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Abstract. The aim of this paper is to establish some new partial integral
inequalities in two independent variables which can be used in the study of

qualitative behaviour of the solutions of various classes of nonlinear non-self-

adjoint hyperbolic partial differential and integral equations as ready and pow-
erful tools.

1. Introduction

The theory of partial differential and integral equations is in a process of con-
tinual development and it has become significant for its various applications. One
of the most useful techniques used in the qualitative behaviour of the solutions of
partial differential and integral equations consists in applying some kinds of partial
differential and integral inequalities and variational principles involving functions
and their derivatives. During the past few years many authors (see [1] - [14], [17] -
[22]) have established several partial differential and integral inequalities in two or
more independent variables which can be used in the analysis of various problems
in the theory of hyperbolic partial differential and integral equations. However, the
lack of suitable nonlinear partial integral inequalities prevents us from studying the
qualitative behaviour of solutions of various classes of nonlinear non-self-adjoint
hyperbolic partial differential and integral equations under less restrictive assump-
tions on the functions. Our objective here is to present a number of new partial
integral inequalities in two independent variables which can be used as handy tools
in the qualitative behaviour of the solutions of several classes of nonlinear non-self-
adjoint hyperbolic partial differential and integral equations.

2. Partial Integral Inequalities

In this section we state and prove some new partial integral inequalities in two
independent variables which can be used in the analysis of various problems in
the theory of nonlinear non-self-adjoint hyperbolic partial differential and integral
equations. We use the following assumptions in our subsequent discussion.

(H1) a (x, y) is a real-valued, positive, continuous function defined on a domain
D and nondecreasing in both variables,

(H2) u (x, y), b (x, y), c (x, y) and p (x, y) are real-valued non-negative continuous
functions defined on D,
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(H3) u (x, y), b (x, y), c (x, y) and q (x, y) are real-valued non-negative continuous
functions defined on D,

(H4) G (u (x, y)) is a real-valued, positive, continuous, monotonic, nondecreasing,
subadditive and submultiplicative function for u (x, y) ≥ 0, (x, y) ∈ D and
Gy (u (x, y)) = ∂

∂y G (u (x, y)) ≥ 0 for u (x, y) ≥ 0, (x, y) ∈ D,
(H5) H (u (x, y)) is a real-valued, positive, continuous, monotonic, nondecreasing

function for u (x, y) ≥ 0, (x, y) ∈ D,
(H6) K (x, y, s, t, u (x, y)) and W (x, y, u (x, y)) are real-valued non-negative con-

tinuous functions defined on D2XR+ and DXR+ respectively (where R+

is the set of non-negative real numbers) and nondecreasing in the last vari-
ables, and K (x, y, s, t, u) is uniformly Lipschitz in the last variable,

(H7) u (x, y), b (x, y), c (x, y), p (x, y), r (x, y), h (x, y) and f (x, y) are real-valued
non-negative continuous functions on a domain D,

(H8) u (x, y), b (x, y), c (x, y), q (x, y), r (x, y), h (x, y) and f (x, y) are real-valued
non-negative continuous functions on a domain D,

(H9) P0 (x0, y0) and P (x, y) are two points in D such that (x− x0) (y − y0) ≥ 0
and R the rectangular region whose opposite corners are the points P0 and
P , (see Figure 3 in [11]),

(H10) The functions v (s, t;x, y) and e (s, t;x, y) are the Riemann functions for
the partial differential operators L and T respectively and satisfy all the
properties of Riemann functions for operators with continuous coefficient.

A useful partial integral inequality is established in the following theorem.
Theorem 1. Suppose (H1), (H2), (H4) and (H5) are true. If

u (x, y) ≤ a (x, y) + p (x, y)
(∫ x

x0

b (s, y)u (s, y) ds

)
(2.1)

+H

(∫ x

x0

∫ y

y0

c (s, t) G (u (s, t)) dsdt

)
,

for all (x, y) ∈ D, then for all (x, y) ∈ D1 ⊂ D,

u (x, y)(2.2)

≤ F (x, y)
[
a (x, y) + H

(
Ω−1

[
Ω

(∫ x

x0

∫ y

y0

c (s, t) G (a (s, t) F (s, t)) dsdt

)
+

∫ x

x0

∫ y

y0

c (s, t) G (F (s, t)) dsdt

])]
,

where

(2.3) F (x, y) = 1 + p (x, y)
(∫ x

x0

b (s, y) exp
(∫ x

s

b (ξ, y) p (ξ, y) dξ

)
ds

)
,

(2.4) Ω (r) =
∫ r

r0

ds

G (H (s))
, r ≥ r0 > 0,

Ω−1 is the inverse function of Ω, and

Ω
(∫ x

x0

∫ y

y0

c (s, t)G (a (s, t)F (s, t)) dsdt

)
+

∫ x

x0

∫ y

y0

c (s, t)G (F (s, t)) dsdt ∈ Dom
(
Ω−1

)
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for all (x, y) ∈ D1.

Proof. Define

(2.5) m (x, y) = a (x, y) + H

(∫ x

x0

∫ y

y0

c (s, t)G (u (s, t)) dsdt

)
,

then (2.1) can be restated as

(2.6) u (x, y) ≤ m (x, y) + p (x, y)
(∫ x

x0

b (s, y) u (s, y) ds

)
.

Since m (x, y) is positive, monotonic and nondecreasing, we observe from (2.6) that

(2.7)
u (x, y)
m (x, y)

≤ 1 + p

(
x, y

(∫ x

x0

b (s, y)
u (s, y)
m (s, y)

ds

))
.

The inequality (2.7) may be treated as a one-dimensional Gronwall type inequality
for any fixed y between y0 to y, which implies that

(2.8) u (x, y) ≤ F (x, y)m (x, y) ,

where F (x, y) is as defined in (2.3). Now, from (2.5) and (2.8) we have

(2.9) u (x, y) ≤ F (x, y) [a (x, y) + H (v (x, y))] ,

where

(2.10) v (x, y) =
∫ x

x0

∫ y

y0

c (s, t) G (u (s, t)) dsdt, v (x, y0) = v (x0, y) = 0.

From (2.9) we have

(2.11) G (u (x, y)) ≤ G (a (x, y) F (x, y)) + G (F (x, y))G (H (v (x, y))) ,

since G is subadditive and submultiplicative. Using (2.11) in (2.10) we see that the
inequality

v (x, y) ≤
∫ x

x0

∫ y

y0

c (s, t) [G (a (s, t) F (s, t)) + G (F (s, t))G (H (v (s, t)))] dsdt,

is satisfied for all (x, y) ∈ D. Now fix (α, β) ∈ D1 such that x0 ≤ x ≤ α ≤ x1,
y0 ≤ y ≤ β ≤ y1 for (x1, y1) ∈ D1, and set

A (x, y) =
∫ x

x0

∫ y

y0

c (s, t) G (a (s, t)F (s, t)) dsdt,

then

(2.12) v (x, y) ≤ A (α, β) +
∫ x

x0

∫ y

y0

c (s, t) G (F (s, t))G (H (v (s, t))) dsdt,

for x0 ≤ x ≤ α, y0 ≤ y ≤ β. Define

r (x, y) = A (α, β) +
∫ x

x0

∫ y

y0

c (s, t) G (F (s, t))G (H (v (s, t))) dsdt,

r (x, y0) = r (x0, y) = A (α, β) ,

then
rxy (x, y) = c (x, y)G (F (x, y))G (H (v (x, y))) ,

which, in view of (2.12), implies

rxy (x, y) ≤ c (x, y) G (F (x, y))G (H (r (x, y))) ,
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that is,

(2.13)
rxy (x, y)

G (H (r (x, y)))
≤ c (x, y) G (F (x, y)) .

From (2.13), we observe that

G (H (r (x, y))) rxy (x, y)
G2 (H (r (x, y)))

≤ c (x, y) G (F (x, y)) +
rx (x, y) Gy (H (r (x, y)))

G2 (H (r (x, y)))

that is,

∂

∂y

(
rx (x, y)

G (H (r (x, y)))

)
≤ c (x, y) G (F (x, y)) .

By keeping x fixed in the above inequality, set y = t and then integrating with
respect to t from y0 to β we have

(2.14)
rx (x, β)

G (H (r (x, β)))
≤

∫ β

y0

c (x, t) G (F (x, t)) dt.

From (2.4) and (2.14) we observe that

(2.15) Ωx (r (x, β)) ≤
∫ β

y0

c (x, t) G (F (x, t)) dt.

Now setting x = s in (2.15) and then integrating with respect to s from x0 to α,
we have

Ω (r (α, β)) ≤ Ω (r (x0, β)) +
∫ α

x0

∫ β

y0

c (s, t)G (F (s, t)) dsdt,

for x0 ≤ x ≤ α, y0 ≤ y ≤ β. Since (α, β) ∈ D1 is arbitrary in x0 ≤ x ≤ α ≤ x1 and
y0 ≤ y ≤ β ≤ y1, we have

r (x, y) ≤ Ω−1

[
Ω

(∫ x

x0

∫ y

y0

c (s, t) G (a (s, t) F (s, t)) dsdt

)
(2.16)

+
∫ x

x0

∫ y

y0

c (s, t)G (F (s, t)) dsdt

]
,

x0 ≤ x ≤ x1, y0 ≤ y ≤ y1. The desired bound in (2.2) follows from (2.9), (2.12)
and (2.16). The subdomain D1 of D is obvious.

Another interesting and useful partial integral inequality is embodied in the
following theorem.

Theorem 2. Suppose (H1), (H3) – (H5) are true. If

u (x, y) ≤ a (x, y) + q (x, y)
(∫ y

y0

b (x, t) u (x, t) dt

)
(2.17)

+H

(∫ x

x0

∫ y

y0

c (s, t)G (u (s, t)) dsdt

)
,
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for all (x, y) ∈ D, then for all (x, y) ∈ D2 ⊂ D,

u (x, y)(2.18)

≤ F0 (x, y)
[
a (x, y) + H

(
Ω−1

[
Ω

(∫ x

x0

∫ y

y0

c (s, t) G (a (s, t) F0 (s, t)) dsdt

)
+

∫ x

x0

∫ y

y0

c (s, t)G (F0 (s, t)) dsdt

])]
,

where

(2.19) F0 (x, y) = 1 + q (x, y)
(∫ y

y0

b (x, t) exp
(∫ y

t

b (x, η) q (x, η) dη

)
dt

)
,

Ω, Ω−1 are as defined in Theorem 1, and

Ω
(∫ x

x0

∫ y

y0

c (s, t) G (a (s, t) F0 (s, t)) dsdt

)
+

∫ x

x0

∫ y

y0

c (s, t)G (F0 (s, t)) dsdt ∈ Dom
(
Ω−1

)
,

for all (x, y) ∈ D2.
The details of the proof of this theorem follows by an argument similar to that

in the proof of Theorem 1. We omit the details.
We next establish the following useful partial integral inequality which basically

involves the comparison principle.
Theorem 3. Suppose (H1) and (H6) are true; and let u (x, y), b (x, y) and p (x, y)
be as defined in (H2). If

u (x, y) ≤ a (x, y) + p (x, y)
(∫ x

x0

b (s, y) u (s, y) ds

)
(2.20)

+W

(
x, y,

∫ x

x0

∫ y

y0

K (x, y, s, t, u (s, t)) dsdt

)
,

for all (x, y) ∈ D, then

(2.21) u (x, y) ≤ F (x, y) [a (x, y) + W (x, y, r (x, y))] ,

for all (x, y) ∈ D, where F (x, y) is as defined in (2.3) and r (x, y) is a solution of
the integral equation

(2.22) r (x, y) =
∫ x

x0

∫ y

y0

K (x, y, s, t, F (s, t) [a (s, t) + W (s, t, r (s, t))]) dsdt,

existing on D.

Proof. Define

(2.23) n (x, y) = a (x, y) + W

(
x, y,

∫ x

x0

∫ y

y0

K (x, y, s, t, u (s, t)) dsdt

)
,

then (2.20) can be restated as

(2.24) u (x, y) ≤ n (x, y) + p (x, y)
(∫ x

x0

b (s, y) u (s, y) ds

)
.
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Since n (x, y) is positive, monotonic and nondecreasing, we observe from (2.24) that

(2.25)
u (x, y)
n (x, y)

≤ 1 + p (x, y)
(∫ x

x0

b (s, y)
u (s, y)
n (s, y)

ds

)
.

The inequality (2.25) may be treated as a one-dimensional Gronwall inequality for
any fixed y between y0 to y, which implies that

(2.26) u (x, y) ≤ F (x, y) n (x, y) ,

where F (x, y) is the function as defined in (2.3). Now, from (2.23) and (2.26), we
have

(2.27) u (x, y) ≤ F (x, y) [a (x, y) + W (x, y, z (x, y))] ,

where

(2.28) z (x, y) =
∫ x

x0

∫ y

y0

K (x, y, s, t, u (s, t)) dsdt.

Using (2.27) in (2.28) we have

(2.29) z (x, y) ≤
∫ x

x0

∫ y

y0

K (x, y, s, t, F (s, t) [a (s, t) + W (s, t, z (s, t))]) dsdt.

A suitable application of Theorem B given by Pelezar [17] to (2.22) and (2.29)
yields

(2.30) z (x, y) ≤ r (x, y) ,

where r (x, y) is the solution of (2.22). Now, using (2.30) in (2.27) we obtain the
desired bound in (2.21).

Before leaving this section, we establish the following variant of Theorem 3 which
can be used in some applications.

Theorem 4. Suppose (H1) and (H6) are true; and let u (x, y), b (x, y) and q (x, y)
be as defined in (H3). If

u (x, y) ≤ a (x, y) + q (x, y)
(∫ y

y0

b (x, t) u (x, t) dt

)
(2.31)

+W

(
x, y,

∫ x

x0

∫ y

y0

K (x, y, s, t, u (s, t)) dsdt

)
,

for all (x, y) ∈ D, then

(2.32) u (x, y) ≤ F0 (x, y) [a (x, y) + W (x, y, r (x, y))] ,

for all (x, y) ∈ D, where F0 (x, y) is as defined in (2.19) and r (x, y) is a solution
of the integral equation

(2.33) r (x, y) =
∫ x

x0

∫ y

y0

K (x, y, s, t, F0 (s, t) [a (s, t) + W (s, t, r (s, t))]) dsdt,

existing on D.

The proof is omitted since it parallels that of the proof of Theorem 3.
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3. Further Inequalities

In this sections we present a number of partial integral inequalities which can be
used in several applications in the theory of nonlinear non-self-adjoint hyperbolic
partial differential and integral equations. To establish some of our results in this
section, we require the class of functions S as defined in [2].

A function g : [0,∞) → [0,∞) is said to belong to the class S if

(i) g (u) is positive, nondecreasing and continuous for u ≥ 0,
(ii) 1

v g (u) ≤ g
(

u
v

)
, u > 0, v ≥ 1.

In the following theorem we obtain the bound on the partial integral inequality
involving two nonlinear terms on the right side.

Theorem 5. Suppose (H1), (H4) and (H5) are true; let g ∈ S, and u (x, y), b (x, y)
and c (x, y) be as defined in (H2). If

u (x, y) ≤ a (x, y) +
∫ x

x0

b (s, y) g (u (s, y)) ds(3.1)

+H

(∫ x

x0

∫ y

y0

c (s, t) G (u (s, t)) dsdt

)
,

for all (x, y) ∈ D, then for all (x, y) ∈ D3 ⊂ D,

u (x, y)(3.2)

≤ U (x, y)
[
a (x, y) + H

(
Ω−1

[
Ω

(∫ x

x0

∫ y

y0

c (s, t)G (a (s, t)U (s, t)) dsdt

)
+

∫ x

x0

∫ y

y0

c (s, t) G (U (s, t)) dsdt

])]
,

where

U (x, y) = E−1

[
E (1) +

∫ x

x0

b (s, y) ds

]
,(3.3)

E (r) =
∫ r

r0

ds

g (s)
, r ≥ r0 > 0,(3.4)

E−1 is the inverse function of E; Ω, Ω−1 are as defined in Theorem 1, and

E (1) +
∫ x

x0

b (s, y) ds ∈ Dom
(
E−1

)
,

and

Ω
(∫ x

x0

∫ y

y0

c (s, t)G (a (s, t)U (s, t)) dsdt

)
+

∫ x

x0

∫ y

y0

c (s, t)G (U (s, t)) dsdt ∈ Dom
(
Ω−1

)
,

for all (x, y) ∈ D3.

Proof. Define a function m (x, y) as in (3.5), then (3.1) can be restated as

(3.5) u (x, y) ≤ m (x, y) +
∫ x

x0

b (s, y) g (u (s, y)) ds.
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Since m (x, y) is positive, monotonic, nondecreasing and g ∈ S, we observe from
(3.5) that

(3.6)
u (x, y)
m (x, y)

≤ 1 +
∫ x

x0

b (s, y) g

(
u (s, y)
m (s, y)

)
ds.

The inequality (3.6) may be treated as a one-dimensional Bihari inequality (see [2])
for any fixed y between y0 and y, which implies that

(3.7) u (x, y) ≤ U (x, y) m (x, y) ,

where U (x, y) is as defined in (3.3). Now, by following the last argument as in the
proof of Theorem 1, we obtain the desired bound in (3.2).

We note that, if the inequality (3.1) in Theorem 5 is replaced by

u (x, y) ≤ a (x, y) +
∫ y

y0

b (x, t) g (u (x, t)) dt(3.8)

+H

(∫ x

x0

∫ y

y0

c (s, t)G (u (s, t)) dsdt

)
,

then the bound obtained in (3.2) is replaced by

u (x, y)(3.9)

≤ U0 (x, y)
[
a (x, y) + H

(
Ω−1

[
Ω

(∫ x

x0

∫ y

y0

c (s, t) G (a (s, t) U0 (s, t)) dsdt

)
+

∫ x

x0

∫ y

y0

c (s, t) G (U0 (s, t)) dsdt

])]
,

where

(3.10) U0 (x, y) = E−1

[
E (1) +

∫ y

y0

b (x, t) dt

]
,

and E, E−1; Ω, Ω−1, are as defined in Theorem 5.
We next establish the following partial integral inequality which can be used in

some applications.
Theorem 6. Suppose (H1) and (H6) are true; let g ∈ S and u (x, y) and b (x, y)
be as defined in (H2). If

u (x, y) ≤ a (x, y) +
∫ x

x0

b (s, y) g (u (s, y)) ds(3.11)

+W

(
x, y,

∫ x

x0

∫ y

y0

K (x, y, s, t, u (s, t)) dsdt

)
,

for all (x, y) ∈ D, then

(3.12) u (x, y) ≤ U (x, y) [a (x, y) + W (x, y, r (x, y))] ,

for all (x, y) ∈ D, where U (x, y) is as defined in (3.3) and r (x, y) is a solution of
the integral equation

(3.13) r (x, y) =
∫ x

x0

∫ y

y0

K (x, y, s, t, U (s, t) [a (s, t) + W (s, t, r (s, t))]) dsdt,

existing on D.
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The proof of this theorem follows by an argument similar to that given in the
proof of Theorem 5 in view of the proof of Theorem 3. We omit the details.

We note that, if the inequality (3.11) in Theorem 6 is replaced by

u (x, y) ≤ a (x, y) +
∫ y

y0

b (x, t) g (u (x, t)) dt(3.14)

+W

(
x, y,

∫ x

x0

∫ y

y0

K (x, y, s, t, u (s, t)) dsdt

)
,

then the bound obtained in (3.12) is replaced by

(3.15) u (x, y) ≤ U0 (x, y) [a (x, y) + W (x, y, r (x, y))] ,

where U0 (x, y) is as defined in (3.10), and r (x, y) is a solution of (3.13) when
U (x, y) is replaced by U0 (x, y).

In concluding this section we note that:

(i) If the integral inequality (2.1) in Theorem 1 is replaced by

u (x, y) ≤ a (x, y) +
∫ x

x0

b (s, y)
(

u (s, y) +
∫ s

x0

p (ξ, y) u (ξ, y) dξ

)
ds(3.16)

+H

(∫ x

x0

∫ y

y0

c (s, t)G (u (s, t)) dsdt

)
then by following a similar argument as in the proof of Theorem 1 and
using the integral inequality established by Pachpatte [15, Theorem 1], we
see that the bound obtained in (2.2) is replaced by

u (x, y)(3.17)

≤ Z (x, y)
[
a (x, y) + H

(
Ω−1

[
Ω

(∫ x

x0

∫ y

y0

c (s, t)G (a (s, t)Z (s, t)) dsdt

)
+

∫ x

x0

∫ y

y0

c (s, t) G (Z (s, t)) dsdt

])]
,

where

(3.18) Z (x, y) = 1 +
∫ x

x0

b (s, y) exp
(∫ s

x0

[b (ξ, y) + p (ξ, y)] dξ

)
ds.

(ii) If the inequality (2.20) in Theorem 3 is replaced by

u (x, y) ≤ a (x, y) +
∫ x

x0

b (s, y)
(

u (s, y) +
∫ s

x0

p (ξ, y) u (ξ, y) dξ

)
ds(3.19)

+W

(
x, y,

∫ x

x0

∫ y

y0

K (x, y, s, t, u (s, t)) dsdt

)
,

then by following a similar argument as in the proof of Theorem 3 and
using the integral inequality established by Pachpatte [15, Theorem 1], we
see that the bound obtained in (2.21) is replaced by

(3.20) u (x, y) ≤ Z (x, y) [a (x, y) + W (x, y, r (x, y))] ,

where Z (x, y) is as defined in (3.18) and r (x, y) is the solution of (2.22)
when F (x, y) is replaced by Z (x, y).
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(iii) If the inequality (3.1) in Theorem 5 is replaced by

u (x, y) ≤ a (x, y) +
∫ x

x0

b (s, y)
(

u (s, y) +
∫ s

x0

b (ξ, y) g (u (ξ, y)) dξ

)
ds(3.21)

+H

(∫ x

x0

∫ y

y0

c (s, t)G (u (s, t)) dsdt

)
,

then by following a similar argument as in the proof of Theorem 5 and
using the integral inequality established by Pachpatte [16, Theorem 2], we
see that the bound obtained in (3.2) is replaced by

u (x, y)(3.22)

≤ Z1 (x, y)
[
a (x, y) + H

(
Ω−1

[
Ω

(∫ x

x0

∫ y

y0

c (s, t) G (a (s, t) Z1 (s, t)) dsdt

)
+

∫ x

x0

∫ y

y0

c (s, t) G (Z1 (s, t)) dsdt

])]
,

where

Z1 (x, y) = 1 +
∫ x

x0

b (s, y) E−1

[
E (1) +

∫ s

x0

b (ξ, y) dξ

]
ds,(3.23)

E (r) =
∫ r

r0

ds

s + g (s)
, r ≥ r0 > 0,(3.24)

E−1 is the inverse of E, and Ω, Ω−1 are as defined in Theorem 1.
(iv) If the inequality (3.11) in Theorem 6 is replaced by

u (x, y)(3.25)

≤ a (x, y) +
∫ x

x0

b (s, y)
(

u (s, y) +
∫ s

x0

b (ξ, y) g (u (ξ, y)) dξ

)
ds

+W

(
x, y,

∫ x

x0

∫ y

y0

K (x, y, s, t, u (s, t)) dsdt

)
,

then by following a similar argument as in the proof of Theorem 6 and
using the integral inequality established by Pachpatte [16, Theorem 2], we
see that the bound obtained in (3.12) is replaced by

(3.26) u (x, y) ≤ Z1 (x, y) [a (x, y) + W (x, y, r (x, y))] ,

where Z1 (x, y) is as defined in (3.23) and r (x, y) is a solution of (3.13)
when U (x, y) is replaced by Z1 (x, y).

Finally, we note that by replacing the first integrals on the right sides in (3.16)
and (3.19) by ∫ y

y0

b (x, t)
(

u (x, t) +
∫ t

y0

p (x, η) u (x, η) dη

)
dt,

and the first integrals on the right sides in (3.21) and (3.25) by∫ y

y0

b (x, t)
(

u (x, t) +
∫ t

y0

p (x, η) g (u (x, η)) dη

)
dt,

we can very easily obtain bounds on the corresponding inequalities which may be
convenient in some applications.
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4. Use of the Riemann Function

In this section we establish some new and more general partial integral inequal-
ities in two independent variables which can be used in some applications in the
theory of nonlinear non-self-adjoint hyperbolic partial integrodifferential and inte-
gral equations of the more general type. The inequalities are established by solving
the characteristic initial value problems using the Riemann method. Thus the Rie-
mann functions associated with the hyperbolic partial differential equations appear
in the bounds obtained on inequalities.

A useful and more general partial integral inequality is established in the follow-
ing theorem.
Theorem 7. Suppose (H1), (H4), (H5), (H7), (H9) and (H10) are true. Let
v (s, t;x, y) be the solution of the characteristic initial value problem

(4.1) M [v] = 0,

where M is the adjoint operator of the operator L defined by

(4.2) L [Ψ] = Ψst + a1Ψt + a2Ψ,

in which a1 = −bp, a2 = − [f + b (r + h)]. Let e (s, t;x, y) be the solution of the
characteristic initial value problem

(4.3) N [e] = 0,

where N is the adjoint operator of the operator T defined by

(4.4) T [Φ] = Φst + b1Φt + b2Φ,

in which b1 = −bp, b2 = −b (r − h). Let D+ be a connected subdomain of D which
contains P and on which v ≥ 0 and e ≥ 0. If R ⊂ D+ and u (x, y) satisfies

u (x, y)(4.5)

≤ a (x, y) + p (x, y)
(∫ x

x0

b (s, y) u (s, y) ds

)
+r (x, y)

(∫ x

x0

∫ y

y0

b (s, t) u (s, t) dsdt

)
+h (x, y)

(∫ x

x0

∫ y

y0

f (s, t)
(∫ s

x0

∫ t

y0

b (ξ, η) u (ξ, η) dξdη

)
dsdt

)
+H

(∫ x

x0

∫ y

y0

c (s, t)G (u (s, t)) dsdt

)
,

for all (x, y) ∈ D, then for (x, y) ∈ D3 ⊂ D, u (x, y) also satisfies

u (x, y)(4.6)

≤ F1 (x, y)
[
a (x, y) + H

(
Ω−1

[
Ω

(∫ x

x0

∫ y

y0

c (s, t) G (a (s, t))F1 (s, t) dsdt

)
+

∫ x

x0

∫ y

y0

c (s, t)G (F1 (s, t)) dsdt

])]
,

where

F1 (x, y)(4.7)

= f0 (x, y) + p (x, y)
(∫ x

x0

b (s, y) f0 (s, y) exp
(∫ x

s

b (ξ, y) p (ξ, y) dξ

)
ds

)
,
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in which

(4.8) f0 (x, y) = 1 + r (x, y) Q (x, y) + h (x, y)
(∫ x

x0

∫ y

y0

f (s, t) Q (s, t) dsdt

)
,

Q (x, y) =
∫ x

x0

∫ y

y0

e (s, t;x, y) b (s, t)(4.9)

·
{

1 + h (s, t)
(∫ s

x0

∫ t

y0

v (ξ, η; s, t) b (ξ, η) dξdη

)}
dsdt,

and Ω, Ω−1 are as defined in Theorem 1, and

Ω
(∫ x

x0

∫ y

y0

c (s, t) G (a (s, t) F1 (s, t)) dsdt

)
+

∫ x

x0

∫ y

y0

c (s, t)G (F1 (s, t)) dsdt ∈ Dom
(
Ω−1

)
,

for all (x, y) ∈ D3.

Proof. Define a function m (x, y) as in (2.5), then (4.5) can be restated as

u (x, y)(4.10)

≤ m (x, y) + p (x, y)
(∫ x

x0

b (s, y)u (s, y) ds

)
+r (x, y)

(∫ x

x0

∫ y

y0

b (s, t) u (s, t) dsdt

)
+h (x, y)

(∫ x

x0

∫ y

y0

f (s, t)
(∫ s

x0

∫ t

y0

b (ξ, η) u (ξ, η) dξdη

)
dsdt

)
.

Since m (x, y) is positive, monotonic and nondecreasing, we observe from (4.10)
that

u (x, y)
m (x, y)

≤ 1 + p (x, y)
(∫ x

x0

b (s, y)
u (s, y)
m (s, y)

ds

)
+r (x, y)

(∫ x

x0

∫ y

y0

b (s, t)
u (s, t)
m (s, t)

dsdt

)
+h (x, y)

(∫ x

x0

∫ y

y0

f (s, t)
(∫ s

x0

∫ t

y0

b (ξ, η)
u (ξ, η)
m (ξ, η)

dξdη

)
dsdt

)
.

Now a suitable application of Theorem 7 given in [11] or Theorem 1 given in [14]
yields

(4.11) u (x, y) ≤ F1 (x, y) m (x, y) ,

where F1 (x, y) is as defined in (4.7) in which f0 (x, y) and Q (x, y) are as given in
(4.8) and (4.9). Using the definition of m (x, y) and (4.11), we have

(4.12) u (x, y) ≤ F1 (x, y)
[
a (x, y) + H

(∫ x

x0

∫ y

y0

c (s, t) G (u (s, t)) dsdt

)]
.

Now by following a similar argument to that in the proof of Theorem 1, we obtain
the desired bound in (4.6). The subdomain D3 of D is obvious.
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We next establish the following variant of Theorem 7 which can be used in certain
applications.
Theorem 8. Suppose (H1), (H4), (H5), (H8) - (H10) are true. Let v (s, t;x, y) be
the solution of the characteristic initial value problem

(4.13) M [v] = 0,

where M is the adjoint operator of the operator L defined by

(4.14) L [Ψ] = Ψst + a1Ψs + a2Ψ,

in which a1 = −bq, a2 = − [f + b (r + h)]. Let e (s, t;x, y) be the solution of the
characteristic initial value problem

(4.15) N [e] = 0,

where N is the adjoint operator of the operator T defined by

(4.16) T [Φ] = Φst + b1Φs + b2Φ,

in which b1 = −bq, b2 = −b (r − h). Let D+ be a connected subdomain of D which
contains P and on which v ≥ 0 and e ≥ 0. If R ⊂ D+ and u (x, y) satisfies

u (x, y)(4.17)

≤ a (x, y) + q (x, y)
(∫ y

y0

b (x, t) u (x, t) dt

)
+r (x, y)

(∫ x

x0

∫ y

y0

b (s, t) u (s, t) dsdt

)
+h (x, y)

(∫ x

x0

∫ y

y0

f (s, t)
(∫ s

x0

∫ t

y0

b (ξ, η) u (ξ, η) dξdη

)
dsdt

)
+H

(∫ x

x0

∫ y

y0

c (s, t) G (u (s, t)) dsdt

)
,

for all (x, y) ∈ D then, for (x, y) ∈ D4 ⊂ D, u (x, y) also satisfies

u (x, y)(4.18)

≤ F2 (x, y)
[
a (x, y) + H

(
Ω−1

[
Ω

(∫ x

x0

∫ y

y0

c (s, t) G (a (s, t) F2 (s, t)) dsdt

)
+

∫ x

x0

∫ y

y0

c (s, t) G (F2 (s, t)) dsdt

])]
,

where

F2 (x, y)(4.19)

= f0 (x, y) + q (x, y)
(∫ y

y0

b (x, t) f0 (x, t) exp
(∫ y

t

b (x, η) q (x, η) dη

)
dt

)
,

in which f0 (x, y) and Q (x, y) are as defined in Theorem 7; and Ω, Ω−1 are as
defined in Theorem 1 and

Ω
(∫ x

x0

∫ y

y0

c (s, t)G (a (s, t)F2 (s, t)) dsdt

)
+

∫ x

x0

∫ y

y0

c (s, t) G (F2 (s, t)) dsdt ∈ Dom
(
Ω−1

)
,
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for all (x, y) ∈ D3.

The proof of this theorem follows by an argument similar to that in the proof of
Theorem 7 with suitable modifications. We omit the details.

We next establish the following partial integral inequalities which can be used
in certain applications in the theory of nonlinear non-self-adjoint hyperbolic partial
integrodifferential and integral equations of the more general type.

Theorem 9. Suppose (H1), (H6), (H9) and (H10) are true; and let u (x, y), b (x, y),
p (x, y), h (x, y) and f (x, y) be as defined in (H7). Let v (s, t;x, y) be the solution of
the characteristic initial value problem (4.1) in which M is the adjoint operator of
the operator L defined by (4.2); and let e (s, t;x, y) be the solution of the character-
istic initial value problem (4.3) in which N is the adjoint operator of the operator
T defined by (4.4). Let D+ be a connected subdomain of D which contains P and
on which v ≥ 0 and e ≥ 0. If R ⊂ D+ and u (x, y) satisfies

u (x, y)(4.20)

≤ a (x, y) + p (x, y)
(∫ x

x0

b (s, y) u (s, y) ds

)
+r (x, y)

(∫ x

x0

∫ y

y0

b (s, t) u (s, t) dsdt

)
+h (x, y)

(∫ x

x0

∫ y

y0

f (s, t)
(∫ s

x0

∫ t

y0

b (ξ, η) u (ξ, η) dξdη

)
dsdt

)
+W

(
x, y,

∫ x

x0

∫ y

y0

K (x, y, s, t, u (s, t)) dsdt

)
,

for all (x, y) ∈ D, then

(4.21) u (x, y) ≤ F1 (x, y) [a (x, y) + W (x, y, r (x, y))] ,

for all (x, y) ∈ D, where F1 (x, y) is as defined in Theorem 5 and r (x, y) is a
solution of the integral equation

(4.22) r (x, y) =
∫ x

x0

∫ y

y0

K (x, y, s, t, F1 (s, t) [a (s, t) + W (s, t, r (s, t))]) dsdt,

existing on D.

Theorem 10. Suppose (H1), (H6), (H9) and (H10) are true; and let u (x, y),
b (x, y), q (x, y), r (x, y), h (x, y) and f (x, y) be as defined in (H8). Let v (s, t;x, y)
be the solution of the characteristic initial value problem (4.13) in which M is the
adjoint operator of the operator L defined by (4.14); and let e (s, t;x, y) be the so-
lution of the characteristic initial value problem (4.15) in which N is the adjoint
operator of the operator T defined by (4.16). Let D+ be a connected subdomain of
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D which contains P and on which v ≥ 0 and e ≥ 0. If R ⊂ D+ and u (x, y) satisfies

u (x, y)(4.23)

≤ a (x, y) + q (x, y)
(∫ y

y0

b (x, t) u (x, t) dt

)
+r (x, y)

(∫ x

x0

∫ y

y0

b (s, t) u (s, t) dsdt

)
+h (x, y)

(∫ x

x0

∫ y

y0

f (s, t)
(∫ s

x0

∫ t

y0

b (ξ, η) u (ξ, η) dξdη

)
dsdt

)
+W

(
x, y,

∫ x

x0

∫ y

y0

K (x, y, s, t, u (s, t)) dsdt

)
,

for all (x, y) ∈ D, then

(4.24) u (x, y) ≤ F2 (x, y) [a (x, y) + W (x, y, r (x, y))] ,

for all (x, y) ∈ D, where F2 (x, y) is as defined in Theorem 6 and r (x, y) is a
solution of the integral equation

(4.25) r (x, y) =
∫ x

x0

∫ y

y0

K (x, y, s, t, F2 (s, t) [a (s, t) + W (s, t, r (s, t))]) dsdt,

existing on D.
The details of the proofs of Theorems 9 and 10 follow by using similar arguments

to those in the proofs of Theorems 7 and 8, by making use of the arguments of
Theorems 3 and 4, and we leave the details to the reader.

5. Some Applications

In this section we present some applications of our results to the boundedness,
uniqueness and behavioural relationships of the solutions of some nonlinear non-
self-adjoint hyperbolic partial differential and integrodifferential equations. There
appear to be many applications of the inequalities established in this paper but
those presented here are sufficient to convey the importance of our results to the
literature. These applications are not stated as theorems so as not to obscure the
main ideas with technical details.
Example 1. As a first application, we discuss the boundedness of the solution of
a nonlinear non-self-adjoint hyperbolic partial differential equation

(5.1) uxy (x, y) = {b0 (x, y) u (x, y)}y + A (x, y, u (x, y)) + f1 (x, y)

with the boundary conditions prescribed on x = x0 and y = y0, where all functions
are defined and continuous on their respective domains of definitions and such that

|b0 (x, y)| ≤ b (x, y) ,(5.2)
|A (x, y, u)| ≤ K (x, y, |u|) ,(5.3)

where b (x, y) and K (x, y, s, t,Φ) = k (s, t, Φ) are as defined in Theorem 3. Let
the boundary conditions be such that the given equation (5.1) is equivalent to the
integral equation

(5.4) u (x, y) = a0 (x, y) +
∫ x

x0

b0 (s, y) u (s, y) ds +
∫ x

x0

∫ y

y0

A (s, t, u (s, t)) dsdt,
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where a0 (x, y) is computed from f1 (x, y) and the given boundary conditions. We
assume that

(5.5) |a0 (x, y)| ≤ a (x, y) ,

where a (x, y) is as defined in Theorem 3. Using (5.2), (5.3) and (5.5) in (5.4), we
have

|u (x, y)| ≤ a (x, y) +
∫ x

x0

b (s, y) |u (s, y)| ds +
∫ x

x0

∫ y

y0

K (s, t, |u (s, t)|) dsdt.

Now, a suitable application of Theorem 3 with p (x, y) = 1, W (x, y,Φ) = Φ and
K (x, y, s, t,Φ) = K (s, t, Φ) yields

(5.6) |u (x, y)| ≤ F ∗ (x, y) [a (x, y) + r (x, y)] ,

where F ∗ (x, y) is obtained by substituting p (x, y) = 1 in (2.3) and r (x, y) is a
solution of the integral equation

(5.7) r (x, y) =
∫ x

x0

∫ y

y0

K (s, t, F ∗ (s, t) [a (s, t) + r (s, t)]) dsdt,

existing on D. If the right hand side of (5.6) is bounded, then we obtain the bound-
edness of the solution u (x, y) of (5.1).
Example 2. As a second application, we discuss the uniqueness of solutions of
equation (5.1). We assume that the functions involved in (5.1) satisfy

|b0 (x, y)| ≤ b (x, y) ,(5.8)
|A (x, y, u)−A (x, y, ū)| ≤ K (x, y, |u− ū|) ,(5.9)

where b (x, y) and K (x, y,Φ) are as defined in Example 1. Let the boundary con-
ditions be such that the given equation is equivalent to the integral equation (5.4).
Then for any two solutions u = u (x, y) and ū = ū (x, y) of (5.1) with the given
boundary conditions we have

u− ū = a0 (x, y)− ā0 (x, y) +
∫ x

x0

b0 (s, y) {u− ū} ds(5.10)

+
∫ x

x0

∫ y

y0

{A (s, t, u)−A (s, t, ū)} dsdt,

where a0 (x, y) and ā0 (x, y) depend on the given boundary conditions and the func-
tion f1 (x, y). Using (5.8) and (5.9) in (5.10) and further assuming that |a0 (x, y)− ā0 (x, y)| ≤
ε, for arbitrary ε > 0, we have

|u− ū| ≤ ε +
∫ x

x0

b (s, y) |u− ū| ds +
∫ x

x0

∫ y

y0

K (s, t, |u− ū|) dsdt.

Now, a suitable application of Theorem 3 with p (x, y) = 1, W (x, y,Φ) = Φ and
K (x, y, s, t,Φ) = K (s, t, Φ) and a (x, y) = ε gives

(5.11) |u− ū| ≤ F ∗ (x, y) [ε + r (x, y)] ,

where F ∗ (x, y) is as defined in Example 1 and r (x, y) is the solution of the integral
equation (5.7) when a (x, y) is replaced by ε. If equation (5.7) with a (x, y) = ε
admits only an identically zero solution, then from (5.11) we observe that u = ū,
since ε > 0 is arbitrary, and hence there is at most one solution of the equation
(5.1).
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Example 3. Our third application is an example of behavioural relationships be-
tween the solutions of nonlinear non-self-adjoint hyperbolic partial integrodifferen-
tial equation

uxy (x, y)(5.12)
= {b0 (x, y) u (x, y)}y + A (x, y, u (x, y)) + f1 (x, y)

+H1

[
x, y,

∫ x

x0

∫ y

y0

K1 (x, y, s, t, u (s, t)) dsdt

]
,

with the boundary conditions prescribed on x = x0 and y = y0 and the nonlinear
non-self-adjoint hyperbolic partial integrodifferential equation

zxy (x, y)(5.13)
= {b0 (x, y) z (x, y)}y + A0 (x, y, z (x, y)) + g1 (x, y)

+H0

[
x, y,

∫ x

x0

∫ y

y0

K0 (x, y, s, t, z (s, t)) dsdt

]
+ B (x, y, z (x, y))

with the boundary conditions prescribed on x = x0 and y = y0, where all the func-
tions in (5.12) and (5.13) are defined and continuous on their respective domains
of definition and are such that

|b0 (x, y)| ≤ b (x, y) ,(5.14)
|A0 (x, y, z)−A (x, y, u)| ≤ b (x, y) |z − u| ,(5.15)

|B (x, y, z)| ≤ K (x, y, |z|) ,(5.16)
|K0 (x, y, s, t, z)−K1 (x, y, s, t, u)| ≤ b (s, t) |z − u| ,(5.17)

|H0 [x, y, z̄]−H1 [x, y, ū]| ≤ f (x, y) |z̄ − ū| ,(5.18)

where b (x, y), f (x, y) and K (x, y, s, t,Φ) = K (s, t, Φ) are as defined in Theorem
9. The equations (5.12) and (5.13) are equivalent to the integral equations

u (x, y)(5.19)

= a0 (x, y) +
∫ x

x0

b0 (s, y) u (s, y) dy +
∫ x

x0

∫ y

y0

A (s, t, u (s, t)) dsdt

+
∫ x

x0

∫ y

y0

H1

[
s, t,

∫ s

x0

∫ t

y0

K1 (s, t, ξ, η, u (ξ, η)) dξdη

]
dsdt

and

z (x, y)(5.20)

= ā0 (x, y) +
∫ x

x0

b0 (s, y) z (s, y) dy +
∫ x

x0

∫ y

y0

A0 (s, t, z (s, t)) dsdt

+
∫ x

x0

∫ y

y0

H0

[
s, t,

∫ s

x0

∫ t

y0

K0 (s, t, ξ, η, z (ξ, η)) dξdη

]
dsdt

+
∫ x

x0

∫ y

y0

B (s, t, z (s, t)) dsdt,

where a0 (x, y) and ā0 (x, y) depend on the given boundary conditions and f1 (x, y)
and g1 (x, y) respectively. We assume that

(5.21) |ā0 (x, y)− a0 (x, y)| ≤ a (x, y) ,
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where a (x, y) is as defined in Theorem 9. From (5.19) and (5.20) we have

z (x, y)− u (x, y)(5.22)

= ā0 (x, y)− a0 (x, y) +
∫ x

x0

b0 (s, y) {z (s, y)− u (s, y)} ds

+
∫ x

x0

∫ y

y0

{A0 (s, t, z (s, t))−A (s, t, u (s, t))} dsdt

+
∫ x

x0

∫ y

y0

{
H0

[
s, t,

∫ s

x0

∫ t

y0

K0 (s, t, ξ, η, z (ξ, η)) dξdη

]
− H1

[
s, t,

∫ s

x0

∫ t

y0

K1 (s, t, ξ, η, u (ξ, η)) dξdη

]}
dsdt

+
∫ x

x0

∫ y

y0

B (s, t, z (s, t)) dsdt.

Using (5.14) - (5.18), (5.21) and |z|− |u| ≤ |z − u| in (5.22) and assuming that the
solution u (x, y) of (5.12) is bounded by M0, where M0 > 0 is a constant, we have

|z (x, y)− u (x, y)|

≤ a (x, y) +
∫ x

x0

b (s, y) |z (s, y)− u (s, y)| ds

+
∫ x

x0

∫ y

y0

b (s, t) |z (s, t)− u (s, t)| dsdt

+
∫ x

x0

∫ y

y0

f (s, t)
(∫ s

x0

∫ t

y0

b (ξ, η) |z (ξ, η)− u (ξ, η)| dξdη

)
dsdt

+
∫ x

x0

∫ y

y0

K (s, t, M0 + |z (s, t)− u (s, t)|) dsdt.

Now a suitable application of Theorem 9 with p (x, y) = r (x, y) = h (x, y) = 1 and
K (x, y, s, t,Φ) = K (s, t, Φ) and W (x, y,Φ) = Φ yields

(5.23) |z (x, y)− u (x, y)| ≤ F ∗
1 (x, y) [a (x, y) + r (x, y)] ,

where F ∗
1 (x, y) is obtained by substituting p (x, y) = r (x, y) = h (x, y) = 1 in (4.7)

and r (x, y) is a solution of the integral equation

(5.24) r (x, y) =
∫ x

x0

∫ y

y0

K (s, t, M0 + F ∗
1 (s, t) [a (s, t) + r (s, t)]) dsdt.

If the right hand side in (5.23) is bounded, then we obtain the relative boundedness
of the solutions z (x, y) and u (x, y) of (5.13) and (5.12). If a (x, y) in (5.23) is
small enough and say less than ε, where ε > 0 is arbitrary, and if the equation
(5.24) admits only an identically zero solution, and if F ∗ (x, y) in (5.22) is bounded
and ε → 0, then we obtain |z (x, y)− u (x, y)| → 0, which gives the equivalence
between the solutions of (5.12) and (5.13).

We note that Theorems 3 and 8 can be used to study the continuous dependence
of the solutions of (5.1) and (5.13) by following similar arguments to those in
[11] with suitable modifications. We also note that the inequalities established in
Theorems 4 and 10 can be used to establish similar results as given in Examples



PARTIAL INTEGRAL INEQUALITIES 19

1 - 3 for the corresponding nonlinear non-self-adjoint hyperbolic partial differential
and integrodifferential equations of the forms

(5.25) uxy (x, y) = {b0 (x, y) u (x, y)}x + A (x, y, u (x, y)) + f1 (x, y) ,

uxy (x, y) = {b0 (x, y) u (x, y)}x + A (x, y, u (x, y)) + f1 (x, y)(5.26)

+H1

[
x, y,

∫ x

x0

∫ y

y0

K1 (x, y, s, t, u (s, t)) dsdt

]
,

and

zxy (x, y)(5.27)
= {b0 (x, y) z (x, y)}x + A0 (x, y, z (x, y)) + g1 (x, y)

+H0

[
x, y,

∫ x

x0

∫ y

y0

K0 (x, y, s, t, z (s, t)) dsdt

]
+ B (x, y, z (x, y)) ,

with the boundary conditions prescribed on x = x0 and y = y0 and under some
suitable conditions on the functions involved therein.

In concluding this paper, we note that the integral inequalities established in
Theorems 1 - 4 can be used to study the boundedness, uniqueness and continuous
dependence of the solutions of nonlinear non-self-adjoint Volterra integral equations
of the type

u (x, y) = f (x, y) +
∫ x

x0

K1 [x, y, s, u (s, y)] ds(5.28)

+
∫ x

x0

∫ y

y0

K2 [x, y, s, t, u (s, t)] dsdt

and

u (x, y) = f (x, y) +
∫ y

y0

K1 [x, y, t, u (x, t)] dt(5.29)

+
∫ x

x0

∫ y

y0

K2 [x, y, s, t, u (s, t)] dsdt,

under some suitable conditions on the functions involved in (5.28) and (5.29). We
also note that the integral inequalities established in Theorems 7 - 10 can be used
to study the boundedness, uniqueness and continuous dependence of the solutions
of nonlinear non-self-adjoint Volterra integral equations of the more general type

u (x, y)(5.30)

= f (x, y) +
∫ x

x0

K1 [x, y, s, u (s, y)] ds +
∫ x

x0

∫ y

y0

K2 [x, y, s, t, u (s, t)] dsdt∫ x

x0

∫ y

y0

K3

[
x, y, s, t,

∫ s

x0

∫ t

y0

K4 (s, t, ξ, η, u (ξ, η)) dξdη

]
dsdt

+W0

(
x, y,

∫ x

x0

∫ y

y0

K0 (x, y, s, t, u (s, t)) dsdt

)
,
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and

u (x, y)(5.31)

= f (x, y) +
∫ y

y0

K1 [x, y, t, u (x, t)] dt +
∫ x

x0

∫ y

y0

K2 [x, y, s, t, u (s, t)] dsdt∫ x

x0

∫ y

y0

K3

[
x, y, s, t,

∫ s

x0

∫ t

y0

K4 (s, t, ξ, η, u (ξ, η)) dξdη

]
dsdt

+W0

(
x, y,

∫ x

x0

∫ y

y0

K0 (x, y, s, t, u (s, t)) dsdt

)
,

under some suitable conditions on the functions involved in (5.30) and (5.31). Other
applications of some of the inequalities established in this paper will appear else-
where.
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