
GRÜSS INEQUALITY IN TERMS OF ∆−SEMINORMS AND
APPLICATIONS

P. CERONE, S.S. DRAGOMIR, AND J. ROUMELIOTIS

Abstract. Some upper bounds for the modulus of the Chebychev functional
in terms of ∆−seminorms are pointed out. Applications for midpoint and
trapezoid inequalities are also given.

1. Introduction

For two measurable functions f, g : [a, b] → R, define the functional, which is
known in the literature as Chebychev’s functional

T (f, g; a, b) :=
1

b− a

∫ b

a
f (x) g (x) dx− 1

(b− a)2

∫ b

a
f (x) dx ·

∫ b

a
g (x) dx,(1.1)

provided that the involved integrals exist.
The following inequality is well known in the literature as the Grüss inequality

[9]

|T (f, g; a, b)| ≤ 1
4

(M −m) (N − n) ,(1.2)

provided that m ≤ f ≤ M and n ≤ g ≤ N a.e. on [a, b], where m,M,n, N are real
numbers. The constant 1

4 in (1.2) is the best possible.
Another inequality of this type is due to Chebychev (see for example [1, p.

207]). Namely, if f, g are absolutely continuous on [a, b] and f ′, g′ ∈ L∞ [a, b] and
‖f ′‖∞ := ess sup

t∈[a,b]
|f ′ (t)| , then

|T (f, g; a, b)| ≤ 1
12
‖f ′‖∞ ‖g

′‖∞ (b− a)2(1.3)

and the constant 1
12 is the best possible.

Finally, let us recall a result by Lupaş (see for example [1, p. 210]), which states
that:

|T (f, g; a, b)| ≤ 1
π2 ‖f

′‖2 ‖g
′‖2 (b− a)2 ,(1.4)

provided f, g are absolutely continuous and f ′, g′ ∈ L2 [a, b]. The constant 1
π2 is

the best possible here.
For other Grüss type inequalities, see the books [1] and [2], and the papers

[3]-[10], where further references are given.
In the present paper we point out some bounds for the Chebychev functional in

terms of the ∆−seminorms ‖·‖∆p , p ∈ [1,∞]; as will be defined in the sequel.
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2. ∆−Seminorms and Related Inequalities

For f ∈ Lp [a, b] (p ∈ [1,∞)) we can define the functional (see also [11])

‖f‖∆p :=

(

∫ b

a

∫ b

a
|f (t)− f (s)|p dtds

) 1
p

(2.1)

and for f ∈ L∞ [a, b], we can define

‖f‖∆∞ := ess sup
(t,s)∈[a,b]2

|f (t)− f (s)| .(2.2)

If we consider f∆ : [a, b]2 → R,

f∆ (t, s) = f (t)− f (s) ,(2.3)

then, obviously

‖f‖∆p = ‖f∆‖p , p ∈ [1,∞] ,(2.4)

where ‖·‖p are the usual Lebesque p-norms on [a, b]2.
Using the properties of the Lebesque p−norms, we may deduce the following

semi-norm properties for ‖·‖∆p :

(i) ‖f‖∆p ≥ 0 for f ∈ Lp [a, b] and ‖f‖∆p = 0 implies that f = c (c is a constant)
a.e. in [a, b] ;

(ii) ‖f + g‖∆p ≤ ‖f‖∆p + ‖g‖∆p if f, g ∈ Lp [a, b] ;

(iii) ‖αf‖∆p = |α| ‖f‖∆p .

We note that if p = 2, then,

‖f‖∆2 =

(

∫ b

a

∫ b

a
(f (t)− f (s))2 dtds

) 1
2

=
√

2



(b− a) ‖f‖22 −

(

∫ b

a
f (t) dt

)2




1
2

.

Using the inequalities (1.2), (1.3) and (1.4), we obtain the following estimate for
‖·‖∆2 :

‖f‖∆2 ≤



























√
2

2 (M −m) if m ≤ f ≤ M ;

√
2

2
√

3
‖f ′‖∞ (b− a) if f ′ ∈ L∞ [a, b] ;

√
2

π ‖f ′‖2 (b− a) if f ′ ∈ L2 [a, b] .

If f : [a, b] → R is absolutely continuous on [a, b], then we can point out the following
bounds for ‖f‖∆p in terms of ‖f ′‖p.

Theorem 1. Assume that f : [a, b] → R is absolutely continuous on [a, b].
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(i) If p ∈ [1,∞), then we have the inequality

‖f‖∆p ≤















































2
1
p (b−a)

1+ 2
p

[(p+1)(p+2)]
1
p
‖f ′‖∞ if f ′ ∈ L∞ [a, b] ;

(2β2)
1
p (b−a)

1
β + 2

p

[(p+β)(p+2β)]
1
p
‖f ′‖α if f ′ ∈ Lα [a, b] ,

α > 1, 1
α + 1

β = 1;

(b− a)
2
p ‖f ′‖1 if f ′ ∈ L1 [a, b] ,

(2.5)

(ii) If p = ∞, then we have the inequality

‖f‖∆∞ ≤























(b− a) ‖f ′‖∞ if f ′ ∈ L∞ [a, b] ;

(b− a)
1
β ‖f ′‖α if f ′ ∈ Lα [a, b] , α > 1, 1

α + 1
β = 1;

‖f ′‖1 .

(2.6)

Proof. As f : [a, b] → R is absolutely continuous, then f (t) − f (s) =
∫ t

s f ′ (u) du
for all t, s ∈ [a, b], and then

|f (t)− f (s)|(2.7)

=
∣

∣

∣

∣

∫ t

s
f ′ (u) du

∣

∣

∣

∣

≤























|t− s| ‖f ′‖∞ if f ′ ∈ L∞ [a, b] ;

|t− s|
1
β ‖f ′‖α if f ′ ∈ Lα [a, b] , α > 1, 1

α + 1
β = 1;

‖f ′‖1 if f ′ ∈ L1 [a, b]

and so for p ∈ [1,∞), we may write

|f (t)− f (s)|p

≤























|t− s|p ‖f ′‖p
∞ if f ′ ∈ L∞ [a, b] ;

|t− s|
p
β ‖f ′‖p

α if f ′ ∈ Lα [a, b] , α > 1, 1
α + 1

β = 1;

‖f ′‖p
1 if f ′ ∈ L1 [a, b] ,

and then from (2.3), (2.4)

‖f‖∆p ≤



















































‖f ′‖∞
(

∫ b
a

∫ b
a |t− s|p dtds

) 1
p

if f ′ ∈ L∞ [a, b] ;

‖f ′‖α

(

∫ b
a

∫ b
a |t− s|

p
β dtds

) 1
p

if f ′ ∈ Lα [a, b] ,
α > 1, 1

α + 1
β = 1;

‖f ′‖1
(

∫ b
a

∫ b
a dtds

) 1
p

if f ′ ∈ L1 [a, b] .

(2.8)
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Further, since
(

∫ b

a

∫ b

a
|t− s|p dtds

) 1
p

(2.9)

=

[

∫ b

a

(

∫ t

a
(t− s)p ds +

∫ b

t
(s− t)p ds

)

dt

] 1
p

=

(

∫ b

a

[

(t− a)p+1 + (b− t)p+1

p + 1

]

dt

) 1
p

=
2

1
p (b− a)1+

2
p

[(p + 1) (p + 2)]
1
p
,

giving
(

∫ b

a

∫ b

a
|t− s|

p
β dtds

) 1
p

=

(

2β2)
1
p (b− a)

1
β + 2

p

[(p + β) (p + 2β)]
1
p

,

and
(

∫ b

a

∫ b

a
dtds

) 1
p

= (b− a)
2
p ,

we obtain, from (2.8), the stated result (2.5).
Using (2.7) we have (for p = ∞) that

‖f‖∆∞ ≤



































‖f ′‖∞ ess sup
(t,s)∈[a,b]2

|t− s|

‖f ′‖α ess sup
(t,s)∈[a,b]

|t− s|
1
β

‖f ′‖1

=























(b− a) ‖f ′‖∞

(b− a)
1
β ‖f ′‖α

‖f ′‖1

(2.10)

and the inequality (2.6) is also proved.

3. Some Bounds in Terms of ∆−Seminorms

The following result of Grüss type holds.

Theorem 2. Let f, g : [a, b] → R be measurable on [a, b]. Then we have the in-
equality:

|T (f, g; a, b)| ≤ 1

2 (b− a)2
‖f‖∆p ‖g‖

∆
q ,(3.1)

where p = 1, q = ∞, or p > 1, 1
p + 1

q = 1 or q = 1 and p = ∞, provided all integrals
involved exist. Further, T (f, g; a, b) is the Chebychev functional defined by (1.1).

Proof. Using Korkine’s identity, we have

T (f, g; a, b) =
1

2 (b− a)2

∫ b

a

∫ b

a
(f (x)− f (y)) (g (x)− g (y)) dxdy.
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Now, if f ∈ L∞ [a, b], then

|T (f, g; a, b)|

≤ 1

2 (b− a)2

∫ b

a

∫ b

a
|f (x)− f (y)| |g (x)− g (y)| dxdy

≤ 1

2 (b− a)2
ess sup

(x,y)∈[a,b]2
(f (x)− f (y))

∫ b

a

∫ b

a
|g (x)− g (y)| dxdy

=
1

2 (b− a)2
‖f‖∆∞ ‖g‖

∆
1 ,

and the inequality is proved for p = ∞, q = 1.
A similar argument applies for p = 1, q = ∞.
If p > 1, 1

p+ 1
q = 1, then applying Hölder’s integral inequality for double integrals,

we deduce that

|T (f, g; a, b)|

≤ 1

2 (b− a)2

∫ b

a

∫ b

a
|f (x)− f (y)| |g (x)− g (y)| dxdy

≤ 1

2 (b− a)2

(

∫ b

a

∫ b

a
|f (x)− f (y)|p dxdy

) 1
p

(

∫ b

a

∫ b

a
|g (x)− g (y)|q dxdy

) 1
q

≤ 1

2 (b− a)2
‖f‖∆p ‖g‖

∆
q

and the theorem is proved.

Remark 1. Taking into account by Theorem 2 that for p = 1, we have three bounds
for ‖f‖∆1 and for p ∈ (1,∞) we have another three bounds for ‖f‖∆p and for p = ∞,

we can state some other three bounds by ‖f‖∆∞, then, by the inequality (3.1), we are
able to point out eighty-one bounds for the modulus of the functional T (f, g; a, b),
in terms of the derivatives f ′ and g′.

In some practical applications, the ∆−seminorm of a mapping, say f, can be
easily computed. In that case, the number of bounds is much less.

The following result for the trapezoid formula holds.

Theorem 3. Assume that the mapping f : [a, b] → R is absolutely continuous on
[a, b]. Then we have the inequality

∣

∣

∣

∣

∣

f (a) + f (b)
2

− 1
b− a

∫ b

a
f (t) dt

∣

∣

∣

∣

∣

(3.2)

≤ B :=































2
1
p−1

(b−a)
2
p−1

[(p+1)(p+2)]
1
p
‖f ′‖∆q if p ∈ [1,∞) and f ′ ∈ Lq [a, b] ; 1

p + 1
q = 1

(for p = 1 we choose q = ∞);

1
2(b−a) ‖f

′‖∆1 .
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Proof. We know the following identity (see [12]) holds, where many other related
results are given,

f (a) + f (b)
2

− 1
b− a

∫ b

a
f (t) dt =

1
b− a

∫ b

a

(

t− a + b
2

)

f ′ (t) dt,(3.3)

which can be easily proved by applying the integration by parts formula.
We observe that

T
(

· − a + b
2

, f ′, a, b
)

=
1

b− a

∫ b

a

(

t− a + b
2

)

f ′ (t) dt.

If we define h (t) := t− a+b
2 , and

Dp (a, b) :=
∫ b

a

∫ b

a
|x− y|p dxdy = 2

(b− a)p+2

(p + 1) (p + 2)
,(3.4)

then we observe that for p ≥ 1, from (2.9) and (2.10),

‖h‖∆p = D
1
p
p (a, b) =

2
1
p (b− a)1+

2
p

[(p + 1) (p + 2)]
1
p

and

‖h‖∆∞ = ess sup
(x,y)∈[a,b]2

|x− y| = b− a

for which, using (3.1), we conclude the desired inequality (3.2).

Corollary 1. With the assumptions of Theorem 3 and if f ′ ∈ L2 [a, b], then we
have the inequality

∣

∣

∣

∣

∣

f (a) + f (b)
2

− 1
b− a

∫ b

a
f (t) dt

∣

∣

∣

∣

∣

(3.5)

≤ 1
2
√

3

[

(b− a) ‖f ′‖22 − [f (b)− f (a)]2
] 1

2
.

The proof follows by (3.2) for p = q = 2.
For a different proof, see [14].

Remark 2. If we take

H (t) = t− z, z ∈ [a, b] ,

then we would obtain
∣

∣

∣

∣

∣

1
b− a

∫ b

a
f (t) dt−

(

z − a
b− a

f (a) +
b− z
b− a

f (b)
)

+2
(

a + b
2

− z
)(

f (b)− f (a)
b− a

)∣

∣

∣

∣

≤ B,

where the bound B is as defined in (3.2) and is independent of z. If z = a+b
2 , then

the perturbation resulting from the application of the Grüss identity vanishes and
the results of Theorem 3 are recaptured.

The following result for the midpoint formula holds.
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Theorem 4. Assume that the mapping f : [a, b] → R is absolutely continuous on
[a, b]. Then we have the inequality:

∣

∣

∣

∣

∣

f
(

a + b
2

)

− 1
b− a

∫ b

a
f (t) dt

∣

∣

∣

∣

∣

(3.6)

≤ B :=























2
1
p−1

(b−a)
2
p−1

[(p+1)(p+2)]
1
p
‖f ′‖∆q if p ∈ [1,∞) and f ′ ∈ Lq [a, b] ;

1
p + 1

q = 1, (for p = 1 we choose q = ∞);

1
2(b−a) ‖f

′‖∆1 .

Proof. A simple integration by parts demonstrates that the following identity holds:

f
(

a + b
2

)

− 1
b− a

∫ b

a
f (t) dt =

1
b− a

∫ b

a
k (t) f ′ (t) dt,(3.7)

where

k (t) =







t− a if t ∈
[

a, a+b
2

]

t− b if t ∈
(a+b

2 , b
]

,

which can easily be proved using the integration by parts formula.
We observe that

T (k, f ′; a, b) =
1

b− a

∫ b

a
k (t) f ′ (t) dt,

as a simple computation shows that

1
b− a

∫ b

a
k (t) dt = 0.

We observe that

‖k‖∆∞ = ess sup
(x,y)∈[a,b]2

|k (x)− k (y)| = b− a.

Also, we have:

‖k‖∆p =

(

∫ b

a

∫ b

a
|k (x)− k (y)|p dxdy

) 1
p

=

[

∫ b

a

(

∫ a+b
2

a
|k (x)− y + a|p dy +

∫ b

a+b
2

|k (x)− y + b|p dy

)

dx

] 1
p

=

[

∫ a+b
2

a

(

∫ a+b
2

a
|x− y|p dy

)

dx +
∫ b

a+b
2

(

∫ a+b
2

a
|x− b− y + a|p dy

)

dx

+
∫ a+b

2

a

(

∫ b

a+b
2

|x− a− y + b|p dy

)

dx +
∫ b

a+b
2

(

∫ b

a+b
2

|x− y|p dy

)

dx

] 1
p

: = I1 + I2 + I3 + I4.
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We have

I1 =
∫ a+b

2

a

(

∫ a+b
2

a
|x− y|p dy

)

dx = Dp

(

a,
a + b

2

)

and so, from (3.4),

I1 =
2
( b−a

2

)p+2

(p + 1) (p + 2)
=

(b− a)p+2

2p+1 (p + 1) (p + 2)
:=

Dp (a, b)
2p+1 .

Further,

I2 =
∫ b

a+b
2

(

∫ a+b
2

a
|x− (y + b− a)|p dy

)

dx

=
∫ b

a+b
2

(

∫ b+ b−a
2

b
|x− u|p du

)

dx =
∫ b

a+b
2

(

∫ b+ b−a
2

b
(u− x)p du

)

dx

=
∫ b

a+b
2





(u− x)p+1

p + 1

∣

∣

∣

∣

∣

b+ b−a
2

b



 dx

=
∫ b

a+b
2

[
(

b + b−a
2 − x

)p+1 − (b− x)p+1

p + 1

]

dx

=
(b− a)p+2

(p + 1) (p + 2)
− (b− a)p+2

2p+1 (p + 1) (p + 2)
=

(

1− 1
2p+1

)

Dp (a, b) .

Now,

I3 =
∫ a+b

2

a

(

∫ b

a+b
2

|x− (y + a− b)|p dy

)

dx

and following a similar argument to the calculation of I2 gives

I3 =
(

1− 1
2p+1

)

Dp (a, b) .

An alternate approach is that a substitution of Y = y − b−a
2 and X = x + b−a

2 in
I3 shows that I3 = I2.

Now, from (3.4),

I4 =
∫ b

a+b
2

(

∫ b

a+b
2

|x− y|p dy

)

dx = Dp

(

a + b
2

, b
)

= Dp

(

a,
a + b

2

)

=
Dp (a, b)

2p+1 .

Consequently,

I = I1 + I2 + I3 + I4 = 2Dp (a, b) =
2 (b− a)p+2

(p + 1) (p + 2)
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and so

‖k‖∆p =
2

1
p (b− a)1+

2
p

[(p + 1) (p + 2)]
1
p
.

Using Theorem 2, we obtain the desired inequality (2.6).

Corollary 2. With the assumptions of Theorem 4 and if f ′ ∈ L2 [a, b], we have
the inequality:

∣

∣

∣

∣

∣

f
(

a + b
2

)

− 1
b− a

∫ b

a
f (t) dt

∣

∣

∣

∣

∣

(3.8)

≤ 1
2
√

3

[

(b− a) ‖f ′‖22 − [f (b)− f (a)]2
] 1

2
.

The proof follows by Theorem 4 applied for p = q = 2.
For a different proof of this inequality see [14].

Remark 3. If we take

K (t) =







t− a, t ∈ [a, z]

t− b, t ∈ (z, b]
(3.9)

then the following identity attributed to Montgomery (see [13, p. 565]) may be easily
shown to hold

f (z)− 1
b− a

∫ b

a
f (t) dt =

1
b− a

∫ b

a
K (t) f ′ (t) dt.(3.10)

Now, from (1.1), (3.9) and (3.10)

−T (K, f ′, a, b) =
1

b− a

∫ b

a
f (t) dt− f (z) +

(

z − a + b
2

)

(f (b)− f (a))
b− a

(3.11)

since
1

b− a

∫ b

a
K (t) dt = z − a + b

2
and

1
b− a

∫ b

a
f ′ (t) dt =

f (b)− f (a)
b− a

.

We note that from (3.9)

‖K‖∆∞ = ess sup
(x,y)∈[a,b]2

|K (x)−K (y)| = b− a

and for p ≥ 1

‖K‖∆p(3.12)

=

(

∫ b

a

∫ b

a
|K (x)−K (y)|p dydx

) 1
p

=

{

∫ z

a

∫ z

a
|x− y|p dydx +

∫ b

z

∫ z

a
|x− b− (y − a)|p dydx

+
∫ z

a

∫ b

z
|x− a− (y − b)|p dydx +

∫ b

z

∫ b

z
|x− y|p dydx

} 1
p

: = (J1 + J2 + J3 + J4)
1
p .
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Now, from (3.3)

J1 = Dp (a, z) =
2 (z − a)p+2

(p + 1) (p + 2)

and

J4 = Dp (z, b) =
2 (b− z)p+2

(p + 1) (p + 2)
.

Further,

J2 =
∫ b

z

∫ z

a
|x− b− (y − a)|p dydx =

∫ b

z

∫ b+z−a

b
|x− u|p dudx

=
∫ b

z

∫ b+z−a

b
(u− x)p dudx =

1
p + 1

∫ b

z
(b + z − a− x)p+1 − (b− x)p+1 dx

=
1

(p + 1) (p + 2)

[

(b− a)p+2 − (z − a)p+2 − (b− z)p+2
]

= Dp (a, b)−Dp (a, z)−Dp (z, b) .

Using symmetry arguments or direct calculation shows that J3 = J2. Hence, from
(3.12)

‖K‖∆p = 2Dp (a, b) =
2 (b− a)p+2

(p + 1) (p + 2)

and so, from (3.11)
∣

∣

∣

∣

∣

1
b− a

∫ b

a
f (t) dt− f (z) +

(

z − a + b
2

)(

f (b)− f (a)
b− a

)

∣

∣

∣

∣

∣

≤ B,

giving the same bounds as obtained previously for the trapezoidal and midpoint rules.
If z = a+b

2 , then the midpoint rule is recaptured.
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