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Abstract. In this paper we are concerned with the uniqueness results for the following singular anisotropic problem

N−1
∑

i=1

fi(u)uxixi + uyy + p(x)g(u) = 0 in Ω

with zero boundary conditions, where Ω is a bounded domain in RN , p is positive continuous function on Ω, N ≥ 2 and g

is a positive nonincreasing C1-function on (0,∞). Under various assumptions on fi, we prove that if there exists a solution

u ∈ C2,α(Ω) ∩ C(Ω) satisfying an a-priori bound on the second derivatives from either below (Theorem 1) or from above

(Theorem 2), then this solution is the only one. Our paper extends previous results of Lair and Shaker [6] to more than

two independent variables and to more general nonlinearities.
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1 Introduction and the main results

Singular anisotropic boundary value problems arise naturally when studying many concrete situations.
We refer to Čanić-Keyfitz [1] for the study of self-similar solutions of conservation laws in two dimen-
sions. We also mention Ding-Liu [5] where it is studied another anisotropic problem in the plane. Their
model is closely related to the phase transition problem in anisotropic superconductivity with “thermal
noise” term.

In [2], Choi, Lazer and McKenna studied a problem that is linked to an equation arising in fluid
dynamics. They proved that the singular elliptic boundary value problem











uauxx + ubuyy + p(x, y) = 0, (x, y) ∈ Ω

u = 0, (x, y) ∈ ∂Ω
(1)

has a positive classical solution, where Ω ⊂ R2 is a bounded convex domain with smooth boundary,
p is a positive Hölder continuous function and the constants a, b satisfy a > b ≥ 0. Choi, Lazer and
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McKenna also developed a new comparison principle for quasilinear problems that is based on the
method of sub- and super-solutions.

Recently Choi and McKenna [3] removed the assumption that the dimension be restricted to two,
but they also retained the convexity assumption which is crucial in the construction of a super-solution
ψ, satisfying the boundary conditions. More exactly, they showed that the boundary value problem



















N
∑

i=1

uaiuxixi + p(x) = 0, x ∈ Ω

u = 0, x ∈ ∂Ω

(2)

has at least one positive classical solution u, such that u(x) ≤ ψ(x) for all x ∈ Ω, where Ω ⊂ RN

(N ≥ 1) is a bounded convex domain with smooth boundary and a1 ≥ a2 ≥ · · · ≥ aN ≥ 0, with
a1 > aN . Choi and McKenna point out that the most significant omission of their paper is the absence
of any information on the uniqueness of solutions. In this direction there are known very few results
which hold only for the two dimensional case.

Lair and Shaker proved in [6] a uniqueness result related to (1) and they required neither the domain
Ω to be convex nor the function p to be as smooth as in [2]. They made only the assumption that there
is some solution u for which uxx is bounded above appropriately. In their paper there are distinguished
two different situations: a− b ≥ 1, resp., a− b < 1.

Reichel [7] established that problem (1) has at most one positive classical solution. It is assumed
that

p(τ1x, τ2y) ≥ p(x, y) for all (x, y) ∈ Ω, τi ∈ [0, 1]

and the bounded domain Ω (with 0 ∈ Ω) satisfies an interior rectangle condition, i.e., for each (x, y) ∈ ∂Ω
the rectangle {(τ1x, τ2y) : τi ∈ [0, 1)} is a subset of Ω.

It is natural to ask us if it is possible to give a uniqueness result which holds for more general
degenerate quasilinear operators and for a larger class of functions p, with no assumption on the
geometry of the domain or the dimension of the space.

For this aim, we consider the singular anisotropic elliptic boundary value problem


















N−1
∑

i=1

fi(u) uxixi + uyy + p(x) g(u) = 0, x ∈ Ω

u = 0, x ∈ ∂Ω

(3)

where Ω is a bounded domain in RN , N ≥ 2 and p is a positive continuous function on Ω. We have
denoted the last coordinate xN by y and we shall use notation x′ for the first (N − 1) coordinates.

Throughout this paper, we assume that the following hypotheses are fulfilled
(H1) fi, g : (0,∞) → (0,∞), i = 1, N − 1 are C1-functions;
(H2) fi, i = 1, N − 1 is nondecreasing on (0,∞) and g is nonincreasing on (0,∞).

Since Ω is bounded, we can make a translation of the domain so that it lies in the interior of the
strip RN−1 × [0, `] for some ` > 0. The fact that p ∈ C(Ω) is a positive function implies the existence
of α, β > 0 such that p(x) ∈ [α, β] for each x ∈ Ω.

2



Set
D = {y ∈ [0, `] : ∃x′ such that (x′, y) ∈ Ω}.

We can suppose, without loss of generality, that ` 6∈ D.
Let ψ be the unique positive function defined by

ψ(y)
∫

0

1
g(t)

dt =
β
2

(`y − y2), for any y ∈ [0, `]. (4)

It is obvious that
max
y∈D

ψ(y) ≤ max
y∈[0,`]

ψ(y) = A, (5)

where A > 0 is uniquely defined by
A

∫

0

1
g(t)

dt =
β
8

`2. (6)

We also assume
(H3) f ′1 > 0 on (0, A].

In the first result of this paper we impose the condition

(C1) there exists and is finite lim
x↘0

f1f ′i
f ′1

(x), for all i = 2, N − 1.

In view of this hypothesis we observe that for any i = 2, N − 1 it makes sense to define

mi = min
[0,A]

(

fi
f1

)′

(

1
f1

)′ = min
[0,A]

(

fi −
f ′if1

f ′1

)

and Mi = max
[0,A]

(

fi
f1

)′

(

1
f1

)′ = max
[0,A]

(

fi −
f ′if1

f ′1

)

.

For any x ∈ Ω we define the sets

Px = {2 ≤ i ≤ N − 1; uxixi(x) ≥ 0} and Nx = {2 ≤ i ≤ N − 1; uxixi(x) < 0}.

Our first result asserts that the existence of a positive solution u ∈ C2,α(Ω) ∩ C(Ω) of (3) en-
sures its uniqueness, provided that the expression

∑

i∈Px

miuxixi +
∑

i∈Nx

Miuxixi + uyy is bounded below

appropriately.

Theorem 1 Assume (H1)-(H3) and (C1) hold. There exists a positive constant K1, depending on f1,
g, p and Ω, such that if u is a positive solution of (3) satisfying

∑

i∈Px

miuxixi +
∑

i∈Nx

Miuxixi + uyy > −K1 in Ω (7)

then u is the unique solution of (3).

We now drop the assumption (C1) but we require

(C2)
fi

f1
, i = 2, N − 1 is nonincreasing on (0,∞).
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Our next theorem shows that the uniqueness of solution to (3) is assured if we find a positive solution

u ∈ C2,α(Ω) ∩ C(Ω) with the property that ux1x1 +
∑

i∈Px

fi(u)
f1(u)uxixi +

∑

i∈Nx

(

inf
(0,A)

f ′i
f ′1

)

uxixi is bounded

above appropriately.

Theorem 2 Assume (H1)-(H3) and (C2) hold. There exists a non-negative constant K2 depending on
f1, g, p and Ω, such that if u is a positive solution of problem (3) satisfying

ux1x1 +
∑

i∈Px

fi(u)
f1(u)

uxixi +
∑

i∈Nx

(

inf
(0,A)

f ′i
f ′1

)

uxixi < K2 in Ω (8)

then u is the unique solution of (3).

2 An auxiliary result

In this section we prove that the number A given by (6) is an upper bound for every positive classical
solution of problem (3). To this end, we make use of a comparison lemma on a class of quasilinear
elliptic equations established in Choi-McKenna [3]. In view of this result we can obtain L∞ bounds
on the solutions to this class of equations using the method of sub- and super-solutions. Consider the
problem



















N−1
∑

i=1

fi(x, u) uxixi + uyy + p(x) g(x, u) = 0, in Ω

u = u0, on ∂Ω,

(9)

with u0|∂Ω ≥ 0, where the functions fi, g and p satisfy the assumptions
(A1) fi : Ω× [0,∞) → [0,∞) is continuous and fi(x, ·) is nondecreasing for each x ∈ Ω;
(A2) g : Ω× (0,∞) → (0,∞) is continuous, and g(x, ·) is nonincreasing for each x ∈ Ω;
(A3) p : Ω → R is continuous, and there exist positive constants α and β such that

0 < α ≤ p(x) ≤ β for all x ∈ Ω.

Assume that
(L) There exists a sub-solution ϕ ∈ C(Ω) ∩ C2(Ω) with ϕ > 0 on Ω satisfying

N−1
∑

i=1

fi(x, ϕ)ϕxixi + ϕyy + p(x) g(x, ϕ) > 0, in Ω

ϕxixi ≤ 0, in Ω, for any i = 1, 2, · · · , N − 1,

and ϕ ≤ u0 on ∂Ω.
(U) There exists a super-solution ψ ∈ C(Ω) ∩ C2(Ω) with ψ > 0 in Ω satisfying

N−1
∑

i=1

fi(x, ψ) ψxixi + ψyy + p(x) g(x, ψ) ≤ 0, in Ω

ψxixi ≤ 0, in Ω, for any i = 1, 2, · · · , N − 1,

and ψ ≥ u0 on ∂Ω.

4



Lemma 1 Assume (A1)-(A3), (L) and (U) hold. Then any positive solution u of (3) satisfies u ≤ A
in Ω, where A is defined in (6).

Proof. Under the above hypotheses, Choi and McKenna proved in [3] that every solution u ∈
C2(Ω) ∩ C(Ω) of problem (9), with u > 0 in Ω, satisfies

ϕ ≤ u ≤ ψ in Ω.

Moreover, if only conditions (A1)− (A3) and (U) hold, then u ≤ ψ in Ω.
It is easy to check that the function ψ defined in (4) satisfies condition (U) considered for our

problem (3). Therefore, by the Choi-McKenna comparison lemma and (5), we find that every positive
classical solution of (3) is bounded above by the same number A defined in (6). 2

3 Proof of Theorem 1

Let u and v be solutions of (3) and let u satisfy (7), where

K1 =
π2

`2
1

f1(A)
inf

(0,A)

f2
1

f ′1
+ α inf

(0,A)

(

g
f1

)′

(

1
f1

)′ .

We prove in what follows that u = v in Ω. Set

w(x) =
u(x′, y)

s(y)
, z(x) =

v(x′, y)
s(y)

,

where
s(y) = sin

πy
`

, c(y) = cos
πy
`

y ∈ (0, `) .

Since s > 0 and s ∈ C∞, it follows that w and z are well defined and they are as smooth as u and v
respectively on Ω. A simple computation shows that w satisfies the boundary value problem



















N−1
∑

i=1

sfi(u)wxixi +
2πc
`

wy + swyy −
π2s
`2 w + p(x)g(u) = 0, in Ω

w = 0, on ∂Ω .

(10)

Similarly,


















N−1
∑

i=1

sfi(v)zxixi +
2πc
`

zy + szyy −
π2s
`2 z + p(x)g(v) = 0, in Ω

z = 0, on ∂Ω .

(11)

Relations (10) and (11) yield
N−1
∑

i=1

s
fi(v)
f1(v)

(z − w)xixi +
N−1
∑

i=2

s
[(

fi

f1

)

(v)−
(

fi

f1

)

(u)
]

wxixi +
2πc
`

1
f1(v)

(z − w)y+

2πc
`

(

1
f1(v)

− 1
f1(u)

)

wy + s
1

f1(v)
(z − w)yy + s

(

1
f1(v)

− 1
f1(u)

)

wyy−

π2s
`2

1
f1(v)

(z − w)− π2s
`2

(

1
f1(v)

− 1
f1(u)

)

w + p(x)
[(

g
f1

)

(v)−
(

g
f1

)

(u)
]

= 0.
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Whenever z 6= w we can rewrite the above equation as follows
N−1
∑

i=1

s
fi(v)
f1(v)

(z − w)xixi + s
1

f1(v)
(z − w)yy +

2πc
`

1
f1(v)

(z − w)y +
(

1
f1(v)

− 1
f1(u)

)

Q(z, w) = 0 (12)

where

Q(z, w) = uyy +
N−1
∑

i=2

(

fi
f1

)

(v)−
(

fi
f1

)

(u)
(

1
f1

)

(v)−
(

1
f1

)

(u)
uxixi −

π2

`2
1

f1(v)
v − u

(

1
f1

)

(v)−
(

1
f1

)

(u)
+ p(x)

(

g
f1

)

(v)−
(

g
f1

)

(u)
(

1
f1

)

(v)−
(

1
f1

)

(u)
.

In order to conclude the proof it is enough to show that

Q(z, w) > 0 whenever z 6= w. (13)

Indeed, if (z − w) > 0 at some point in Ω, then max
Ω

(z − w) is achieved in Ω, since z = w = 0 on ∂Ω.

At that point we have

(z − w)xixi ≤ 0, (z − w)yy ≤ 0, (z − w)y = 0 and
(

1
f1(v)

− 1
f1(u)

)

Q(z, w) < 0

which contradicts (12). A similar argument shows that (z − w) cannot be negative at any point in Ω.
Hence z = w in Ω which implies u = v on Ω.

For every x ∈ Ω, let us define

µ(x) = min(u(x), v(x)) and ν(x) = max(u(x), v(x)) .

Thus, by Lemma 1, ν ≤ A in Ω.
In (12) we apply the Cauchy generalized mean value theorem on every interval [µ(x), ν(x)] where

x ∈ Ω is taken such that z(x) 6= w(x). Hence, for all i = 2, N − 1 we obtain the existence of ξi(x),
σ(x), λ(x) ∈ (µ(x), ν(x)) ⊂ (0, A) such that

mi ≤

(

fi
f1

)

(v(x))−
(

fi
f1

)

(u(x))
(

1
f1

)

(v(x))−
(

1
f1

)

(u(x))
=

(

fi
f1

)′

(

1
f1

)′ (ξi(x)) ≤ Mi (14)

− v(x)− u(x)
(

1
f1

)

(v(x))−
(

1
f1

)

(u(x))
=

f2
1

f ′1
(σ(x)) ≥ inf

(0,A)

f2
1

f ′1
(15)

(

g
f1

)

(v(x))−
(

g
f1

)

(u(x))
(

1
f1

)

(v(x))−
(

1
f1

)

(u(x))
=

(

g
f1

)′

(

1
f1

)′ (λ(x)) ≥ inf
(0,A)

(

g
f1

)′

(

1
f1

)′ . (16)

Using (14), (15) and (16) we find

Q(z, w) ≥ uyy +
∑

i∈Px

miuxixi +
∑

i∈Nx

Miuxixi +
π2

`2
1

f1(A)
inf

(0,A)

f2
1

f ′1
+ α inf

(0,A)

(

g
f1

)′

(

1
f1

)′ =

uyy +
∑

i∈Px

miuxixi +
∑

i∈Nx

Miuxixi + K1.

Since the solution u satisfies (7) we obtain that relation (13) is true. This completes the proof. 2
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4 Proof of Theorem 2

Let u and v be two solutions of (3) and set

K2 = −α sup
(0,A)

g′

f ′1
≥ 0 . (17)

The functions w, z, µ and ν will have the same signification as in the above proof.
By (10) and (11) it follows that

N−1
∑

i=1

sfi(v)(z − w)xixi +
N−1
∑

i=1

s[fi(v)− fi(u)]wxixi +
2πc
`

(z − w)y + s(z − w)yy−

π2s
`2 (z − w) + p(x)[g(v)− g(u)] = 0.

(18)

Whenever z 6= w, relation (18) may be rewritten in the following form

N−1
∑

i=1

sfi(v)(z − w)xixi +
2πc
`

(z − w)y + s(z − w)yy + [f1(v)− f1(u)]R(z, w) = 0 ,

where

R(z, w) = ux1x1 +
N−1
∑

i=2

fi(v)− fi(u)
f1(v)− f1(u)

uxixi −
π2

`2
v − u

f1(v)− f1(u)
+ p(x)

g(v)− g(u)
f1(v)− f1(u)

.

Using the maximum principle (as we did in the proof of Theorem 1) we see that the proof will be
concluded if we prove that

R(z, w) < 0 whenever z 6= w.

From now on, we shall consider only the points x ∈ Ω with the property that z(x) 6= w(x). For these
points, we apply again the Cauchy generalized mean value theorem on [µ(x), ν(x)] and we obtain ηi(x),
θ(x), ζ(x) ∈ (µ(x), ν(x)) ⊂ (0, A) such that

fi(v(x))− fi(u(x))
f1(v(x))− f1(u(x))

=
f ′i
f ′1

(ηi(x)) ≥ inf
(0,A)

f ′i
f ′1

, i = 2, N − 1 (19)

v(x)− u(x)
f1(v(x))− f1(u(x))

=
1

f ′1(θ(x))
(20)

g(v(x))− g(u(x))
f1(v(x))− f1(u(x))

=
g′

f ′1
(ζ(x)) ≤ sup

(0,A)

g′

f ′1
≤ 0. (21)

It is easy to verify that hypothesis (C2) implies

fi(v(x))− fi(u(x))
f1(v(x))− f1(u(x))

≤ fi(u(x))
f1(u(x))

for all i = 2, N − 1. (22)

On the other hand, since f1 is increasing on (0, A),

v(x)− u(x)
f1(v(x))− f1(u(x))

> 0. (23)
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Combining relations (19), (21), (22) and (23) with the expression of R(z, w) we deduce that

R(z, w) < ux1x1 +
∑

i∈Px

fi(u)
f1(u)

uxixi +
∑

i∈Nx

(

inf
(0,A)

f ′i
f ′1

)

uxixi + α sup
(0,A)

g′

f ′1
.

Since u is a solution of (3) satisfying (8) we deduce that R(z, w) is negative. This completes our
proof. 2

As an application of this result, let us consider the problem


















f(u)ux1x1 +
N

∑

i=2

uxixi + p(x) = 0, if x ∈ B(0, 1) ⊂ RN

u = 0, if |x| = 1,

(24)

where f : (0,∞) → (0,∞) is a given increasing function and p(x) = 2(N − 1) + 2f(1− |x|2). We first
observe that the function u(x) = 1 − |x|2 is a solution of (24). In order to establish its uniqueness,
observing first that uxixi = −2, for any i = 1, · · · , N , we deduce that condition (7) reduces to K1 > 2N ,
which depends on f . For instance, if f(u) = up, p > 0, then K1 = 2N − 2, hence Theorem 1 does not
apply. However we observe that conditions (H1)-(H3) and (C2) are fulfilled. Furthermore, (17) yields
K2 = 0. It follows that assumption (8) is automatically satisfied in our case since the left hand-side of
(8) equals to −2. Therefore, by Theorem 2, problem (24) has a unique solution.
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