ON SOME INTEGRAL INEQUALITIES INVOLVING CONVEX
FUNCTIONS

B. G. PACHPATTE

ABSTRACT. In this paper we establish some new integral inequalities involving
convex functions by using a fairly elementary analysis.

1. INTRODUCTION

Let f,g : [a,b] — R be convex mappings. For two elements z, y in [a, b], we shall
define the mappings F (z,y), G (x,y) : [0,1] — R as follows

(11) F(a,9)(t) = 5 [f (ta+ (1= t)y) + (1~ )+ )],

gtz + (1 —=t)y)+g((1-t)z+ty)].

N | =

(1.2) G (z,y)(t) =

Recently in [2] Dragomir and Ionescu established some interesting properties of
such mappings. In particular, in [2], it is shown that F (z,y), G (z,y) are convex
on [0,1]. In another paper [6], Pecari¢ and Dragomir proved that the following
statements are equivalent for mappings f, g : [a,b] — R:

(i) f,g are convex on |a, bl;
(ii) for all z,y € [a,b] the mappings fo, go : [0,1] — R defined by fo (t) =

f(tw+(1—t)i[/)OEf((l—t)w+ty),go(t)=g(t$+(1—t)y)0r9((1 t)x +ty)
are convex on |0, 1].

From these properties, it is easy to observe that if fo and gg are convex on [0, 1],
they are integrable on [0, 1] and hence fygo is also integrable on [0, 1]. Similarly, if f
and g are convex on [a, b], they are integrable on [a, b] and hence fg is also integrable
on [a,b]. Consequently, it is easy to see that if f and g are convex on [a, b], then
F = F(z,y) and G = G (z,y) and hence Fg Gf, Ff, Gg are also integrable on
[a,b]. We shall use these facts in our discussion without further mention.

The object of this paper is to establish some new integral inequalities involving
the functions F' and G as defined in (1.1) and (1.2). The analysis used in the proof is
elementary and we believe that the inequalities established here are of independent
interest. For other results related to such inequalities, see [1] - [6] where further
references are given.
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2. STATEMENT OF RESULTS

Our main result is given in the following theorem.

Theorem 1. Let f and g be real-valued, nonnegative and conver functions on [a, b]
and the mappings F (x,y) and G (x,y) be defined by (1.1) and (1.2). Then for all
t in [0,1] we have
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Our next result deals with the slight variants of the inequalities given in Theorem
1.
Theorem 2. Let f and g be real-valued, nonnegative and conver functions on [a, b]
and the mappings F (x,y) and G (x,y) be defined by (1.1) and (1.2). Then for all
t in [0,1] we have
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(2. bl /[fQ() * ()] dy
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3. PROOF OF THEOREM 1

Proof. The assumptions that f and g are nonnegative and convex imply that we
may assume that f, g € C! and that we have the following estimates

(3.1) flz+(1-t)y) = f@)+A-t)(y—2)f (2),

(3.2) flA=ta+ty) = f@)+tly—=)f (2),

(3.3) gltx+(1-t)y) = g@)+1-t)(y—2)g (),

(3.4) g(I-t)z+ty) > g@)+t(y—=)g (),

for x,y € [a,b] and t € [0,1]. From (3.1), (3.2) (1.1) and (3.3), (3.4), (1.2) it is easy
to see that

(35) Floy) ()2 @)+ 5 -2 F (@),

(36) G (e.) (1) 2 9 () + 5 (v~ 2) g (@),

for z,y € [a,b] and t € [0,1]. Multiplying (3.5) by ¢ (x) and (3.6) by f (z) and then
adding, we obtain

(3.7) F(z,y) () g (x) + G (z,y) (t) f (z)
d
> 27 (1) g () + 5 (v~ ) e (F (2) 9 (&)

Integrating the inequality (3.7) over z from a to y we have

y
(3.8) / [F (2,y) (t) g (x) + G (z,y) (t) f (x)] dx

> 5 [ r@e@dn- -0 i@,
Further, integrating both sides of (3.8) with respect to y from a to b we get
(39) [ [ w096+ 60 0@l

> 2 [ 0nswa )dy—iw—a)?f(a)g(a).

Multiplying both sides of (3.9) by 2 50 1a)2 and rewriting we get the required

inequality in (2.1).

Similarly, by first integrating (3.7) over x from y to b and then integrating the
resulting inequality over y from a to b, we get the required inequality in (2.2). The
inequality (2.3) is obtained by adding the inequalities (2.1) and (2.2). The proof is
complete. I
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4. PROOF OF THEOREM 2

Proof. As in the proof of Theorem 1, from the assumptions we have the estimates
(3.5) and (3.6). Multiplying (3.5) by f (z) and (3.6) by g (z) and then adding, we
obtain

(4.1) F(z,y) @) f(2) + G (z,9) () g ()
> f2(x)+ g% (2) + % —2)[f (@) f' (@) +g(2)g (2)].

Integrating (4.1) over x from a to y, we have

(42) / "IF (@) () F (@) + G (2) () g (2)] de

> ° / 72 @) + 9 (@) de — (v~ a) [ (a) + 6 (@)].

Further, integrating both sides of (4.2) with respect to y from a to b we have

b Y
(43) [ ([ renor@+cen @) a
5 b 2 2 1 2 2 2
> 100 [P+ W)= -0 [ @)+ W)
Multiplying both sides of (4.3) by % . (b_%)Q and rewriting, we get the required

inequality in (2.4).
The remainder of the proof follows by the same arguments as mentioned in the
proof of Theorem 1 with suitable modifications and hence the proof is complete. I

5. FURTHER INEQUALITIES

In this section we shall give some inequalities that are analogous to those given
in Theorem 1 involving only one convex function. We believe that these inequalities
are interesting in their own right.

Theorem 3. Let f be a real-valued nonnegative convex function on [a,b]. Then

) e
< i.<b_1a>2/ab[/ay(/Olf(tx—l—(l—t)y)dt)dx]dy—l—éf(a),
(5:2) (bl) / ") F ) dy

dy+ 5 (0),

g(b_la)?/ab Vyb(/olf(mﬂl—t)y)dt)dx
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1 b
(53) o= |t
B z.(b_laf/abVab(/olf(tﬁu—t)y)dt)dx]dy

+Elf @)+ £ 0).

Proof. To prove the inequality (5.1), as in the proof of Theorem 1 from the assump-
tions we have the estimate (3.1). Integrating both sides of (3.1) over ¢ from 0 to 1
we have

(54) | e a-nniez 1@+ 5001 @.

Now first integrating both sides of (5.4) over z from a to y and after that integrating
the resulting inequality over y from a to b we get the required inequality in (5.1).

Similarly, by first integrating both sides of (5.4) over x fromy to b and then
integrating the resulting inequality over y from a to b we get the inequality in (5.2).
By adding the inequalities (5.1) and (5.2) we get the inequality (5.3). The proof of
Theorem 3 is thus completed. |
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