t6teny 0 t) 1
[ ([ oas) el (1

0
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which proves the identity

(2.5) / () ey (7) / () dr / o (P dr

-/ 1 (/ e i) (0 (7)1
¥ /01 </OTg(s) ds> (r=1) ¢, (7 dr.

Now, observe that

/o1 (/Tl 9(s) ds) @y (T) AT+ /01 (/OTg (s) ds) (1= 1) @y () d7
= /01 T (/Tlg (s) ds) Pl (T) dT — /01 (-7 (/OTg “ ds) P

:/0 T(l—7) (fT 9()ds _Jy gES)ds> Play (T)dT

1—7
and by (2.5) we obtain the desired equality (2.1). O
We have the following result:

Theorem 2. Let f be a convex function on C' and z, y € C, with x # y. If
p:[0,1] — R is a Lebesgue integrable function such that

T 1
(2.6) %/ p(s)ds < %/ p(s)ds for all T € (0,1),
0 - T
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then we have the inequalities

en  [[ e} [r@w]visw-o
g/Olpmf((l—T>x+7y>d7—/Olmch/olf((l—T>x+fy>d7
< [/Olfpv)dr—;/:p(ﬂdf} Vot (y—).

Proof. By the properties of the convex function ¢, ,y from the above section, we
have that
(2.8) V_fy(y =) 2 ¢l (1) 2 Vife(y— )

for all 7 € (0,1).
Since

le p(s)ds fOTp (s)ds -

— >0
1—7 t

for all 7 € (0,1), hence

1 T
oo (L B
>7(1—71) <f71p£81d8 o piS)dS> Play (7)
>7(l—71) (lep(sids ! pis)ds) Vife(y—x)

for all 7 € (0,1).
By taking the integral in this inequality, we get

(2.9) /0 T(l—1) (fT p(s)ds — Jo () ds) drvV_f, (y — x)

1—7 t
1 ! S S T S S
Z/O T(l-T)(lepfj_d s pi ) )Sol(z,y)('r)d’r
> [ra-m) (fffflds o pf)ds> AVt (y - ).

By the identity (2.1) we also have

/17(1 —7) (fT p(s)ds _ fOTp(S)dS> dr
o ¢

1—7
1 1 1 1 1 1
:/ g(T)TdT—/ g(T)dT/ TdT:/ Tp(T)dT—*/ p(T)dr
0 0 0 0 2 Jo
and by employing Lemma 1 and the inequality (2.9) we obtain (2.7). O

Corollary 1. Let f be a convex function on C and x, y € C, with x # y. If
p:]0,1] — R is a monotonic nondecreasing function, then we have the inequalities

(2.7).



6 S.S. DRAGOMIR

Proof. If p: [0,1] — R is a monotonic nondecreasing function, then

L[ s <@ < éﬂm@w

T 1—=x

for x € (0,1). Then by applying Theorem 2 we get the desired result. [
If p: [0,1] — R is asymmetric, namely
p(l—t)=—p(t) for all ¢t € [0,1]

and Lebesgue integrable, then folp(s) ds = 0. If 7 € [0,1] then [/ p(s)ds +
lep (s)ds = 0, which implies that lep (s)ds =— [y p(s)ds.

Corollary 2. Let f be a convex function on C' and x, y € C, with x # y. If
p:[0,1] — R is an asymmetric Lebesgue integrable function such that

(2.10) /Tp(s) ds <0 for all T €10,1],
0

or, equivalently,

1
(2.11) 0< / p(s)ds for all T €[0,1],

then we have the inequalities
1

(2.12) A'm@ﬁmvﬂﬁ@—w)éﬂ1ﬂﬂf«1—ﬂx+nﬁﬁ

< / tp(T)drV_f, (y —x).

0
Proof. The condition

T 1
%/0 p(s)dsgliT/T p(s)ds for all 7 € (0,1)

1 (7 1 T

il <

~ [ ras< = [ pas
1

T 1 T
7/ p(s)ds+ / p(s)ds <0,
T 0 1_7_ 0

which is equivalent to (2.10).
By utilising (2.7) we derive the desired result (2.12). O

is equivalent to

namely

If ¢ : [0,1] — R is integrable, then the function p(s) = ¢q(s) — ¢(1—s) is
asymmetric. By the condition (2.10) we have

Aﬁﬂ@—qu—@msgo

namely

(2.13) /OTq(s)ds</OTq(1—s)ds,76[0,1].
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If we put u =1 — s, then

and we obtain

T 1
(2.14) /0 q(s)ds < /1 q(s)ds, T €10,1].

We also have

/OlTp(r)dfz/Ols[q(s)_q(l_s)]ds

/Olsq(s)ds/()l(ls)Q(s)ds

:/01[23—1](](5)61822/01 (s—é)q(s)ds

and, for an integrable function f : [0,1] — R we have
[ r@reas= [ lao-a0-915()ds
0 0
1 1
:/0 q(s)f(s)ds—/o g(1—s) f(s)ds
=/0 q(S)f(S)ds—/O g(s) f (1—s)ds
1
:/0 g(3)[f () — F (1 - 8)ds.

We can state:

Corollary 3. Let f be a convex function on C and x, y € C, with x # y. If

q:[0,1] — R is a Lebesgue integrable function such that (2.13) holds, then we have
the inequalities

e[ 1 (T - ;) 4() AV fu (y — )

<5 [ @U@=t~ f et =n)y)r

[ (=) s

3. EXAMPLES FOR NORMS

IN

Now, assume that (X, ||-||) is a normed linear space. The function fy (s) = 3 =2,
x € X is convex and thus the following limits exist

: - — i lttzl Pyl
(1V) <x,y>s i V+f0,y (:L’) _tl—lgl-i- Y 2 Y )

(v) (2,9}, = V_fo, (@) = lim lrberp=lvl,

S
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for any =, y € X. They are called the lower and upper semi-inner products
associated to the norm ||-||.

For the sake of completeness we list here some of the main properties of these
mappings that will be used in the sequel (see for example [2] or [6]), assuming that
p, q € {s,i} and p # ¢:

(a) (z,), = ||lz||® for all z € X;

(aa) (az, By) = af(z, y) ifa, 8>0and z, y € X;

(aaa) ‘ (z,y) ‘ < |lz|l [ly]| for all z, y € X;

(av) (az +y,2), = a(z,z), +(y,2),fz,y€ X and a € R;
W) (~z,y), = —(2,9), for all x,yeX;

(va) (z+1,2), < lall 12 + (g, 2), for all z, y, = € X;

) The mapping (-,-),, is continuous and subadditive (superadditive) in the
first variable for p = s (or p = i);

(vaaa) The normed linear space (X, ||]|) is smooth at the point zg € X\ {0} if and
only if (y,z0), = (y, xo), for all y € X; in general (y,z), < (y,z), for all z,
y e X;
(ax) If the norm ||| is induced by an inner product (-,-), then (y,z), = (y,z) =
(y,z), for all z, y € X.

The function f.(z) = ||z||" (x € X and 1 < r < 00) is also convex. Therefore,
the following limits, which are related to the superior (inferior) semi-inner products,

(vaa

ly + ta||” — [lylI"
Vifry () = tﬂoi t
_ r—1 .yl =yl o2
=y i WLy

exist for all x, y € X whenever r > 2; otherwise, they exist for any x € X and
nonzero y € X. In particular, if r = 1, then the following limits

ly + tall = llyll (=9

Vifiy(z) = lim =
v (@)= g T Tl

exist for z, y € X and y # 0.
If p: [0,1] — R is a Lebesgue integrable function such that

I e
f/ p(s)clsg1 / p(s)ds for all T € (0,1),
0 T

T -7

then we have the inequalities

s o[ [o@ ] oo,

1 1 1
s/o p(r)f((lff)x+ry)dff/0 p(r)dT/O F((1 =7zt 7y)dr

<o [ werar=3 [ o] i -,

If » > 2, then the inequality (3.1) holds for all z, y € X. If r € [1,2), then the
inequality (3.1) holds for all z, y € X with z, y # 0.
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For r = 2 we get

(3.2) 2|;/017'p(7')d7'—;/01p(T)dT:| (y—z,z),

s/o p(T)f((l—T)x+Ty)dT—/0 p(T)dT/O F((1=7)z+ry)dr

<2 [ @i} [ perar] w-a,

for all z, y € X.

4. EXAMPLES FOR FUNCTIONS OF SEVERAL VARIABLES

Now, let Q C R™ be an open convex set in R™. If F': Q — R is a differentiable
convex function on €, then, obviously, for any ¢ € ) we have

" OF (¢)

VFE (@) - ax *Yiy g = (y17"'7y7l) S Rn,

=1

where % are the partial derivatives of F' with respect to the variable z; (i =

1,...,n).
If p: [0,1] — R is a Lebesgue integrable function such that

T 1
%/0 p(s)dsgi/r p(s)ds for all 7 € (0,1),

then we have the inequalities

(4.1) Uolfp(f)dT;/Olp(T)dT] S OF(@)

ox;
i=1 ¢

S/OP(T)f((l—T)(i-l-TB)dT—/Op(T)dT/O f((l—T)fL‘i‘T[;)dT
aF(l_))

1 1 n
< _ = = N (b — s
[/0 Tp (1) dT 2/0 p(T)dT:|; o (b; — a;)
for all @, b € Q.
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