
A CONVOLUTED FIBONACCI SEQUENCE - PART II

A. SOFO

Abstract. We consider a generalisation of the classical Fibonacci sequence,
and by the use of function theoretic methods, generate binomial type series
which may be expressed in closed form. Some new identities are also given.

1. Introduction

In this paper we will extend the ideas developed in our previous paper [2]. We
consider an arbitrary order difference scheme and by the use of Z transform theory
generate binomial type sums that may be represented in closed form. In particular,
we consider multiple zeros of an associated polynomial characteristic function and
following the methods of our previous paper [2], we shall generalise a result given
by Wilf [3]. We also employ Zeilberger’s creative telescoping algorithm, Petkovšek’s
algorithm ‘Hyper’ and Wilf and Zeilberger’s WZ pairs method to certify particular
instances of the generated binomial sums. Finally, we generalise our results by
considering forcing terms of binomial type.

2. Technique

For the sake of completeness, we shall describe the technique as given in [2].
Consider a generalised Fibonacci sequence fn, that satisfies

R
∑

j=0

(

R
R− j

)

(−c)R−j
j

∑

r=0

(

j
r

)

(−b)j−r fn+r−(R−j)a = wn; n ≥ aR

R
∑

r=0

(

R
r

)

(−b)R−r fn+r = wn; n < aR















(2.1)

with a and R integer, b and c real and wn is a discrete forcing term. A method
of analyzing the solution of system (2.1) is by the use of Z transform techniques.
Without loss of generality, let wn = 0, fR−1 = 1 and all other initial conditions of
the system (2.1) be zero. If we now take the Z transform of (2.1), utilize the two
Z transform properties

Z [fn+k] = zk

[

f (z)−
k−1
∑

n=0

fnz−n

]

and

Z [fn−kUn−k] = z−kF (z) ,
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where Un−k is the discrete step function, we obtain

F (z)







R
∑

j=0

(

R
j

)

(z − b)j (

−cz−a)R−j







= z.(2.2)

From (2.2)

F (z) =
z

(z − b− cz−a)R =
zaR+1

(za+1 − bza − c)R .(2.3)

In series form, (2.3) may be expressed as

F (z) =
∞
∑

r=0

(

R + r − 1
r

)

crz1−ar

(z − b)R+r(2.4)

and we may obtain the inverse Z transform of (2.4) such that

fn (a, b, c, R) = fn(2.5)

=
[n+1−R

a+1 ]
∑

r=0

(

R + r − 1
r

) (

n− ar
R + r − 1

)

(c
b

)r
bn−ar−R+1

where [x] represents the integer part of x. The inverse Z transform of (2.3) may
also be expressed as

fn =
1

2πi

∮

C

zn
(

F (z)
z

)

dz =
a

∑

j=0

znResj

(

F (z)
z

)

,(2.6)

where C is a smooth Jordan curve enclosing the singularities of (2.3) and Resj is
the residue of the poles of (2.3). The residue, Resj , of (2.6) depend on the zeros of
the characteristic function in (2.3), namely

g (z) = za+1 − bza − c.(2.7)

Now, g (z) has a + 1 distinct zeros ξj , j = 0, 1, 2, 3, ..., a, for

c 6= −aa
(

b
a + 1

)a+1

therefore the singularities in (2.3) are all poles of order R. We may now write (2.6)
as

fn =
a

∑

j=0

R−1
∑

µ=0

QR,µ
(

ξj

)

(

n
R− 1− µ

)

ξn−R+1+µ
j(2.8)

where

µ!QR,µ
(

ξj

)

= lim
z→ξj

[

dµ

dzµ

{

(

z − ξj

)R F (z)
z

}]

(2.9)

for each j = 0, 1, 2, 3, ..., a, and F (z) is given by (2.3). Combining the expressions
in (2.5) and (2.8) we have that

[n+1−R
a+1 ]
∑

r=0

(

R + r − 1
r

) (

n− ar
R + r − 1

)

(c
b

)r
bn−ar−R+1
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=
a

∑

j=0

R−1
∑

µ=0

QR,µ
(

ξj

)

(

n
R− 1− µ

)

ξn−R+1+µ
j(2.10)

and putting n = n∗ (a + 1) + R − 1 in (2.10) and renaming n∗ as n, we have an
alternate form

n
∑

r=0

(

R + r − 1
r

)(

n (a + 1) + R− 1− ar
R + r − 1

)

(c
b

)r
bn(a+1)−ar(2.11)

=
a

∑

j=0

R−1
∑

µ=0

QR,µ
(

ξj

)

(

n (a + 1) + R− 1
R− 1− µ

)

ξn(a+1)+µ
j .

Let us now consider the case of multiple zeros of the characteristic function
(2.7). In doing so, we shall recover a result given by Wilf [3], and describe a
generalisation of this result which we believe to be new. The WZ pairs method of
Wilf and Zeilberger will also be employed to certify particular instances of identities
that we shall generate.

3. Multiple Zeros

When the characteristic function (2.7) has double (repeated) zeros, which will

be the case for c = −aa
(

b
a+1

)a+1
, then (2.3) has poles of order 2R. In this case we

may write, from (2.11)
n

∑

r=0

(

R + r − 1
r

)(

n (a + 1) + R− 1− ar
R + r − 1

)

(

−aa

(a + 1)a+1

)r

(3.1)

= b−n(a+1)
a

∑

j=0

znResj

(

F (z)
z

)

where the Resj must take into account the repeated zeros of (2.7).
For a = 1, c = − (b/2)2 and, from (2.3),

F (z) =
zR+1

(z − b/2)2R

which has poles of order 2R at z = b/2. Utilizing (2.8), (2.9) and (3.1) we have

fn (R) =
n

∑

r=0

(

R + r − 1
r

)(

2n + R− 1− r
R + r − 1

)(

−1
4

)r

(3.2)

= 2−2n
R

∑

µ=0

(

R
µ

)(

2n + R− 1
2R− 1− µ

)

.

If R = 1, then (3.2) reduces to a result given on page 124 of Wilf’s book [3], namely
n

∑

r=0

(

2n− r
r

)(

−1
4

)r

= 2−2n (2n + 1) =
n

∏

j=1

sin2
(

πj
2n + 1

)

.(3.3)

Hence (3.2) is a generalisation of (3.3) which we believe to be new. Utilizing Zeil-
berger’s creative telescoping algorithm, described in [2] and available on ‘Mathe-
matica’, we obtain from the left hand side of (3.2) a recurrence fn (R) that satisfies

4 (n + 1) (2n + 1) fn+1 (R)− (n + R) (2n + 2R + 1) fn (R) = 0.(3.4)
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Iterating (3.4), we have that

fn (R) = 2−2n
n−1
∏

j=0

(R + j) (2R + 1 + 2j)
(1 + j) (1 + 2j)

(3.5)

so that from (3.2) and (3.5) we obtain

22n
n

∑

r=0

(

R + r − 1
r

)(

2n + R− 1− r
R + r − 1

)(

−1
4

)r

(3.6)

=
R

∑

µ=0

(

R
µ

)(

2n + R− 1
2R− 1− µ

)

=
n−1
∏

j=0

(R + j) (2R + 1 + 2j)
(1 + j) (1 + 2j)

.

Further results may be obtained as follows. Differentiate (2.11), for R = 1, and its
trigonometric representation with respect to c, then substitute c = − (b/2)2 and
simplify such that

f ′n (1) =
n

∑

r=1

r
(

2n− r
r

)(

−1
4

)r

(3.7)

= −
n

∏

j=1

sin2
(

πj
2n + 1

) n
∑

k=1

cot2
(

πk
2n + 1

)

.

From ‘Mathematica’, a recurrence relation for f ′n (1) in (3.7) is

4n (2n− 1) f ′n+1 (1)− (n + 1) (2n + 3) f ′n (1) = 0.(3.8)

Iterating (3.8) and using (3.7) we have

n
∑

r=1

r
(

2n− r
r

)(

−1
4

)r

= −2−2n
n−1
∏

j=1

(1 + j) (3 + 2j)
j (2j − 1)

(3.9)

and comparing (3.7) and (3.9), we have

2−2n
n−1
∏

j=1

(1 + j) (3 + 2j)
j (2j − 1)

=
n

∏

j=1

sin2
(

πj
2n + 1

) n
∑

k=1

cot2
(

πk
2n + 1

)

.(3.10)

To further illustrate the technique, from (3.2) and (3.4) with R = 2 we obtain
n

∑

r=0

(

r + 1
r

)(

2n + 1− r
r + 1

)(

−1
4

)r

(3.11)

= 2−2n
{(

2n + 1
3

)

+ 2
(

2n + 1
2

)

+
(

2n + 1
1

)}

= 2−2n
n−1
∏

j=0

(2 + j) (5 + 2j)
(1 + j) (2j + 1)

.

Writing

n
∑

r=0

(

r + 1
r

)(

2n + 1− r
r + 1

) (

−1
4

)r

=
n

∑

r=0

(2n + 1− r)
(

2n− r
r

)(

−1
4

)r
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and using result (3.2) we have that
n

∑

r=0

(

r + 1
r

) (

2n + 1− r
r + 1

)(

−1
4

)r

(3.12)

= 2−2n (2n + 1)2 +
n

∏

j=1

sin2
(

πj
2n + 1

) n
∑

k=1

cot2
(

πk
2n + 1

)

.

From (3.11) and (3.12) the identity

2−2n
n−1
∏

j=0

(2 + j) (5 + 2j)
(1 + j) (2j + 1)

−
n

∏

j=1

sin2
(

πj
2n + 1

) n
∑

k=1

cot2
(

πk
2n + 1

)

(3.13)

= 2−2n (2n + 1)2

is obtained and rewriting we have, using (3.10), that

(2n + 1)2 = 10
n−1
∏

j=1

(2 + j) (5 + 2j)
(1 + j) (2j + 1)

−
n−1
∏

j=1

(1 + j) (3 + 2j)
j (2j − 1)

.

From (3.10) and (3.11)

n
(

4n2 − 1
)

3
=

n−1
∏

j=1

(1 + j) (3 + 2j)
j (2j − 1)

,

(n + 1) (2n + 1) (2n + 3)
30

=
n−1
∏

j=1

(2 + j) (5 + 2j)
(1 + j) (2j + 1)

and from (3.7)
n

∑

r=1

r
(

2n− r
r

)(

−1
4

)r

= −
2−2nn

(

4n2 − 1
)

3
.

Similarly, we can show that

fn =
n

∑

r=1

r2
(

2n− r
r

) (

−1
4

)r

(3.14)

=
2−2nn

(

8n4 − 20n3 − 10n2 + 5n + 2
)

15

= −2−2n
n−1
∏

j=1

(j + 1) (2j + 3)
(

2j2 − j − 5
)

j (2j − 1) (2j2 − 5j − 2)
.

The left hand side of (3.14) satisfies the recurrence

4n (2n− 1)
(

2n2 − 5n− 2
)

fn+1 + (n + 1) (2n + 3)
(

2n2 − n− 5
)

fn = 0

and hence

n
(

8n4 − 20n3 − 10n2 + 5n + 2
)

15
= −

n−1
∏

j=1

(j + 1) (2j + 3)
(

2j2 − j − 5
)

j (2j − 1) (2j2 − 5j − 2)
.
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Similarly
n

∑

r=1

r3
(

2n− r
r

)(

−1
4

)r

=
2−2nn

(

16n6 − 112n5 + 112n4 + 140n3 − 21n2 − 28n− 2
)

105

= −2−2n
n−1
∏

j=1

(j + 1) (2j + 3)
(

4j4 − 12j3 − 31j2 + 18j + 35
)

j (2j − 1) (4j4 − 28j3 + 29j2 + 28j + 2)
, and

n−1
∏

j=1

(j + 1) (2j + 3)
(

4j4 − 12j3 − 31j2 + 18j + 35
)

j (2j − 1) (4j4 − 28j3 + 29j2 + 28j + 2)

=
n

(

16n6 − 112n5 + 112n4 + 140n3 − 21n2 − 28n− 2
)

105
.

In general

22n

n

n
∑

r=1

rm
(

2n− r
r

) (

−1
4

)r

can be expressed as a polynomial in n of degree 2m for m integer. By the WZ
package on ‘Mathematica’ the identity (3.14) may be verified by the certificate
function

V (n, r) =
2 (r − 1) (r − 1− 2n)

(

12n4 (r − 1)− 8n3
(

r2 − r + 3
)

+ n2
(

4r2 − 15r − 13
)

+2rn (6r − 7) + 6r2 − 5r + 1

)

r (2r − 1− 2n) (r − 1− n) (n + 1) (2n + 3) (2n2 − n− 5)
.

Similarly for the identity (3.2), for particular values of R, and by the use of the WZ
package we may obtain a rational certificate function, V (n, r,R) that certifies the
identity, in particular

V (n, r, 1) =
2r (2n + 1− r) (4r − 5− 6n)

(2n + 3) (2n + 1− 2r) (n + 1− r)
and

V (n, r, 4) =
2r (2n + 4− r)

(

4nr + 10r − 6n2 − 23n− 14
)

(n + 4) (n + 9) (2n + 1− 2r) (n + 1− r)
.

More Sums.
Since (2.7) has at most three real zeros we may obtain further results as follows.

Consider multiple zeros of (2.7) for a = 2 and c = −4 (b/3)3 such that g (z) =
(

z − 2b
3

)2 (

z + b
3

)

and therefore (2.3) and (2.9) may be modified such that

F (z) =
z2R+1

(

(

z − 2b
3

)2 (

z + b
3

)

)R ,

µ!Q2R,µ

(

2b
3

)

= lim
z→ 2b

3

[

dµ

dzµ

{

(

z − 2b
3

)2R F (z)
z

}]

, µ = 0, 1, 2, ..., 2R− 1,
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ν!PR,ν

(

− b
3

)

= lim
z→− b

3

[

dν

dzν

{

(

z +
b
3

)R F (z)
z

}]

, ν = 0, 1, 2, ..., R− 1

and hence from (2.11)
n

∑

r=0

(

R + r − 1
r

) (

3n + R− 1− 2r
R + r − 1

)(

−4
27

)r

b3n(3.15)

=
a

∑

j=0

2R−1
∑

µ=0

Q2R,µ

(

2b
3

)(

3n + R− 1
2R− 1− µ

) (

2b
3

)3n+µ

+
a

∑

j=0

R−1
∑

ν=0

PR,ν

(

− b
3

)(

3n + R− 1
R− 1− µ

)(

− b
3

)3n+µ

.

For R = 1 and R = 2, we have respectively from (3.15) that

fn (1) =
n

∑

r=0

(

3n− 2r
r

)(

−4
27

)r

(3.16)

= 3−(3n+2) {

23n+1 (9n + 4) + (−1)n}

and

fn (2) =
n

∑

r=0

(r + 1)
(

3n + 1− 2r
r + 1

)(

−4
27

)r

(3.17)

= 3−(3n+2)























23n+2
(

3n + 1
3

)

+ 23n+4

27 +

23n+5

3

(

3n + 1
2

)

+ 23n+3 (3n + 1)

+ (−1)n

9

(

3n + 11
3

)























= (3n + 1) 3F2

[ 1−3n
3 , 2−3n

3 ,−n
−1−3n

2 , −3n
2

∣

∣

∣

∣

1
]

.

From ‘Hyper’, in ‘Mathematica’ a recurrence relation for (3.16) and (3.17) is, re-
spectively

729 (3n + 4) fn+2 (1)− 27 (21n + 52) fn+1 (1)− 8 (3n + 7) fn (1) = 0,

f0 (1) = 1, f1 (1) =
23
27

and

729 (3n + 5) (3n + 4)2 fn+2 (2)− 27
(

189n3 + 1440n2 + 3399n + 2348
)

fn+1 (2)

−8 (3n + 7) (3n + 8) (3n + 10) fn (2) = 0,

f0 (2) = 1, f1 (2) =
100
27

.

4. Other forcing terms.

We can now consider the system (2.1) with non zero forcing terms. Consider a
forcing term of the form, (other forms may also be taken).

wn =
(

n
m + R− 1

)

bn+1−R−m
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with all initial conditions zero and m a positive integer, again the results of the
previous section are applicable. For the purpose of demonstration let a = 1 and
c = − (b/2)2 so that from (3.1)

n
∑

r=0

(

R + r − 1
r

)(

2n + R + m− 1− r
R + m + r − 1

)(

−1
4

)r

= b−2n
2R−1
∑

µ=0

Q2R,µ

(

b
2

)(

n
2R− 1− µ

)(

b
2

)2n−R+m+µ

+
m−1
∑

ν=0

Pm,ν (b)
(

n
m− 1− µ

)

bR+µ

where

µ!Q2R,µ

(

b
2

)

= lim
z→ b

2

[

dµ

dzµ

{

zR

(z − b)R

}]

and

ν!Pm,ν (b) = lim
z→b

[

dν

dzν

{

zR

(

z − b
2

)2R

}]

.

In the case that R = 1,m = 1 and 2 respectively we obtain
n

∑

r=0

(

2n + 1− r
r + 1

)(

−1
4

)r

= 4− 2−2n(2n + 3) = 4− 3.2−2n
n−1
∏

j=0

5 + 2j
3 + 2j

and
n

∑

r=0

(

2n + 2− r
r + 2

)(

−1
4

)r

= 4 (2n− 1) + 2−2n(2n + 5)

= 4
n−1
∏

j=1

2j + 1
2j − 1

+ 7.2−2n
n−1
∏

j=1

7 + 2j
5 + 2j

= (n + 1)(2n + 1)3F2

[

1, 1−2n
2 ,−n

3,−2− 2n

∣

∣

∣

∣

1
]

For constants αj and positive integer m we have that

fn =
n

∑

r=0

(

2n + m− r
r + m

)(

−1
4

)r

= (−1)m2−2n (2n + 2m + 1) + 4
n−1
∑

j=0

αjnj

and for m = 0 reduces to identity (3.3); moreover a recurrence for the left hand
side is

4 (2n + 2m + 1) fn+1 − (2n + 2m + 3) fn

=
4m (6n + 2m + 5)

(2n + m + 2)

(

2n + m + 2
m

)

, f0 = 1.

5. Conclusion.

We have shown that many identities of binomial type sums may be generated
by an application of the Z transform.
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