
NOTE ON MATHIEU’S INEQUALITY

BAI-NI GUO

Abstract. In this note, using the integral expression of Mathieu’s series and inequalities for

Fourier sine transformation, we establish some new inequalities for Mathieu’s series.

1. Introduction

The Mathieu’s series is first defined in [7] as

S(r) =
∞
∑

n=1

2n
(n2 + r2)2

, r > 0. (1)

In 1890, Mathieu [7] conjectured that S(r) < 1/r2. In [6], Makai proved

1
r2 + 1/2

< S(r) <
1
r2 . (2)

The integral expression of Mathieu’s series (1) was given in [3, 4] by

S(r) =
1
r

∫ ∞

0

x sin(rx)
ex−1

dx. (3)

Recently, H. Alzer, J. L. Brenner and O. G. Ruehr in [1] obtained

1
x2 + 1/(2ζ(3))

< S(x) <
1

x2 + 1/6
, (4)

where ζ denots the zeta function.
The study of Mathieu’s series and its inequalities has a rich literature, many interesting refine-

ments and extensions of Mathieu’s inequality can be found in [1]–[9].
In this paper, using the integral expression (3) of Mathieu’s series and inequalities for Fourier

sine transformation, we will establish some new inequalities for Mathieu’s series.

2. Main Results

We first calculate the integral of Mathieu’s series on (0, +∞).

Proposition 1. The integral of the Mathieu’s series on the infinity interval (0,+∞)
∫ ∞

0
S(r) dr =

π3

12
. (5)
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Proof. It is well-known [11, p. 269 and p. 332] that, for any µ > 0, we have
∫ ∞

0

x
ex−1

dx =
π2

6
,

∫ ∞

0

sin x
x

dx =
∫ ∞

0

sin(µx)
x

dx =
π
2

. (6)

Therefore, from formula (3), the integral of Mathieu’s series S(r) on the interval (0, +∞) equals
∫ ∞

0
S(r) dr =

∫ ∞

0

x
ex−1

(∫ ∞

0

sin(rx)
r

dr
)

dx

=
π
2

∫ ∞

0

x
ex−1

dx

=
π3

12
.

The proof of Proposition 1 is complete.

Corollary 1. The value ζ(3) of the zeta function ζ at point 3 satisfies

ζ(3) <
π4

72
. (7)

Proof. Integrating the left hand side of inequalities (4) on the interval (0, +∞) yields

π
2

√

2ζ(3) =
∫ ∞

0

dx
x2 + 1/(2ζ(3))

<
∫ ∞

0
S(x) dx =

π3

12
.

This completes the proof of Corollary 1.

In order to obtain our main result, the following lemma is necessary.

Lemma 1 ([2, pp. 89–90]). If f ∈ L([0,∞)) with lim
t→∞

f(t) = 0, then

∞
∑

k=1

(−1)kf(kπ) <
∫ ∞

0
f(t) cos tdt <

∞
∑

k=0

(−1)kf(kπ), (8)

∞
∑

k=0

(−1)kf
((

k +
1
2

)

π
)

<
∫ ∞

0
f(t) sin tdt < f(0) +

∞
∑

k=0

(−1)kf
((

k +
1
2

)

π
)

. (9)

Our main result is as follows.

Theorem 1. If r > 0, then

π
r3

∞
∑

k=0

(−1)k
(

k + 1
2

)

exp
((

k + 1
2

)

π/r
)

− 1
<

∞
∑

n=1

2n
(n2 + r2)2

<
1
r2

(

1 +
π
r

∞
∑

k=0

(−1)k
(

k + 1
2

)

exp
((

k + 1
2

)

π/r
)

− 1

)

. (10)

Proof. Since

S(r) =
1
r

∫ ∞

0

x sin(rx)
ex−1

dx

=
1
r3

∫ ∞

0

t sin t
et/r −1

dt,
(11)

and, for fixed r > 0, let f(t) = t
et/r −1 , then f ∈ L([0,∞)),

lim
t→∞

f(t) = lim
t→∞

t
et/r −1

= 0, (12)
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therefore, using inequalities in (9), we have

1
r2

∞
∑

k=0

(−1)k
(

k + 1
2

)

π/r
exp

((

k + 1
2

)

π/r
)

− 1
< S(r) <

1
r2

(

1 +
∞
∑

k=0

(−1)k
(

k + 1
2

)

π/r
exp

((

k + 1
2

)

π/r
)

− 1

)

.

The proof is complete.

Open Problem. Let

S(r, t) =
∞
∑

n=1

2n
(n2 + r2)t+1 , (13)

where t > 0 and r > 0.
Can one get an integral expression of S(r, t) similar to (3)?
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