
BOUNDS FOR THE DIFFERENCE OF WEIGHTED AND
INTEGRAL MEANS OF CONVEX FUNCTIONS ON LINEAR

SPACES

SILVESTRU SEVER DRAGOMIR1;2

Abstract. Let f be a convex function on C and x; y 2 C; with x 6= y: If
p : [0; 1]! R is a Lebesgue integrable function such that

1

�

Z �

0
g (s) ds � 1

1� �

Z 1

�
g (s) ds for all � 2 (0; 1) ;

then we have the inequalities�Z 1

0
�p (�) d� � 1

2

Z 1

0
p (�) d�

�
r+fx (y � x)

�
Z 1

0
p (�) f ((1� �)x+ �y) d� �

Z 1

0
p (�) d�

Z 1

0
f ((1� �)x+ �y) d�

�
�Z 1

0
�p (�) d� � 1

2

Z 1

0
p (�) d�

�
r�fy (y � x) :

Some applications for norms and semi-inner products are also provided.

1. Introduction

LetX be a real linear space, x; y 2 X, x 6= y and let [x; y] := f(1� �)x+ �y; � 2 [0; 1]g
be the segment generated by x and y. We consider the function f : [x; y]! R and
the attached function '(x;y) : [0; 1]! R, '(x;y) (t) := f [(1� t)x+ ty], t 2 [0; 1].
It is well known that f is convex on [x; y] i¤ ' (x; y) is convex on [0; 1], and the

following lateral derivatives exist and satisfy

(i) '0�(x;y) (s) = r�f(1�s)x+sy (y � x), s 2 [0; 1);
(ii) '0+(x;y) (0) = r+fx (y � x) ;
(iii) '0�(x;y) (1) = r�fy (y � x) ;
where r�fx (y) are the Gâteaux lateral derivatives, we recall that

r+fx (y) : = lim
h!0+

f (x+ hy)� f (x)
h

;

r�fx (y) : = lim
k!0�

f (x+ ky)� f (x)
k

; x; y 2 X:

The following inequality is the well-known Hermite-Hadamard integral inequality
for convex functions de�ned on a segment [x; y] � X :

(HH) f

�
x+ y

2

�
�
Z 1

0

f [(1� t)x+ ty] dt � f (x) + f (y)

2
;
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2 S. S. DRAGOMIR

which easily follows by the classical Hermite-Hadamard inequality for the convex
function ' (x; y) : [0; 1]! R

'(x;y)

�
1

2

�
�
Z 1

0

'(x;y) (t) dt �
'(x;y) (0) + '(x;y) (1)

2
:

For other related results see the monograph on line [8]. For some recent results in
linear spaces see [1], [2] and [9]-[12].
In the recent paper [7] we established the following re�nements and reverses of

Féjer�s inequality for functions de�ned on linear spaces:

Theorem 1. Let f be an convex function on C and x; y 2 C with x 6= y: If
p : [0; 1] ! [0;1) is Lebesgue integrable and symmetric, namely p (1� t) = p (t)
for all t 2 [0; 1] ; then

0 � 1

2

h
r+f x+y

2
(y � x)�r�f x+y

2
(y � x)

i Z 1

0

����t� 12
���� p (t) dt(1.1)

�
Z 1

0

f ((1� t)x+ ty) p (t) dt� f
�
x+ y

2

�Z 1

0

p (t) dt

� 1

2
[r�fy (y � x)�r+fx (y � x)]

�Z 1

0

����t� 12
���� p (t) dt�

and

0 � 1

2

h
r+f x+y

2
(y � x)�r�f x+y

2
(y � x)

i Z 1

0

�
1

2
�
����t� 12

����� p (t) dt(1.2)

� f (x) + f (y)

2

Z 1

0

p (t) dt�
Z 1

0

f ((1� t)x+ ty) p (t) dt

� 1

2
[r�fy (y � x)�r+fx (y � x)]

Z 1

0

�
1

2
�
����t� 12

����� p (t) dt:
If we take p � 1 in (1.1), then we get

0 � 1

8

h
r+f x+y

2
(y � x)�r�f x+y

2
(y � x)

i
(1.3)

�
Z 1

0

f [(1� t)x+ ty] dt� f
�
x+ y

2

�
� 1

8
[r�fy (y � x)�r+fx (y � x)]

that was �rstly obtained in [4], while from (1.2) we recapture the result obtained
in [5]

0 � 1

8

h
r+f x+y

2
(y � x)�r�f x+y

2
(y � x)

i
(1.4)

� f (x) + f (y)

2
�
Z 1

0

f [(1� t)x+ ty] dt

� 1

8
[r�fy (y � x)�r+fx (y � x)] :

Motivated by the above results, we establish in this paper some upper and lower
bounds for the di¤erenceZ 1

0

p (�) f ((1� �)x+ �y) d� �
Z 1

0

p (�) d�

Z 1

0

f ((1� �)x+ �y) d�
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where f is a convex function on C and x; y 2 C; with x 6= y while p : [0; 1]! R is
a Lebesgue integrable function such that

1

�

Z �

0

p (s) ds � 1

1� �

Z 1

�

p (s) ds for all � 2 (0; 1) :

Some applications for norms and semi-inner products are also provided.

2. Main Results

We start to the following identity that is of interest in itself as well:

Lemma 1. Let f be a convex function on C and x; y 2 C; with x 6= y: If g :
[0; 1]! C is a Lebesgue integrable function, then we have the equalityZ 1

0

g (�)'(x;y) (�) d� �
Z 1

0

g (�) d�

Z 1

0

'(x;y) (�) d�(2.1)

=

Z 1

0

� (1� �)
 R 1

�
g (s) ds

1� � �
R �
0
g (s) ds

�

!
'0(x;y) (�) d� :

Proof. Integrating by parts in the Lebesgue integral, we haveZ �

0

t'0(x;y) (t) dt+

Z 1

�

(t� 1)'0(x;y) (t) dt

= �'(x;y) (�)�
Z �

0

'(x;y) (t) dt� (� � 1)'(x;y) (�)�
Z 1

�

'(x;y) (t) dt

= '(x;y) (�)�
Z 1

0

'(x;y) (t) dt

that holds for all � 2 [0; 1] :
If we multiply this identity by g (�) and integrate over � in [0; 1] ; then we getZ 1

0

g (�)'(x;y) (�) d� �
Z 1

0

g (�) d�

Z 1

0

'(x;y) (t) dt(2.2)

=

Z 1

0

g (�)

�Z �

0

t'0(x;y) (t) dt

�
d� +

Z 1

0

g (�)

�Z 1

�

(t� 1)'0(x;y) (t) dt
�
d� :

Using integration by parts, we deriveZ 1

0

g (�)

�Z �

0

t'0(x;y) (t) dt

�
d�(2.3)

=

Z 1

0

�Z �

0

t'0(x;y) (t) dt

�
d

�Z �

0

g (s) ds

�
=

�Z �

0

g (s) ds

��Z �

0

t'0(x;y) (t) dt

�����1
0

�
Z 1

0

�Z �

0

g (s) ds

�
�'0(x;y) (�) d�
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=

�Z 1

0

g (s) ds

��Z 1

0

t'0(x;y) (t) dt

�
�
Z 1

0

�Z �

0

g (s) ds

�
�'0(x;y) (�) d�

=

Z 1

0

�Z 1

0

g (s) ds�
Z �

0

g (s) ds

�
�'0(x;y) (�) d�

=

Z 1

0

�Z 1

�

g (s) ds

�
�'0(x;y) (�) d�

and Z 1

0

g (�)

�Z 1

�

(t� 1)'0(x;y) (t) dt
�
d�(2.4)

=

Z 1

0

�Z 1

�

(t� 1)'0(x;y) (t) dt
�
d

�Z �

0

g (s) ds

�
=

�Z 1

�

(t� 1)'0(x;y) (t) dt
��Z �

0

g (s) ds

�����1
0

+

Z 1

0

�Z �

0

g (s) ds

�
(� � 1)'0(x;y) (�) d�

=

Z 1

0

�Z �

0

g (s) ds

�
(� � 1)'0(x;y) (�) d� ;

which proves the identityZ 1

0

g (�)'(x;y) (�) d� �
Z 1

0

g (�) d�

Z 1

0

'(x;y) (�) d�(2.5)

=

Z 1

0

�Z 1

�

g (s) ds

�
�'0(x;y) (�) d�

+

Z 1

0

�Z �

0

g (s) ds

�
(� � 1)'0(x;y) (�) d� :

Now, observe thatZ 1

0

�Z 1

�

g (s) ds

�
�'0(x;y) (�) d� +

Z 1

0

�Z �

0

g (s) ds

�
(� � 1)'0(x;y) (�) d�

=

Z 1

0

�

�Z 1

�

g (s) ds

�
'0(x;y) (�) d� �

Z 1

0

(1� �)
�Z �

0

g (s) ds

�
'0(x;y) (�) d�

=

Z 1

0

� (1� �)
 R 1

�
g (s) ds

1� � �
R �
0
g (s) ds

t

!
'0(x;y) (�) d�

and by (2.5) we obtain the desired equality (2.1). �

We have the following result:

Theorem 2. Let f be a convex function on C and x; y 2 C; with x 6= y: If
p : [0; 1]! R is a Lebesgue integrable function such that

(2.6)
1

�

Z �

0

p (s) ds � 1

1� �

Z 1

�

p (s) ds for all � 2 (0; 1) ;
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then we have the inequalities�Z 1

0

�p (�) d� � 1
2

Z 1

0

p (�) d�

�
r+fx (y � x)(2.7)

�
Z 1

0

p (�) f ((1� �)x+ �y) d� �
Z 1

0

p (�) d�

Z 1

0

f ((1� �)x+ �y) d�

�
�Z 1

0

�p (�) d� � 1
2

Z 1

0

p (�) d�

�
r�fy (y � x) :

Proof. By the properties of the convex function '(x;y) from the above section, we
have that

(2.8) r�fy (y � x) � '0(x;y) (�) � r+fx (y � x)
for all � 2 (0; 1) :
Since R 1

�
p (s) ds

1� � �
R �
0
p (s) ds

t
� 0

for all � 2 (0; 1) ; hence

� (1� �)
 R 1

�
p (s) ds

1� � �
R �
0
p (s) ds

t

!
r�fy (y � x)

� � (1� �)
 R 1

�
p (s) ds

1� � �
R �
0
p (s) ds

t

!
'0(x;y) (�)

� � (1� �)
 R 1

�
p (s) ds

1� � �
R �
0
p (s) ds

t

!
r+fx (y � x)

for all � 2 (0; 1) :
By taking the integral in this inequality, we getZ 1

0

� (1� �)
 R 1

�
p (s) ds

1� � �
R �
0
p (s) ds

t

!
d�r�fy (y � x)(2.9)

�
Z 1

0

� (1� �)
 R 1

�
p (s) ds

1� � �
R �
0
p (s) ds

t

!
'0(x;y) (�) d�

�
Z 1

0

� (1� �)
 R 1

�
p (s) ds

1� � �
R �
0
p (s) ds

t

!
d�r+fx (y � x) :

By the identity (2.1) we also haveZ 1

0

� (1� �)
 R 1

�
p (s) ds

1� � �
R �
0
p (s) ds

t

!
d�

=

Z 1

0

g (�) �d� �
Z 1

0

g (�) d�

Z 1

0

�d� =

Z 1

0

�p (�) d� � 1
2

Z 1

0

p (�) d�

and by employing Lemma 1 and the inequality (2.9) we obtain (2.7). �

Corollary 1. Let f be a convex function on C and x; y 2 C; with x 6= y: If
p : [0; 1]! R is a monotonic nondecreasing function, then we have the inequalities
(2.7).
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Proof. If p : [0; 1]! R is a monotonic nondecreasing function, then

1

x

Z x

0

p (s) ds � p (x) � 1

1� x

Z 1

x

p (s) ds

for x 2 (0; 1) : Then by applying Theorem 2 we get the desired result. �

If p : [0; 1]! R is asymmetric, namely

p (1� t) = �p (t) for all t 2 [0; 1]

and Lebesgue integrable, then
R 1
0
p (s) ds = 0: If � 2 [0; 1] then

R �
0
p (s) ds +R 1

�
p (s) ds = 0; which implies that

R 1
�
p (s) ds = �

R �
0
p (s) ds:

Corollary 2. Let f be a convex function on C and x; y 2 C; with x 6= y: If
p : [0; 1]! R is an asymmetric Lebesgue integrable function such that

(2.10)
Z �

0

p (s) ds � 0 for all � 2 [0; 1] ;

or, equivalently,

(2.11) 0 �
Z 1

�

p (s) ds for all � 2 [0; 1] ;

then we have the inequalitiesZ 1

0

�p (�) d�r+fx (y � x) �
Z 1

0

p (�) f ((1� �)x+ �y) d�(2.12)

�
Z 1

0

�p (�) d�r�fy (y � x) :

Proof. The condition

1

�

Z �

0

p (s) ds � 1

1� �

Z 1

�

p (s) ds for all � 2 (0; 1)

is equivalent to
1

�

Z �

0

p (s) ds � � 1

1� �

Z �

0

p (s) ds

namely
1

�

Z �

0

p (s) ds+
1

1� �

Z �

0

p (s) ds � 0;

which is equivalent to (2.10).
By utilising (2.7) we derive the desired result (2.12). �

If q : [0; 1] ! R is integrable, then the function p (s) = q (s) � q (1� s) is
asymmetric. By the condition (2.10) we haveZ �

0

[q (s)� q (1� s)] ds � 0

namely

(2.13)
Z �

0

q (s) ds �
Z �

0

q (1� s) ds; � 2 [0; 1] :
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If we put u = 1� s; then Z �

0

q (1� s) ds =
Z 1

1��
q (s) ds

and we obtain

(2.14)
Z �

0

q (s) ds �
Z 1

1��
q (s) ds; � 2 [0; 1] :

We also haveZ 1

0

�p (�) d� =

Z 1

0

s [q (s)� q (1� s)] ds

=

Z 1

0

sq (s) ds�
Z 1

0

(1� s) q (s) ds

=

Z 1

0

[2s� 1] q (s) ds = 2
Z 1

0

�
s� 1

2

�
q (s) ds

and, for an integrable function f : [0; 1]! R we haveZ 1

0

p (s) f (s) ds =

Z 1

0

[q (s)� q (1� s)] f (s) ds

=

Z 1

0

q (s) f (s) ds�
Z 1

0

q (1� s) f (s) ds

=

Z 1

0

q (s) f (s) ds�
Z 1

0

q (s) f (1� s) ds

=

Z 1

0

q (s) [f (s)� f (1� s)] ds:

We can state:

Corollary 3. Let f be a convex function on C and x; y 2 C; with x 6= y: If
q : [0; 1]! R is a Lebesgue integrable function such that (2.13) holds, then we have
the inequalitiesZ 1

0

�
� � 1

2

�
q (�) d�r+fx (y � x)(2.15)

� 1

2

Z 1

0

q (�) [f ((1� �)x+ �y)� f (�x+ (1� �) y)] d�

�
Z 1

0

�
� � 1

2

�
q (�) d�r�fy (y � x) :

3. Examples for Norms

Now, assume that (X; k�k) is a normed linear space. The function f0 (s) = 1
2 kxk

2,
x 2 X is convex and thus the following limits exist

(iv) hx; yis := r+f0;y (x) = lim
t!0+

ky+txk2�kyk2
2t ;

(v) hx; yii := r�f0;y (x) = lim
s!0�

ky+sxk2�kyk2
2s ;
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for any x; y 2 X. They are called the lower and upper semi-inner products
associated to the norm k�k.
For the sake of completeness we list here some of the main properties of these

mappings that will be used in the sequel (see for example [2] or [6]), assuming that
p; q 2 fs; ig and p 6= q:

(a) hx; xip = kxk
2 for all x 2 X;

(aa) h�x; �yip = �� hx; yip if �; � � 0 and x; y 2 X;
(aaa)

���hx; yip��� � kxk kyk for all x; y 2 X;
(av) h�x+ y; xip = � hx; xip + hy; xip if x; y 2 X and � 2 R;
(v) h�x; yip = �hx; yiq for all x; y 2 X;
(va) hx+ y; zip � kxk kzk+ hy; zip for all x; y; z 2 X;
(vaa) The mapping h�; �ip is continuous and subadditive (superadditive) in the

�rst variable for p = s (or p = i);
(vaaa) The normed linear space (X; k�k) is smooth at the point x0 2 Xn f0g if and

only if hy; x0is = hy; x0ii for all y 2 X; in general hy; xii � hy; xis for all x;
y 2 X;

(ax) If the norm k�k is induced by an inner product h�; �i ; then hy; xii = hy; xi =
hy; xis for all x; y 2 X.

The function fr(x) = kxkr (x 2 X and 1 � r < 1) is also convex. Therefore,
the following limits, which are related to the superior (inferior) semi-inner products,

r�fr;y (x) := lim
t!0�

ky + txkr � kykr

t

= r kykr�1 lim
t!0�

ky + txk � kyk
t

= r kykr�2 hx; yis(i)

exist for all x; y 2 X whenever r � 2; otherwise, they exist for any x 2 X and
nonzero y 2 X. In particular, if r = 1, then the following limits

r�f1;y (x) := lim
t!0�

ky + txk � kyk
t

=
hx; yis(i)
kyk

exist for x; y 2 X and y 6= 0.
If p : [0; 1]! R is a Lebesgue integrable function such that

1

�

Z �

0

p (s) ds � 1

1� �

Z 1

�

p (s) ds for all � 2 (0; 1) ;

then we have the inequalities

r

�Z 1

0

�p (�) d� � 1
2

Z 1

0

p (�) d�

�
kxkr�2 hy � x; xis(3.1)

�
Z 1

0

p (�) f ((1� �)x+ �y) d� �
Z 1

0

p (�) d�

Z 1

0

f ((1� �)x+ �y) d�

� r
�Z 1

0

�p (�) d� � 1
2

Z 1

0

p (�) d�

�
kykr�2 hy � x; yis :

If r � 2; then the inequality (3.1) holds for all x; y 2 X: If r 2 [1; 2), then the
inequality (3.1) holds for all x; y 2 X with x; y 6= 0:
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For r = 2 we get

2

�Z 1

0

�p (�) d� � 1
2

Z 1

0

p (�) d�

�
hy � x; xis(3.2)

�
Z 1

0

p (�) f ((1� �)x+ �y) d� �
Z 1

0

p (�) d�

Z 1

0

f ((1� �)x+ �y) d�

� 2
�Z 1

0

�p (�) d� � 1
2

Z 1

0

p (�) d�

�
hy � x; yis

for all x; y 2 X:

4. Examples for Functions of Several Variables

Now, let 
 � Rn be an open convex set in Rn. If F : 
 ! R is a di¤erentiable
convex function on 
, then, obviously, for any �c 2 
 we have

rF�c (�y) =
nX
i=1

@F (�c)

@xi
� yi; �y = (y1; :::; yn) 2 Rn;

where @F
@xi

are the partial derivatives of F with respect to the variable xi (i =
1; :::; n).
If p : [0; 1]! R is a Lebesgue integrable function such that

1

�

Z �

0

p (s) ds � 1

1� �

Z 1

�

p (s) ds for all � 2 (0; 1) ;

then we have the inequalities�Z 1

0

�p (�) d� � 1
2

Z 1

0

p (�) d�

� nX
i=1

@F (�a)

@xi
(bi � ai)(4.1)

�
Z 1

0

p (�) f
�
(1� �) �a+ ��b

�
d� �

Z 1

0

p (�) d�

Z 1

0

f
�
(1� �) �a+ ��b

�
d�

�
�Z 1

0

�p (�) d� � 1
2

Z 1

0

p (�) d�

� nX
i=1

@F
�
�b
�

@xi
(bi � ai)

for all �a; �b 2 
:
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