A STRENTHENED CARLEMAN'S INEQUALITY

BAO-QUAN YUAN

Abstract

In this paper, we obtain a strenthened Carleman's inequality by decreasing its weight coefficient, and give its order relation in a series of refined Carleman's inequalities.

1. INTRODUCTION

Let $\left\{a_{i}\right\}_{n=1}^{+\infty}$ is a nonnegative sequence such that $0 \leq \sum_{n=1}^{+\infty} a_{n}<+\infty$, we know that the following inequality

$$
\begin{equation*}
\sum_{n=1}^{+\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq e \sum_{n=1}^{+\infty} a_{n} \tag{1.1}
\end{equation*}
$$

is called Carleman's inequality. The equality in (1.1) holds if and only if $a_{n}=0$, $n=1,2, \cdots$, the coefficient e is the optima, for details please refer to [1,2].

For our convenience, we write $\alpha_{1}=\frac{1}{\ln 2}-1, \beta_{1}=1-\frac{2}{e}$, in following.
Recently, in reference [3], we have obtained a series of refined Carleman's inequalities. It is

$$
\begin{align*}
& \sum_{n=1}^{+\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq e \sum_{n=1}^{+\infty}\left(1-\frac{\beta_{1}}{n}\right) a_{n} \tag{1.2}\\
& \sum_{n=1}^{+\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq e \sum_{n=1}^{+\infty} \frac{a_{n}}{\left(1+\frac{1}{n}\right)^{\alpha_{1}}} \tag{1.3}\\
& \sum_{n=1}^{+\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq e \sum_{n=1}^{+\infty} \frac{\left(1-\frac{\beta}{n}\right)}{\left(1+\frac{1}{n}\right)^{\alpha}} a_{n} \tag{1.4}
\end{align*}
$$

where α, β satisfy $0 \leq \alpha \leq \alpha_{1}, 0 \leq \beta \leq \beta_{1}$, and $e \beta+2^{1+\alpha}=e$. and, in reference [4], we have obtained their order relations. It is
$\sum_{n=1}^{+\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq e \sum_{n=1}^{+\infty} \frac{a_{n}}{\left(1+\frac{1}{n}\right)^{\alpha_{1}}} \leq e \sum_{n=1}^{+\infty} \frac{\left(1-\frac{\beta}{n}\right)}{\left(1+\frac{1}{n}\right)^{\alpha}} a_{n} \leq e \sum_{n=1}^{+\infty}\left(1-\frac{\beta_{1}}{n}\right) a_{n} \leq e \sum_{n=1}^{+\infty} a_{n}$
where α, β satisfy $0 \leq \alpha \leq \alpha_{1}, 0 \leq \beta \leq \beta_{1}$, and $e \beta+2^{1+\alpha}=e$.
In this article, we'll further strengthen the inequality (1.5), and obtain their order relations.

[^0]
2. The Strengthened carleman's inequality

In order to give the strengthened Carleman's inequality, first we have
Lemma 1. For $n=1,2, \cdots$. inequality

$$
\begin{equation*}
\left(1+\frac{1}{n}\right)^{n}<\frac{e}{1+\frac{1}{2 n+1}} \tag{2.1}
\end{equation*}
$$

holds.
Proof. Inequality (2.1) is equivalent to

$$
\begin{equation*}
\left(1+\frac{1}{2 n+1}\right)\left(1+\frac{1}{n}\right)^{n}<e \tag{2.2}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\ln \left(1+\frac{1}{2 n+1}\right)+n \ln \left(1+\frac{1}{n}\right)<1 \tag{2.3}
\end{equation*}
$$

We have

$$
\begin{equation*}
1+\frac{1}{n}=\frac{1+\frac{1}{2 n+1}}{1-\frac{1}{2 n+1}} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{align*}
\ln (1+x) & =\sum_{n=1}^{+\infty}(-1)^{n-1} \frac{x^{n}}{n}, \quad-1<x \leq 1 \tag{2.5}\\
\ln \frac{1+x}{1-x} & =2 \sum_{n=1}^{+\infty} \frac{x^{2 n-1}}{2 n-1}, \quad-1<x<1 \tag{2.6}
\end{align*}
$$

Let $x=\frac{1}{2 n+1}$, with $(2.4),(2.5)$ and (2.6), we have

$$
\begin{equation*}
\ln \left(1+\frac{1}{2 n+1}\right)=\sum_{k=1}^{+\infty}(-1)^{k-1} \frac{1}{k(2 n+1)^{k}} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\ln \left(1+\frac{1}{n}\right)=2 \sum_{k=1}^{+\infty} \frac{1}{(2 k-1)(2 n+1)^{2 k-1}} \tag{2.8}
\end{equation*}
$$

therefore

$$
\begin{aligned}
\ln \left(1+\frac{1}{2 n+1}\right)+n \ln \left(1+\frac{1}{n}\right)= & \sum_{k=1}^{+\infty}(-1)^{k-1} \frac{1}{k(2 n+1)^{k}}+2 n \sum_{k=1}^{+\infty} \frac{1}{(2 k-1)(2 n+1)^{2 k-1}} \\
= & \left(\frac{1}{2 n+1}+\frac{2 n}{2 n+1}\right)+\left(\frac{2 n}{3(2 n+1)^{3}}-\frac{1}{2(2 n+1)^{2}}+\frac{1}{3(2 n+1)^{3}}\right)+\cdots \\
& +\left(\frac{2 n}{(2 k+1)(2 n+1)^{2 k+1}}-\frac{1}{2 k(2 n+1)^{2 k}}+\frac{1}{(2 k+1)(2 n+1)^{2 k+1}}\right)+\cdots \\
= & 1-\sum_{k=1}^{+\infty} \frac{1}{2 k(2 k+1)(2 n+1)^{2 k}}<1
\end{aligned}
$$

Inequality (2.3), i.e. (2.2) holds, so inequality (2.1) holds. the proof of lemma 2.1 is complete.

Theorem 1. Let $\left\{a_{i}\right\}_{n=1}^{+\infty}$ is a nonnegative sequence such that $0 \leq \sum_{n=1}^{+\infty} a_{n}<+\infty$, we have inequality

$$
\begin{equation*}
\sum_{n=1}^{+\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq e \sum_{n=1}^{+\infty} \frac{a_{n}}{1+\frac{1}{2 n+1}} \tag{2.9}
\end{equation*}
$$

Proof. Let $c_{i}>0(i=1,2, \cdots)$, according to arithmetic-geometric mean inequality, we have

$$
\begin{equation*}
\left(c_{1} a_{1} c_{2} a_{2} \cdots c_{n} a_{n}\right)^{1 / n} \leq \frac{1}{n} \sum_{m=1}^{n} c_{m} a_{m} \tag{2.10}
\end{equation*}
$$

Consequently

$$
\begin{aligned}
\sum_{n=1}^{+\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} & =\sum_{n=1}^{+\infty}\left(\frac{c_{1} a_{1} c_{2} a_{2} \cdots c_{n} a_{n}}{c_{1} c_{2} \cdots c_{n}}\right)^{1 / n} \\
& =\sum_{n=1}^{+\infty}\left(c_{1} c_{2} \cdots c_{n}\right)^{-1 / n}\left(c_{1} a_{1} c_{2} a_{2} \cdots c_{n} a_{n}\right)^{1 / n} \\
& \leq \sum_{n=1}^{+\infty}\left(c_{1} c_{2} \cdots c_{n}\right)^{-1 / n} \frac{1}{n} \sum_{m=1}^{n} c_{m} a_{m} \\
& =\sum_{m=1}^{+\infty} c_{m} a_{m} \sum_{n=m}^{+\infty} \frac{1}{n}\left(c_{1} c_{2} \cdots c_{n}\right)^{-1 / n}
\end{aligned}
$$

Let $c_{m}=\frac{(m+1)^{m}}{m^{m-1}}(m=1,2, \cdots, n)$, then $c_{1} c_{2} \cdots c_{n}=(n+1)^{n}$, and

$$
\begin{equation*}
\sum_{n=m}^{+\infty} \frac{1}{n}\left(c_{1} c_{2} \cdots c_{n}\right)^{-1 / n}=\sum_{n=m}^{+\infty} \frac{1}{n(n+1)}=\frac{1}{m} \tag{2.11}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\sum_{n=1}^{+\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq \sum_{m=1}^{+\infty} \frac{c_{m}}{m} a_{m}=\sum_{m=1}^{+\infty}\left(1+\frac{1}{m}\right)^{m} a_{m} \tag{2.12}
\end{equation*}
$$

According to lemma 2.1 and substituting for $\left(1+\frac{1}{m}\right)^{m}$ of inequality (2.12), we have

$$
\sum_{n=1}^{+\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq e \sum_{m=1}^{+\infty} \frac{a_{m}}{1+\frac{1}{2 m+1}}
$$

So, inequality (2.9) holds. the proof of theorem 2.2 is complete.
3. The order relations in a series of refined Carleman's inequalities.

In this section, we'll prove that inequality in theorem 2.2 is more exact than the inequalities in reference [4]. We have
Theorem 2. Let $\left\{a_{i}\right\}_{n=1}^{+\infty}$ is a nonnegative sequence such that $0 \leq \sum_{n=1}^{+\infty} a_{n}<+\infty$, if

$$
\begin{equation*}
\sum_{n=2}^{+\infty}\left(\frac{1}{\left(1+\frac{1}{n}\right)^{\alpha_{1}}}-\frac{1}{1+\frac{1}{2 n+1}}\right) a_{n} \geq\left(\frac{3}{4}-\frac{2}{e}\right) a_{1} \tag{3.1}
\end{equation*}
$$

we have

$$
\begin{equation*}
\sum_{n=1}^{+\infty} \frac{a_{n}}{1+\frac{1}{2 n+1}} \leq \sum_{n=1}^{+\infty} \frac{a_{n}}{\left(1+\frac{1}{n}\right)^{\alpha_{1}}} \tag{3.2}
\end{equation*}
$$

Proof. First we prove that for $n=2,3, \cdots$, the following inequality

$$
\begin{equation*}
\left(1+\frac{1}{n}\right)^{\alpha_{1}} \leq 1+\frac{1}{2 n+1} \tag{3.3}
\end{equation*}
$$

holds.
Inequality (3.3) is equivalent to

$$
\begin{equation*}
1 \leq \frac{1+\frac{1}{2 n+1}}{\left(1+\frac{1}{n}\right)^{\alpha_{1}}} \tag{3.4}
\end{equation*}
$$

for $n=2,3, \cdots$.
Let

$$
\begin{equation*}
f(x)=\frac{2(1+x)}{(2+x)(1+x)^{\alpha_{1}}}-1, \quad 0<x \leq 1 \tag{3.5}
\end{equation*}
$$

it is easy to compute that

$$
\begin{equation*}
\frac{d}{d x} f(x)=\frac{2}{(2+x)^{2}(1+x)^{\alpha_{1}}}\left[\left(1-2 \alpha_{1}\right)-\alpha_{1} x\right] \tag{3.6}
\end{equation*}
$$

Let

$$
\begin{equation*}
h(x)=\left(1-2 \alpha_{1}\right)-\alpha_{1} x \tag{3.7}
\end{equation*}
$$

it is apparent that $x_{0}=\frac{1-2 \alpha_{1}}{\alpha_{1}}$ is the root of $h(x)$, and $h(x)>0$, for $0<x<x_{0}$; $h(x)<0$, for $x_{0}<x \leq 1$. therefore $\frac{d}{d x} f(x)>0$, for $0<x<x_{0} ; \frac{d}{d x} f(x)<0$, for $x_{0}<x \leq 1$. and we know that $f(x)$ is monotone increasing in $\left(0, x_{0}\right)$, and monotone decreasing in $\left(x_{0}, 1\right)$, respectively.

It is apparent that $f(0)=0, f(1)=\frac{8}{3 e}-1<0$, and we know that there is only one point x_{1} in $\left(x_{0}, 1\right)$ satisfying $f\left(x_{1}\right)=0$, and we can compute $x_{1} \in(0.5,1)$ due to $f(0.5)=\frac{1.2}{1.5^{\alpha_{1}}}-1>0$. With these we have $f(x) \geq \min \left\{f(0), f\left(x_{1}\right)\right\}=0$, for $x \in\left(0, x_{1}\right]$. consequently, inequality (3.4), i.e. (3.3) holds.
we can directly compute that $\left(1+\frac{1}{n}\right)^{\alpha_{1}}>1+\frac{1}{2 n+1}$, for $n=1$. with inequality (3.1) we can prove that inequality (3.2) holds. the prove of theorem 3.1 is complete.

Remark 1. With theorem 3.1 and inequality (1.5), we can refine Carleman's inequality as

$$
\begin{aligned}
\sum_{n=1}^{+\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} & \leq e \sum_{n=1}^{+\infty} \frac{a_{n}}{1+\frac{1}{2 n+1}} \leq e \sum_{n=1}^{+\infty} \frac{a_{n}}{\left(1+\frac{1}{n}\right)^{\alpha_{1}}} \\
& \leq e \sum_{n=1}^{+\infty} \frac{\left(1-\frac{\beta}{n}\right)}{\left(1+\frac{1}{n}\right)^{\alpha}} a_{n} \leq e \sum_{n=1}^{+\infty}\left(1-\frac{\beta_{1}}{n}\right) a_{n} \leq e \sum_{n=1}^{+\infty} a_{n}
\end{aligned}
$$

if inequality (3.1) holds. where α, β satisfy $0 \leq \alpha \leq \alpha_{1}, 0 \leq \beta \leq \beta_{1}$, and e $\beta+$ $2^{1+\alpha}=e$.

References

[1] Hardy G.H. Littlewood J.E. and Polya G. Inequalities, Cambridge Unv. Press, London, 1952.
[2] Ji-Chang Kuang Applied Inequalities, Hunan Education Press(second edition), Changsha, China, 1993.(Chinese)
[3] Bao-Quan Yuan, Refinements of Carleman's Inequality, RGMIA Research Report Collection 3 (2000),no. 3, Article 8, http://rgmia.vu.edu.au/v3n3.html .
[4] Bao-Quan Yuan, Order Relations and The Optima of A Series of Refined Carleman's Inequalities, submitted to International Journal of Mathematics and Mathematical Sciences (IJMMS) for publication.

Department of Mathematics, Jiaozuo Institute of Technology, Jiaozuo City, Henan Province , 454000, People's Republic of China.

E-mail address: baoquanyuan@chinaren.com

[^0]: 1991 Mathematics Subject Classification. 2000 Subject Classification, 26D15.
 Key words and phrases. Carleman's inequality, weight coefficient, Arithmetic-Geometric mean inequality, order relations.

