SOME ELEMENTARY INEQUALITIES FOR THE EXPECTATION
AND VARIANCE OF A RANDOM VARIABLE WHOSE PDF IS
DEFINED ON A FINITE INTERVAL

N.S. BARNETT AND S.S. DRAGOMIR

Abstract. Some elementary inequalities for the expectation and variance of
a continuous random variable whose pdf is defined on a finite interval are
obtained using some standard and recent results from the theory of inequalities.

1. Introduction

Let X be a continuous random variable having the probability density function
f defined on a finite interval $[a, b]$.
By definition

$$E(X) := \int_a^b t f(t) \, dt$$

the expectation of X, and

$$\sigma^2(X) := \int_a^b (t - E(X))^2 f(t) \, dt$$

the variance of X.

Using some tools from the theory of inequalities, namely Hölder’s inequality,
pre-Grüss inequality, pre-Chebychev inequality, Taylor’s formula with the integral
remainder, we point out some elementary inequalities for the expectation and variance.

2. The Results

Theorem 1. Let X be a continuous random variable defined on $[a, b]$ having p.d.f.,
f. Then
(i) we have the inequality

$$0 \leq \sigma(X) \leq [b - E(X)]^{\frac{1}{2}} [E(X) - a]^{\frac{1}{2}} \leq \frac{1}{2} (b - a)$$

Date: November 15, 1999.
1991 Mathematics Subject Classification. Primary 60E15; Secondary 26D15.
Key words and phrases. Random Variable, Expectation, Variance.
and

\begin{equation}
0 \leq [b - E(X)] [E(X) - a] - \sigma^2(X)
\end{equation}

\begin{equation}
\begin{aligned}
&\leq \begin{cases}
\frac{(b-a)^3}{6} \|f\|_\infty \\
[B(q+1,q+1)]^{\frac{1}{q}} (b-a)^{2+\frac{1}{q}} \|f\|_p
\end{cases}
\end{aligned}
\end{equation}

where \(B(\cdot, \cdot) \) is Euler’s Beta function.

(ii) If \(m \leq f \leq M \) a.e. on \([a, b]\), then

\begin{equation}
\frac{m(b-a)^3}{6} \leq [b - E(X)] [E(X) - a] - \sigma^2(X) \leq \frac{M(b-a)^3}{6}
\end{equation}

and

\begin{equation}
\left| [b - E(X)] [E(X) - a] - \sigma^2(X) - \frac{(b-a)^2}{6} \right| \leq \frac{\sqrt{5} (b-a)^3 (M-m)}{60}.
\end{equation}

Proof. Note that:

\begin{equation}
\int_a^b (b-t) (t-a) f(t) \, dt
= \int_a^b [(b - E(X)) + (E(X) - t)] [(E(X) - a) + (t - E(X))] f(t) \, dt
= (b - E(X)) (E(X) - a) \int_a^b f(t) \, dt + (E(X) - a) \int_a^b (E(X) - t) f(t) \, dt
+ (b - E(X)) \int_a^b (t - E(X)) f(t) \, dt - \int_a^b (t - E(X))^2 f(t) \, dt
= [b - E(X)] [E(X) - a] - \sigma^2(X)
\end{equation}

since

\[\int_a^b f(t) \, dt = 1 \quad \text{and} \quad \int_a^b (t - E(X)) f(t) \, dt = 0. \]

(i) Using the fact that

\[\int_a^b (t - a) (b-t) f(t) \, dt \geq 0, \]

it follows that

\[\sigma^2(X) \leq [b - E(X)] [E(X) - a] \]

and so the first inequality in (2.1) is established.

The second inequality in (2.1) follows from the elementary result that

\[\alpha \beta \leq \frac{1}{4} (\alpha + \beta)^2, \quad \alpha, \beta \in \mathbb{R} \]
where \(\alpha = b - E(X), \beta = E(X) - a \).

The first inequality in (2.2) follows, since
\[
\int_a^b (t - a) (b - t) f(t) \, dt \leq \|f\|_\infty \int_a^b (t - a) (b - t) \, dt
\]
\[
= \frac{(b - a)^3}{6} \|f\|_\infty.
\]

The second inequality is obvious by Hölder’s integral inequality,
\[
\int_a^b (t - a) (b - t) f(t) \, dt \leq \left(\int_a^b f^p(t) \, dt \right)^{\frac{1}{p}} \left(\int_a^b (t - a)^q (b - t)^q \, dt \right)^{\frac{1}{q}}
\]
\[
= \|f\|_p (b - a)^{2+\frac{1}{q}} [B(q + 1, q + 1)]^{\frac{1}{q}}.
\]

(ii) The inequality (2.3) is obvious, taking into account that if \(m \leq f \leq M \) a.e. on \([a, b]\), then \(m (t - a) (b - t) \leq (t - a) (b - t) f(t) \leq M (t - a) (b - t) \) a.e. on \([a, b]\), and by integrating over \([a, b]\),

To prove (2.4), we use the following “pre-Grüss” inequality established in [1]

\[
\left| \frac{1}{b - a} \int_a^b h(t) g(t) \, dt - \frac{1}{b - a} \int_a^b h(t) \, dt \cdot \frac{1}{b - a} \int_a^b g(t) \, dt \right|
\]
\[
\leq \frac{1}{2} (\phi - \gamma) \left[\frac{1}{b - a} \int_a^b g^2(t) \, dt - \left(\frac{1}{b - a} \int_a^b g(t) \, dt \right)^2 \right]^{\frac{1}{2}},
\]

provided that the mappings \(h, g : [a, b] \rightarrow \mathbb{R} \) are measurable, all the integrals involved in (2.6) exist and are finite and \(\gamma \leq h \leq \phi \) a.e. on \([a, b]\).

Choose in (2.6), \(h(t) = f(t) \) and \(g(t) = (t - a) (b - t) \), which then gives

\[
\left| \frac{1}{b - a} \int_a^b (t - a) (b - t) f(t) \, dt
\]
\[
- \frac{1}{b - a} \int_a^b (t - a) (b - t) \, dt \cdot \frac{1}{b - a} \int_a^b f(t) \, dt \right|
\]
\[
\leq \frac{1}{2} (M - m) \left[\frac{1}{b - a} \int_a^b (t - a)^2 (b - t)^2 \, dt
\]
\[
- \left(\frac{1}{b - a} \int_a^b (t - a) (b - t) \, dt \right) \right]^{\frac{1}{2}}.
\]

However,
\[
\int_a^b (t - a) (b - t) \, dt = \frac{(b - a)^3}{6}, \quad \int_a^b f(t) \, dt = 1,
\]
\[
\int_a^b (t - a)^2 (b - t)^2 \, dt = (b - a)^5 \int_0^1 t^2 (1 - t)^2 \, dt = \frac{(b - a)^5}{30}
\]
\[\int_{a}^{b} (t-a)^2 (b-t)^2 dt - \left(\int_{a}^{b} (t-a) (b-t) dt \right)^2 \]

\[= \frac{(b-a)^4}{30} - \frac{(b-a)^4}{36} = \frac{(b-a)^4}{180} \]

Consequently, by (2.7), we deduce that

\[\left| \int_{a}^{b} (t-a) (b-t) f(t) dt - \frac{(b-a)^2}{6} \right| \leq \frac{1}{2} (b-a) (M-m) \left(\frac{(b-a)^4}{180} \right)^{\frac{1}{2}} \]

\[= \frac{(b-a)^3 (M-m)}{12\sqrt{5}}. \]

Using (2.5), we deduce (2.4).

Remark 1. For a different proof of the inequality (2.1) see [2].

With additional information about the derivative of \(f \), we can state the following result which complements (2.4).

Theorem 2. Assume that the p.d.f. of \(X \) is absolutely continuous on \([a, b]\).

(i) If \(f' \in L_{\infty}[a, b] \), then we have:

\[\left| b - E(X) \right| |E(X) - a| - \sigma^2(X) - \frac{(b-a)^2}{6} \leq \frac{\sqrt{30}}{720} \| f' \|_{\infty} (b-a)^3. \]

(ii) If \(f' \in L_{2}[a, b] \), then we have:

\[\left| b - E(X) \right| |E(X) - a| - \sigma^2(X) - \frac{(b-a)^2}{6} \leq \frac{\sqrt{5}}{60\pi} \| f' \|_{2} (b-a)^3. \]

Proof. (i) Use is made of the following “pre-Chebychev” inequality proved in [1],

\[\left| \frac{1}{b-a} \int_{a}^{b} h(t) g(t) dt - \frac{1}{b-a} \int_{a}^{b} h(t) dt \cdot \frac{1}{b-a} \int_{a}^{b} g(t) dt \right| \leq \frac{1}{2\sqrt{3}} \| h' \|_{\infty} \left[\frac{1}{b-a} \int_{a}^{b} g^2(t) dt - \left(\frac{1}{b-a} \int_{a}^{b} g(t) dt \right)^2 \right]^{\frac{1}{2}}. \]

Provided that \(h, g : [a, b] \to \mathbb{R} \) are measurable on \([a, b]\), the integrals involved in (2.10) exist and are finite, \(h \) is absolutely continuous and \(h' \in L_{\infty}[a, b] \).

Now, if we choose \(h(t) = f(t), g(t) = (t-a) (b-t) \) in (2.10), we get

\[\left| \int_{a}^{b} (t-a) (b-t) f(t) dt - \frac{(b-a)^2}{6} \right| \leq \frac{\| h' \|_{\infty} (b-a)}{2\sqrt{3}} \cdot \frac{(b-a)^2}{12\sqrt{5}} \]

\[= \frac{(b-a)^3 \| h' \|_{\infty}}{24\sqrt{30}}. \]

Using (2.5), we deduce (2.8).
For the second part of the theorem, we use the following “pre-Lupaş” inequality as stated in [1]

\[
\begin{align*}
\left| \frac{1}{b-a} \int_{a}^{b} h(t) g(t) \, dt - \frac{1}{b-a} \int_{a}^{b} h(t) \, dt \cdot \frac{1}{b-a} \int_{a}^{b} g(t) \, dt \right| \\
\leq \frac{b-a}{\pi} \|h'|_2 \left[\frac{1}{b-a} \int_{a}^{b} g^2(t) \, dt \right] & \leq \left(\frac{1}{b-a} \int_{a}^{b} g(t) \, dt \right)^2 \\
\end{align*}
\]

provided that \(g, h\) are as above and \(h' \in L_2[a, b]\).

Now if we choose in (2.11) \(h(t) = f(t), g(t) = (t-a)(b-t)\), we obtain the desired inequality (2.9). The details are omitted.

Theorem 3. Let \(X\) be a random variable and \(f : [a, b] \to \mathbb{R}\) its p.d.f. If \(f\) is such that \(f^{(n)}(n \geq 0)\) is absolutely continuous on \([a, b]\), then we have the inequality

\[
\left| [E(X) - a][b - E(X)] - \sigma^2(X) - \sum_{k=0}^{n} \frac{(k+1)(b-a)^{k+3}f^{(k)}(a)}{(k+3)!} \right|
\]

\[
\leq \begin{cases} \\
\frac{\|f^{(n+1)}\|_{\infty}}{(n+1)! (n+3)! (n+4)!} (b-a)^{n+4} & \text{if } f^{(n+1)} \in L_\infty[a, b] \\
\frac{\|f^{(n+1)}\|_p (b-a)^{n+3+\frac{1}{p}}}{n!(nq+1)^{\frac{1}{q}} (n+2+\frac{1}{q}) (n+3+\frac{1}{q})} & \text{if } f^{(n+1)} \in L_p[a, b], \ p > 1 \\
\frac{\|f^{(n+1)}\|_1 (b-a)^{n+3}}{n!(n+2)(n+3)} & \text{if } f^{(n+1)} \in L_1[a, b] \\
\end{cases}
\]

where \(\|\cdot\|_p (1 \leq p \leq \infty)\) are the usual Lebesgue norms on \([a, b]\), i.e.,

\[
\|g\|_\infty := \text{ess sup}_{t \in [a,b]} |g(t)|, \quad \|g\|_p := \left(\int_{a}^{b} |g(t)|^p \, dt \right)^{\frac{1}{p}}, \quad (p \geq 1).
\]

Proof. The following Taylor’s formula with integral remainder is well known in the literature (see for example [3]):

\[
f(t) = \sum_{k=0}^{n} \frac{(t-a)^k}{k!} f^{(k)}(a) + \frac{1}{n!} \int_{a}^{t} (t-s)^n f^{(n+1)}(s) \, ds
\]

for all \(t \in [a, b]\).

Since

\[
[E(X) - a][b - E(X)] - \sigma^2(X) = \int_{a}^{b} (t-a)(b-t) f(t) \, dt,
\]
then we have

\[
E(X) - a \mid [b - E(X)] - \sigma^2(X) = \int_a^b (t-a)(b-t) \left[\sum_{k=0}^n \frac{(t-a)^k}{k!} f^{(k)}(a) + \frac{1}{n!} \int_a^t (t-s)^n f^{(n+1)}(s) \, ds \right] \, dt
\]

\[
= \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} \int_a^b (t-a)^{k+1} (b-t) \, dt
\]

\[
+ \frac{1}{n!} \int_a^b \left[(t-a)(b-t) \int_a^t (t-s)^n f^{(n+1)}(s) \, ds \right] \, dt.
\]

Using the transform, \(t = (1-u)a + ub \), we have

\[
\int_a^b (t-a)^{k+1} (b-t) \, dt = (b-a)^{k+3} \int_0^1 u^{k+1} (1-u) \, du = \frac{1}{(k+2)(k+3)}
\]

and by (2.15), we deduce that

\[
\left| E(X) - a \mid [b - E(X)] - \sigma^2(X) - \sum_{k=0}^n \frac{(k+1)(b-a)^{k+3} f^{(k)}(a)}{(k+3)!} \right|
\]

\[
\leq \frac{1}{n!} \int_a^b (t-a)(b-t) \left[\int_a^t (t-s)^n f^{(n+1)}(s) \, ds \right] \, dt =: M(a,b).
\]

However, for all \(t \in [a,b] \) we have

\[
\left| \int_a^t (t-s)^n f^{(n+1)}(s) \, ds \right| \leq \int_a^t |t-s|^n \left| f^{(n+1)}(s) \right| \, ds
\]

\[
\leq \sup_{s \in [a,b]} \left| f^{(n+1)}(s) \right| \int_a^t (t-s)^n \, ds
\]

\[
\leq \left\| f^{(n+1)} \right\|_\infty \frac{(t-a)^{n+1}}{n+1}.
\]

By Hölder’s integral inequality we have,

\[
\left| \int_a^t (t-s)^n f^{(n+1)}(s) \, ds \right|
\]

\[
\leq \left(\int_a^t \left| f^{(n+1)}(s) \right|^p \, ds \right)^{\frac{1}{p}} \left(\int_a^t (t-s)^{nq} \, ds \right)^{\frac{1}{q}}
\]

\[
\leq \left\| f^{(n+1)} \right\|_p \left[\frac{(t-a)^{nq+1}}{nq+1} \right]^{\frac{1}{q}}, \quad \frac{1}{p} + \frac{1}{q} = 1, \ p > 1
\]

for all \(t \in [a,b] \).

Finally, we observe that

\[
\left| \int_a^t (t-s)^n f^{(n+1)}(s) \, ds \right| \leq \int_a^t (t-s)^n \left| f^{(n+1)}(s) \right| \, ds
\]

\[
\leq (t-a)^n \int_a^t \left| f^{(n+1)}(s) \right| \, ds
\]

\[
\leq (t-a)^n \left\| f^{(n+1)} \right\|_1.
\]
for all $t \in [a, b]$.

Consequently,

$$M(a, b) \leq \frac{1}{n!} \times \left\{ \frac{\|f^{(n+1)}\|_n}{n+1} \int_a^b (t-a)^{n+2} (b-t) \, dt \right\}$$

$$= \left\{ \frac{\|f^{(n+1)}\|_n}{(nq+1)^q} \int_a^b (t-a)^{n+1+\frac{1}{q}} (b-t) \, dt \right\}$$

and as

$$\int_0^1 u^{n+2} (1-u) \, du = \frac{1}{(n+3)(n+4)}$$

$$\int_0^1 u^{n+1+\frac{1}{q}} (1-u) \, du = \frac{1}{\left(n + 2 + \frac{1}{q}\right) \left(n + 3 + \frac{1}{q}\right)}$$

and

$$\int_0^1 u^{n+1} (1-u) \, du = \frac{1}{(n+2)(n+3)}$$

the inequality (2.12) is proved.

Remark 2. A similar result can be obtained if use is made of a Taylor expansion around the point b.

References

School of Communications and Informatics, **Victoria University of Technology, PO Box 14428, Melbourne City MC 8001, Victoria, Australia.**

E-mail address: Neil.Barnett@vu.edu.au

E-mail address: Sever.Dragomir@vu.edu.au