GRÜSS INEQUALITY IN TERMS OF Δ-SEMINORMS AND APPLICATIONS

P. CERONE, S.S. DRAGOMIR, AND J. ROUMELIOTIS

Abstract

Some upper bounds for the modulus of the Chebychev functional in terms of Δ-seminorms are pointed out. Applications for midpoint and trapezoid inequalities are also given.

1. Introduction

For two measurable functions $f, g:[a, b] \rightarrow \mathbb{R}$, define the functional, which is known in the literature as Chebychev's functional

$$
\begin{equation*}
T(f, g ; a, b):=\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\frac{1}{(b-a)^{2}} \int_{a}^{b} f(x) d x \cdot \int_{a}^{b} g(x) d x \tag{1.1}
\end{equation*}
$$

provided that the involved integrals exist.
The following inequality is well known in the literature as the Grüss inequality [9]

$$
\begin{equation*}
|T(f, g ; a, b)| \leq \frac{1}{4}(M-m)(N-n) \tag{1.2}
\end{equation*}
$$

provided that $m \leq f \leq M$ and $n \leq g \leq N$ a.e. on $[a, b]$, where m, M, n, N are real numbers. The constant $\frac{1}{4}$ in (1.2) is the best possible.

Another inequality of this type is due to Chebychev (see for example [1, p. 207]). Namely, if f, g are absolutely continuous on $[a, b]$ and $f^{\prime}, g^{\prime} \in L_{\infty}[a, b]$ and $\left\|f^{\prime}\right\|_{\infty}:=$ ess $\sup _{t \in[a, b]}\left|f^{\prime}(t)\right|$, then

$$
\begin{equation*}
|T(f, g ; a, b)| \leq \frac{1}{12}\left\|f^{\prime}\right\|_{\infty}\left\|g^{\prime}\right\|_{\infty}(b-a)^{2} \tag{1.3}
\end{equation*}
$$

and the constant $\frac{1}{12}$ is the best possible.
Finally, let us recall a result by Lupaş (see for example [1, p. 210]), which states that:

$$
\begin{equation*}
|T(f, g ; a, b)| \leq \frac{1}{\pi^{2}}\left\|f^{\prime}\right\|_{2}\left\|g^{\prime}\right\|_{2}(b-a)^{2} \tag{1.4}
\end{equation*}
$$

provided f, g are absolutely continuous and $f^{\prime}, g^{\prime} \in L_{2}[a, b]$. The constant $\frac{1}{\pi^{2}}$ is the best possible here.

For other Grüss type inequalities, see the books [1] and [2], and the papers [3]-[10], where further references are given.

In the present paper we point out some bounds for the Chebychev functional in terms of the Δ-seminorms $\|\cdot\|_{p}^{\Delta}, p \in[1, \infty]$; as will be defined in the sequel.

[^0]
2. Δ-Seminorms and Related Inequalities

For $f \in L_{p}[a, b](p \in[1, \infty))$ we can define the functional (see also [11])

$$
\begin{equation*}
\|f\|_{p}^{\Delta}:=\left(\int_{a}^{b} \int_{a}^{b}|f(t)-f(s)|^{p} d t d s\right)^{\frac{1}{p}} \tag{2.1}
\end{equation*}
$$

and for $f \in L_{\infty}[a, b]$, we can define

$$
\begin{equation*}
\|f\|_{\infty}^{\Delta}:=e s s \sup _{(t, s) \in[a, b]^{2}}|f(t)-f(s)| \tag{2.2}
\end{equation*}
$$

If we consider $f_{\Delta}:[a, b]^{2} \rightarrow \mathbb{R}$,

$$
\begin{equation*}
f_{\Delta}(t, s)=f(t)-f(s) \tag{2.3}
\end{equation*}
$$

then, obviously

$$
\begin{equation*}
\|f\|_{p}^{\Delta}=\left\|f_{\Delta}\right\|_{p}, \quad p \in[1, \infty] \tag{2.4}
\end{equation*}
$$

where $\|\cdot\|_{p}$ are the usual Lebesque p-norms on $[a, b]^{2}$.
Using the properties of the Lebesque p-norms, we may deduce the following semi-norm properties for $\|\cdot\|_{p}^{\Delta}$:
(i) $\|f\|_{p}^{\Delta} \geq 0$ for $f \in L_{p}[a, b]$ and $\|f\|_{p}^{\Delta}=0$ implies that $f=c(c$ is a constant $)$ a.e. in $[a, b]$;
(ii) $\|f+g\|_{p}^{\Delta} \leq\|f\|_{p}^{\Delta}+\|g\|_{p}^{\Delta}$ if $f, g \in L_{p}[a, b]$;
(iii) $\|\alpha f\|_{p}^{\Delta}=|\alpha|\|f\|_{p}^{\Delta}$.

We note that if $p=2$, then,

$$
\begin{aligned}
\|f\|_{2}^{\Delta} & =\left(\int_{a}^{b} \int_{a}^{b}(f(t)-f(s))^{2} d t d s\right)^{\frac{1}{2}} \\
& =\sqrt{2}\left[(b-a)\|f\|_{2}^{2}-\left(\int_{a}^{b} f(t) d t\right)^{2}\right]^{\frac{1}{2}}
\end{aligned}
$$

Using the inequalities (1.2), (1.3) and (1.4), we obtain the following estimate for $\|\cdot\|_{2}^{\Delta}$:

$$
\|f\|_{2}^{\Delta} \leq\left\{\begin{array}{lll}
\frac{\sqrt{2}}{2}(M-m) & \text { if } & m \leq f \leq M \\
\frac{\sqrt{2}}{2 \sqrt{3}}\left\|f^{\prime}\right\|_{\infty}(b-a) & \text { if } \quad f^{\prime} \in L_{\infty}[a, b] \\
\frac{\sqrt{2}}{\pi}\left\|f^{\prime}\right\|_{2}(b-a) & \text { if } & f^{\prime} \in L_{2}[a, b]
\end{array}\right.
$$

If $f:[a, b] \rightarrow \mathbb{R}$ is absolutely continuous on $[a, b]$, then we can point out the following bounds for $\|f\|_{p}^{\Delta}$ in terms of $\left\|f^{\prime}\right\|_{p}$.
Theorem 1. Assume that $f:[a, b] \rightarrow \mathbb{R}$ is absolutely continuous on $[a, b]$.
(i) If $p \in[1, \infty)$, then we have the inequality

$$
\|f\|_{p}^{\Delta} \leq \begin{cases}\frac{2^{\frac{1}{p}}(b-a)^{1+\frac{2}{p}}}{[(p+1)(p+2)]^{\frac{1}{p}}}\left\|f^{\prime}\right\|_{\infty} & \text { if } \quad f^{\prime} \in L_{\infty}[a, b] \tag{2.5}\\ \frac{\left(2 \beta^{2}\right)^{\frac{1}{p}}(b-a)^{\frac{1}{\beta}+\frac{2}{p}}}{[(p+\beta)(p+2 \beta)]^{\frac{1}{p}}}\left\|f^{\prime}\right\|_{\alpha} & \text { if } \quad f^{\prime} \in L_{\alpha}[a, b] \\ & \alpha>1, \frac{1}{\alpha}+\frac{1}{\beta}=1 ; \\ (b-a)^{\frac{2}{p}}\left\|f^{\prime}\right\|_{1} & \text { if } \quad f^{\prime} \in L_{1}[a, b]\end{cases}
$$

(ii) If $p=\infty$, then we have the inequality

$$
\|f\|_{\infty}^{\Delta} \leq\left\{\begin{array}{l}
(b-a)\left\|f^{\prime}\right\|_{\infty} \quad \text { if } \quad f^{\prime} \in L_{\infty}[a, b] ; \tag{2.6}\\
(b-a)^{\frac{1}{\beta}}\left\|f^{\prime}\right\|_{\alpha} \quad \text { if } \quad f^{\prime} \in L_{\alpha}[a, b], \alpha>1, \frac{1}{\alpha}+\frac{1}{\beta}=1 \\
\left\|f^{\prime}\right\|_{1} .
\end{array}\right.
$$

Proof. As $f:[a, b] \rightarrow \mathbb{R}$ is absolutely continuous, then $f(t)-f(s)=\int_{s}^{t} f^{\prime}(u) d u$ for all $t, s \in[a, b]$, and then

$$
=\left|\int_{s}^{t} f^{\prime}(u) d u\right| \leq \begin{cases}|t-s|\left\|f^{\prime}\right\|_{\infty} & \text { if } \quad f^{\prime} \in L_{\infty}[a, b] \tag{2.7}\\ |t-s|^{\frac{1}{\beta}}\left\|f^{\prime}\right\|_{\alpha} & \text { if } \quad f^{\prime} \in L_{\alpha}[a, b], \alpha>1, \frac{1}{\alpha}+\frac{1}{\beta}=1 \\ \left\|f^{\prime}\right\|_{1} & \text { if } \quad f^{\prime} \in L_{1}[a, b]\end{cases}
$$

and so for $p \in[1, \infty)$, we may write

$$
\begin{aligned}
& |f(t)-f(s)|^{p} \\
\leq & \begin{cases}|t-s|^{p}\left\|f^{\prime}\right\|_{\infty}^{p} & \text { if } \quad f^{\prime} \in L_{\infty}[a, b] \\
|t-s|^{\frac{p}{\beta}}\left\|f^{\prime}\right\|_{\alpha}^{p} & \text { if } \quad f^{\prime} \in L_{\alpha}[a, b], \alpha>1, \frac{1}{\alpha}+\frac{1}{\beta}=1 \\
\left\|f^{\prime}\right\|_{1}^{p} & \text { if } \quad f^{\prime} \in L_{1}[a, b]\end{cases}
\end{aligned}
$$

and then from (2.3), (2.4)

$$
\|f\|_{p}^{\Delta} \leq\left\{\begin{array}{lll}
\left\|f^{\prime}\right\|_{\infty}\left(\int_{a}^{b} \int_{a}^{b}|t-s|^{p} d t d s\right)^{\frac{1}{p}} & \text { if } \quad f^{\prime} \in L_{\infty}[a, b] \tag{2.8}\\
\left\|f^{\prime}\right\|_{\alpha}\left(\int_{a}^{b} \int_{a}^{b}|t-s|^{\frac{p}{\beta}} d t d s\right)^{\frac{1}{p}} & \text { if } \quad f^{\prime} \in L_{\alpha}[a, b] \\
& & \alpha>1, \frac{1}{\alpha}+\frac{1}{\beta}=1 \\
& \text { if } \quad f^{\prime} \in L_{1}[a, b]
\end{array}\right.
$$

Further, since

$$
\begin{align*}
& \left(\int_{a}^{b} \int_{a}^{b}|t-s|^{p} d t d s\right)^{\frac{1}{p}} \tag{2.9}\\
= & {\left[\int_{a}^{b}\left(\int_{a}^{t}(t-s)^{p} d s+\int_{t}^{b}(s-t)^{p} d s\right) d t\right]^{\frac{1}{p}} } \\
= & \left(\int_{a}^{b}\left[\frac{(t-a)^{p+1}+(b-t)^{p+1}}{p+1}\right] d t\right)^{\frac{1}{p}} \\
= & \frac{2^{\frac{1}{p}}(b-a)^{1+\frac{2}{p}}}{[(p+1)(p+2)]^{\frac{1}{p}}},
\end{align*}
$$

giving

$$
\left(\int_{a}^{b} \int_{a}^{b}|t-s|^{\frac{p}{\beta}} d t d s\right)^{\frac{1}{p}}=\frac{\left(2 \beta^{2}\right)^{\frac{1}{p}}(b-a)^{\frac{1}{\beta}+\frac{2}{p}}}{[(p+\beta)(p+2 \beta)]^{\frac{1}{p}}}
$$

and

$$
\left(\int_{a}^{b} \int_{a}^{b} d t d s\right)^{\frac{1}{p}}=(b-a)^{\frac{2}{p}}
$$

we obtain, from (2.8), the stated result (2.5).
Using (2.7) we have (for $p=\infty$) that

$$
\|f\|_{\infty}^{\Delta} \leq\left\{\begin{array}{l}
\left\|f^{\prime}\right\|_{\infty} e s s \sup _{(t, s) \in[a, b]^{2}}|t-s| \tag{2.10}\\
\left\|f^{\prime}\right\|_{\alpha} e s s \sup _{(t, s) \in[a, b]}|t-s|^{\frac{1}{\beta}} \\
\left\|f^{\prime}\right\|_{1}
\end{array}=\left\{\begin{array}{l}
(b-a)\left\|f^{\prime}\right\|_{\infty} \\
(b-a)^{\frac{1}{\beta}}\left\|f^{\prime}\right\|_{\alpha} \\
\left\|f^{\prime}\right\|_{1}
\end{array}\right.\right.
$$

and the inequality (2.6) is also proved.

3. Some Bounds in Terms of Δ-Seminorms

The following result of Grüss type holds.
Theorem 2. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be measurable on $[a, b]$. Then we have the inequality:

$$
\begin{equation*}
|T(f, g ; a, b)| \leq \frac{1}{2(b-a)^{2}}\|f\|_{p}^{\Delta}\|g\|_{q}^{\Delta} \tag{3.1}
\end{equation*}
$$

where $p=1, q=\infty$, or $p>1, \frac{1}{p}+\frac{1}{q}=1$ or $q=1$ and $p=\infty$, provided all integrals involved exist. Further, $T(f, g ; a, b)$ is the Chebychev functional defined by (1.1).

Proof. Using Korkine's identity, we have

$$
T(f, g ; a, b)=\frac{1}{2(b-a)^{2}} \int_{a}^{b} \int_{a}^{b}(f(x)-f(y))(g(x)-g(y)) d x d y
$$

Now, if $f \in L_{\infty}[a, b]$, then

$$
\begin{aligned}
& |T(f, g ; a, b)| \\
\leq & \frac{1}{2(b-a)^{2}} \int_{a}^{b} \int_{a}^{b}|f(x)-f(y)||g(x)-g(y)| d x d y \\
\leq & \frac{1}{2(b-a)^{2}} \text { ess } \sup _{(x, y) \in[a, b]^{2}}(f(x)-f(y)) \int_{a}^{b} \int_{a}^{b}|g(x)-g(y)| d x d y \\
= & \frac{1}{2(b-a)^{2}}\|f\|_{\infty}^{\Delta}\|g\|_{1}^{\Delta}
\end{aligned}
$$

and the inequality is proved for $p=\infty, q=1$.
A similar argument applies for $p=1, q=\infty$.
If $p>1, \frac{1}{p}+\frac{1}{q}=1$, then applying Hölder's integral inequality for double integrals, we deduce that

$$
\begin{aligned}
& |T(f, g ; a, b)| \\
\leq & \frac{1}{2(b-a)^{2}} \int_{a}^{b} \int_{a}^{b}|f(x)-f(y)||g(x)-g(y)| d x d y \\
\leq & \frac{1}{2(b-a)^{2}}\left(\int_{a}^{b} \int_{a}^{b}|f(x)-f(y)|^{p} d x d y\right)^{\frac{1}{p}}\left(\int_{a}^{b} \int_{a}^{b}|g(x)-g(y)|^{q} d x d y\right)^{\frac{1}{q}} \\
\leq & \frac{1}{2(b-a)^{2}}\|f\|_{p}^{\Delta}\|g\|_{q}^{\Delta}
\end{aligned}
$$

and the theorem is proved.
Remark 1. Taking into account by Theorem 2 that for $p=1$, we have three bounds for $\|f\|_{1}^{\Delta}$ and for $p \in(1, \infty)$ we have another three bounds for $\|f\|_{p}^{\Delta}$ and for $p=\infty$, we can state some other three bounds by $\|f\|_{\infty}^{\Delta}$, then, by the inequality (3.1), we are able to point out eighty-one bounds for the modulus of the functional $T(f, g ; a, b)$, in terms of the derivatives f^{\prime} and g^{\prime}.

In some practical applications, the Δ-seminorm of a mapping, say f, can be easily computed. In that case, the number of bounds is much less.

The following result for the trapezoid formula holds.
Theorem 3. Assume that the mapping $f:[a, b] \rightarrow \mathbb{R}$ is absolutely continuous on $[a, b]$. Then we have the inequality

$$
\begin{align*}
& \text {.2) }\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \tag{3.2}\\
& \leq B:=\left\{\begin{array}{l}
\frac{2^{\frac{1}{p}-1}(b-a)^{\frac{2}{p}-1}}{[(p+1)(p+2)]^{\frac{1}{p}}}\left\|f^{\prime}\right\|_{q}^{\Delta} \quad \text { if } p \in[1, \infty) \text { and } f^{\prime} \in L_{q}[a, b] ; \frac{1}{p}+\frac{1}{q}=1 \\
(\text { for } p=1 \text { we choose } q=\infty) ; \\
\frac{1}{2(b-a)}\left\|f^{\prime}\right\|_{1}^{\Delta} .
\end{array}\right.
\end{align*}
$$

Proof. We know the following identity (see [12]) holds, where many other related results are given,

$$
\begin{equation*}
\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(t) d t=\frac{1}{b-a} \int_{a}^{b}\left(t-\frac{a+b}{2}\right) f^{\prime}(t) d t \tag{3.3}
\end{equation*}
$$

which can be easily proved by applying the integration by parts formula.
We observe that

$$
T\left(\cdot-\frac{a+b}{2}, f^{\prime}, a, b\right)=\frac{1}{b-a} \int_{a}^{b}\left(t-\frac{a+b}{2}\right) f^{\prime}(t) d t
$$

If we define $h(t):=t-\frac{a+b}{2}$, and

$$
\begin{equation*}
D_{p}(a, b):=\int_{a}^{b} \int_{a}^{b}|x-y|^{p} d x d y=2 \frac{(b-a)^{p+2}}{(p+1)(p+2)} \tag{3.4}
\end{equation*}
$$

then we observe that for $p \geq 1$, from (2.9) and (2.10),

$$
\|h\|_{p}^{\Delta}=D_{p}^{\frac{1}{p}}(a, b)=\frac{2^{\frac{1}{p}}(b-a)^{1+\frac{2}{p}}}{[(p+1)(p+2)]^{\frac{1}{p}}}
$$

and

$$
\|h\|_{\infty}^{\Delta}=e s s \sup _{(x, y) \in[a, b]^{2}}|x-y|=b-a
$$

for which, using (3.1), we conclude the desired inequality (3.2).
Corollary 1. With the assumptions of Theorem 3 and if $f^{\prime} \in L_{2}[a, b]$, then we have the inequality

$$
\begin{align*}
& \left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \tag{3.5}\\
\leq & \frac{1}{2 \sqrt{3}}\left[(b-a)\left\|f^{\prime}\right\|_{2}^{2}-[f(b)-f(a)]^{2}\right]^{\frac{1}{2}}
\end{align*}
$$

The proof follows by (3.2) for $p=q=2$.
For a different proof, see [14].
Remark 2. If we take

$$
H(t)=t-z, \quad z \in[a, b]
$$

then we would obtain

$$
\begin{aligned}
\left\lvert\, \frac{1}{b-a} \int_{a}^{b} f(t) d t\right. & -\left(\frac{z-a}{b-a} f(a)+\frac{b-z}{b-a} f(b)\right) \\
+ & \left.\left(\frac{a+b}{2}-z\right)\left(\frac{f(b)-f(a)}{b-a}\right) \right\rvert\, \leq B
\end{aligned}
$$

where the bound B is as defined in (3.2) and is independent of z. If $z=\frac{a+b}{2}$, then the perturbation resulting from the application of the Grüss identity vanishes and the results of Theorem 3 are recaptured.

The following result for the midpoint formula holds.

Theorem 4. Assume that the mapping $f:[a, b] \rightarrow \mathbb{R}$ is absolutely continuous on $[a, b]$. Then we have the inequality:

$$
\begin{align*}
& \text { 3.6) }\left|f\left(\frac{a+b}{2}\right)-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \tag{3.6}\\
& \leq B:= \begin{cases}\frac{2^{\frac{1}{p}-1}(b-a)^{\frac{2}{p}-1}}{[(p+1)(p+2)]^{\frac{1}{p}}}\left\|f^{\prime}\right\|_{q}^{\Delta} & \text { if } p \in[1, \infty) \text { and } f^{\prime} \in L_{q}[a, b] ; \\
\frac{1}{p}+\frac{1}{q}=1,(\text { for } p=1 \text { we choose } q=\infty) ;\end{cases} \\
& \frac{1}{2(b-a)}\left\|f^{\prime}\right\|_{1}^{\Delta} .
\end{align*}
$$

Proof. A simple integration by parts demonstrates that the following identity holds:

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right)-\frac{1}{b-a} \int_{a}^{b} f(t) d t=\frac{1}{b-a} \int_{a}^{b} k(t) f^{\prime}(t) d t \tag{3.7}
\end{equation*}
$$

where

$$
k(t)=\left\{\begin{array}{lll}
t-a & \text { if } & t \in\left[a, \frac{a+b}{2}\right] \\
t-b & \text { if } & t \in\left(\frac{a+b}{2}, b\right]
\end{array}\right.
$$

which can easily be proved using the integration by parts formula.
We observe that

$$
T\left(k, f^{\prime} ; a, b\right)=\frac{1}{b-a} \int_{a}^{b} k(t) f^{\prime}(t) d t
$$

as a simple computation shows that

$$
\frac{1}{b-a} \int_{a}^{b} k(t) d t=0
$$

We observe that

$$
\|k\|_{\infty}^{\Delta}=e s s \sup _{(x, y) \in[a, b]^{2}}|k(x)-k(y)|=b-a
$$

Also, we have:

$$
\begin{aligned}
&\|k\|_{p}^{\Delta}=\left(\int_{a}^{b} \int_{a}^{b}|k(x)-k(y)|^{p} d x d y\right)^{\frac{1}{p}} \\
&=\left[\int_{a}^{b}\left(\int_{a}^{\frac{a+b}{2}}|k(x)-y+a|^{p} d y+\int_{\frac{a+b}{2}}^{b}|k(x)-y+b|^{p} d y\right) d x\right]^{\frac{1}{p}} \\
&= {\left[\int_{a}^{\frac{a+b}{2}}\left(\int_{a}^{\frac{a+b}{2}}|x-y|^{p} d y\right) d x+\int_{\frac{a+b}{2}}^{b}\left(\int_{a}^{\frac{a+b}{2}}|x-b-y+a|^{p} d y\right) d x\right.} \\
&\left.\quad+\int_{a}^{\frac{a+b}{2}}\left(\int_{\frac{a+b}{2}}^{b}|x-a-y+b|^{p} d y\right) d x+\int_{\frac{a+b}{2}}^{b}\left(\int_{\frac{a+b}{2}}^{b}|x-y|^{p} d y\right) d x\right]^{\frac{1}{p}} \\
&: \quad=I_{1}+I_{2}+I_{3}+I_{4} .
\end{aligned}
$$

We have

$$
I_{1}=\int_{a}^{\frac{a+b}{2}}\left(\int_{a}^{\frac{a+b}{2}}|x-y|^{p} d y\right) d x=D_{p}\left(a, \frac{a+b}{2}\right)
$$

and so, from (3.4),

$$
I_{1}=\frac{2\left(\frac{b-a}{2}\right)^{p+2}}{(p+1)(p+2)}=\frac{(b-a)^{p+2}}{2^{p+1}(p+1)(p+2)}:=\frac{D_{p}(a, b)}{2^{p+1}}
$$

Further,

$$
\begin{aligned}
I_{2} & =\int_{\frac{a+b}{2}}^{b}\left(\int_{a}^{\frac{a+b}{2}}|x-(y+b-a)|^{p} d y\right) d x \\
& =\int_{\frac{a+b}{2}}^{b}\left(\int_{b}^{b+\frac{b-a}{2}}|x-u|^{p} d u\right) d x=\int_{\frac{a+b}{2}}^{b}\left(\int_{b}^{b+\frac{b-a}{2}}(u-x)^{p} d u\right) d x \\
& =\int_{\frac{a+b}{2}}^{b}\left(\left.\frac{(u-x)^{p+1}}{p+1}\right|_{b} ^{b+\frac{b-a}{2}}\right) d x \\
& =\int_{\frac{a+b}{2}}^{b}\left[\frac{\left(b+\frac{b-a}{2}-x\right)^{p+1}-(b-x)^{p+1}}{p+1}\right] d x \\
& =\frac{(b-a)^{p+2}}{(p+1)(p+2)}-\frac{(b-a)^{p+2}}{2^{p+1}(p+1)(p+2)}=\left(1-\frac{1}{2^{p+1}}\right) D_{p}(a, b)
\end{aligned}
$$

Now,

$$
I_{3}=\int_{a}^{\frac{a+b}{2}}\left(\int_{\frac{a+b}{2}}^{b}|x-(y+a-b)|^{p} d y\right) d x
$$

and following a similar argument to the calculation of I_{2} gives

$$
I_{3}=\left(1-\frac{1}{2^{p+1}}\right) D_{p}(a, b)
$$

An alternate approach is that a substitution of $Y=y-\frac{b-a}{2}$ and $X=x+\frac{b-a}{2}$ in I_{3} shows that $I_{3}=I_{2}$.

Now, from (3.4),

$$
\begin{aligned}
I_{4} & =\int_{\frac{a+b}{2}}^{b}\left(\int_{\frac{a+b}{2}}^{b}|x-y|^{p} d y\right) d x=D_{p}\left(\frac{a+b}{2}, b\right) \\
& =D_{p}\left(a, \frac{a+b}{2}\right)=\frac{D_{p}(a, b)}{2^{p+1}} .
\end{aligned}
$$

Consequently,

$$
I=I_{1}+I_{2}+I_{3}+I_{4}=2 D_{p}(a, b)=\frac{2(b-a)^{p+2}}{(p+1)(p+2)}
$$

and so

$$
\|k\|_{p}^{\Delta}=\frac{2^{\frac{1}{p}}(b-a)^{1+\frac{2}{p}}}{[(p+1)(p+2)]^{\frac{1}{p}}}
$$

Using Theorem 2, we obtain the desired inequality (2.6).
Corollary 2. With the assumptions of Theorem 4 and if $f^{\prime} \in L_{2}[a, b]$, we have the inequality:

$$
\begin{align*}
& \left|f\left(\frac{a+b}{2}\right)-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \tag{3.8}\\
\leq & \frac{1}{2 \sqrt{3}}\left[(b-a)\left\|f^{\prime}\right\|_{2}^{2}-[f(b)-f(a)]^{2}\right]^{\frac{1}{2}}
\end{align*}
$$

The proof follows by Theorem 4 applied for $p=q=2$.
For a different proof of this inequality see [14].
Remark 3. If we take

$$
K(t)= \begin{cases}t-a, & t \in[a, z] \tag{3.9}\\ t-b, & t \in(z, b]\end{cases}
$$

then the following identity attributed to Montgomery (see [13, p. 565]) may be easily shown to hold

$$
\begin{equation*}
f(z)-\frac{1}{b-a} \int_{a}^{b} f(t) d t=\frac{1}{b-a} \int_{a}^{b} K(t) f^{\prime}(t) d t \tag{3.10}
\end{equation*}
$$

Now, from (1.1), (3.9) and (3.10)

$$
\begin{equation*}
-T\left(K, f^{\prime}, a, b\right)=\frac{1}{b-a} \int_{a}^{b} f(t) d t-f(z)+\left(z-\frac{a+b}{2}\right) \frac{(f(b)-f(a))}{b-a} \tag{3.11}
\end{equation*}
$$

since

$$
\frac{1}{b-a} \int_{a}^{b} K(t) d t=z-\frac{a+b}{2} \text { and } \frac{1}{b-a} \int_{a}^{b} f^{\prime}(t) d t=\frac{f(b)-f(a)}{b-a}
$$

We note that from (3.9)

$$
\|K\|_{\infty}^{\Delta}=e s s \sup _{(x, y) \in[a, b]^{2}}|K(x)-K(y)|=b-a
$$

and for $p \geq 1$

$$
\begin{align*}
& \|K\|_{p}^{\Delta} \tag{3.12}\\
= & \left(\int_{a}^{b} \int_{a}^{b}|K(x)-K(y)|^{p} d y d x\right)^{\frac{1}{p}} \\
= & \left\{\int_{a}^{z} \int_{a}^{z}|x-y|^{p} d y d x+\int_{z}^{b} \int_{a}^{z}|x-b-(y-a)|^{p} d y d x\right. \\
& \left.+\int_{a}^{z} \int_{z}^{b}|x-a-(y-b)|^{p} d y d x+\int_{z}^{b} \int_{z}^{b}|x-y|^{p} d y d x\right\}^{\frac{1}{p}} \\
:= & \left(J_{1}+J_{2}+J_{3}+J_{4}\right)^{\frac{1}{p}} .
\end{align*}
$$

Now, from (3.3)

$$
J_{1}=D_{p}(a, z)=\frac{2(z-a)^{p+2}}{(p+1)(p+2)}
$$

and

$$
J_{4}=D_{p}(z, b)=\frac{2(b-z)^{p+2}}{(p+1)(p+2)}
$$

Further,

$$
\begin{aligned}
J_{2} & =\int_{z}^{b} \int_{a}^{z}|x-b-(y-a)|^{p} d y d x=\int_{z}^{b} \int_{b}^{b+z-a}|x-u|^{p} d u d x \\
& =\int_{z}^{b} \int_{b}^{b+z-a}(u-x)^{p} d u d x=\frac{1}{p+1} \int_{z}^{b}(b+z-a-x)^{p+1}-(b-x)^{p+1} d x \\
& =\frac{1}{(p+1)(p+2)}\left[(b-a)^{p+2}-(z-a)^{p+2}-(b-z)^{p+2}\right] \\
& =D_{p}(a, b)-D_{p}(a, z)-D_{p}(z, b)
\end{aligned}
$$

Using symmetry arguments or direct calculation shows that $J_{3}=J_{2}$. Hence, from (3.12)

$$
\|K\|_{p}^{\Delta}=2 D_{p}(a, b)=\frac{2(b-a)^{p+2}}{(p+1)(p+2)}
$$

and so, from (3.11)

$$
\left|\frac{1}{b-a} \int_{a}^{b} f(t) d t-f(z)+\left(z-\frac{a+b}{2}\right)\left(\frac{f(b)-f(a)}{b-a}\right)\right| \leq B
$$

giving the same bounds as obtained previously for the trapezoidal and midpoint rules. If $z=\frac{a+b}{2}$, then the midpoint rule is recaptured.

References

[1] J. PEČARIĆ, F. PROCHAN and Y. TONG, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, San Diego, 1992.
[2] D.S. MITRINOVIĆ, J.E. PEČARIĆ and A.M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
[3] S.S. DRAGOMIR, Grüss inequality in inner product spaces, The Australian Math Soc. Gazette, 26 (1999), No. 2, 66-70.
[4] S.S. DRAGOMIR, A generalization of Grüss' inequality in inner product spaces and applications, J. Math. Anal. Appl., 237 (1999), 74-82.
[5] S.S. DRAGOMIR and I. FEDOTOV, An inequality of Grüss' type for Riemann-Stieltjes integral and applications for special means, Tamkang J. of Math., 29(4)(1998), 286-292.
[6] S.S. DRAGOMIR, A Grüss type integral inequality for mappings of r-Hölder's type and applications for trapezoid formula, Tamkang J. of Math., (in press).
[7] S.S. DRAGOMIR, Some integral inequalities of Grüss type, Indian J. of Pure and Appl. Math., (accepted).
[8] S.S. DRAGOMIR and G.L. BOOTH, On a Grüss-Lupaş type inequality and its applications for the estimation of p-moments of guessing mappings, Mathematical Communications, (accepted).
[9] G. Grüss, Über das Maximum des absoluten Betrages von $\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-$ $\frac{1}{(b-a)^{2}} \int_{a}^{b} f(x) d x \int_{a}^{b} g(x) d x$, Math. Z., 39(1935), 215-226.
[10] A.M. FINK, A treatise on Grüss' inequality, submitted.
[11] S.S. DRAGOMIR, Better bounds in some Ostrowski-Grüss type inequalities, RGMIA Res. Rep. Coll., 3 (1), (2000), Article 3.
[12] P. CERONE, S.S. DRAGOMIR, J. ROUMELIOTIS and J. ŠUNDE, A new generalisation of the trapezoid formula for n-time differentiable mappings and applications, Demonstratio Mathematica, (in press).
[13] D.S. MITRINOVIĆ, J. PEČARIĆ and A.M. FINK, Inequalities for Functions and their Integrals and Derivatives, Kluwer Academic Publishers, 1994.
[14] S.S. DRAGOMIR, J. ŠUNDE and C. BUŞE, Some new inequalities for Jeffreys divergence measure in information theory, RGMIA Res. Rep. Coll., 3 (2) (2000), Article 5.

School of Communications and Informatics, Victoria University of Technology, PO Box 14428, Melbourne City MC, Victoria, 8001, Australia.

E-mail address: pc@matilda.vu.edu.au
URL: http://sci.vu.edu.au/~pc.html
E-mail address: sever.dragomir@vu.edu.au
$U R L$: http://rgmia.vu.edu.au/SSDragomirWeb.html
E-mail address: john.roumeliotis@vu.edu.au

[^0]: Date: June 16, 2000.
 1991 Mathematics Subject Classification. Primary 26D15, 26D20, 26D99; Secondary 41A55.
 Key words and phrases. Grüss, Chebychev and Lupaş inequalities, Numerical Analysis.

