REFINEMENTS OF CARLEMAN'S INEQUALITY

BAO-QUAN YUAN

Abstract

In this paper, we obtain a series of refined Carleman's Inequalies with Arithmetic-Geometric mean inequality by decreasing their weight coefficient.

1. Introduction

Let $\left\{a_{i}\right\}_{n=1}^{+\infty}$ is a nonnegative sequence such that $0 \leq \sum_{n=1}^{+\infty} a_{n}<+\infty$,then, we have

$$
\begin{equation*}
\sum_{n=1}^{+\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq e \sum_{n=1}^{+\infty} a_{n} \tag{1.1}
\end{equation*}
$$

The equality in (1.1) holds if and only if $a_{n}=0, n=1,2, \cdots$. the coefficient e is optimal

Inequality (1.1) is called Carleman's Inequality, for details please refer to [1, 2]. Though the coefficient e is optimal, we can refine its weight coefficient. In this article we give a series of improved Carleman's inequalities by decreasing the weight coefficient with the arithmetic-geometric mean inequality.

2. The Two Special Cases

In this section, we give two special cases of refined Carleman's inequality .First we prove two lemmas.

Lemma 2.1. For $m=1,2, \cdots$, the following inequality

$$
\begin{equation*}
\left(1+\frac{1}{m}\right)^{m} \leq e\left(1-\frac{1-2 / e}{m}\right) \tag{2.1}
\end{equation*}
$$

holds, where $1-\frac{2}{e} \approx 0.2642411$ is best possible.
Proof. Let

$$
\begin{equation*}
\left(1+\frac{1}{m}\right)^{m} \leq e\left(1-\frac{\beta}{m}\right) \tag{2.2}
\end{equation*}
$$

Then, it is equivalent to

$$
\beta \leq m-\frac{m}{e}\left(1+\frac{1}{m}\right)^{m}
$$

Let $f(x)=\frac{1}{x}-\frac{1}{e x}(1+x)^{\frac{1}{x}} \quad x \in(0,1]$

[^0]It's obvious that the function $f(x)$ is a monotone decreasing function on interval $(0,1]$. Consequently, $\beta=f(1)=1-\frac{2}{e}$ is the optimal value of satisfying inequality (2.2), So (2.1) holds. The proof of lemma 2.1 follows.

Lemma 2.2. For $m=1,2, \cdots$, the following inequality

$$
\begin{equation*}
\left(1+\frac{1}{m}\right)^{m} \leq \frac{e}{\left(1+\frac{1}{m}\right)^{\frac{1}{\ln 2}-1}} \tag{2.3}
\end{equation*}
$$

holds, where $\frac{1}{\ln 2}-1 \approx 0.442695$ is the best possible.
Proof. Let

$$
\begin{equation*}
\left(1+\frac{1}{m}\right)^{m} \leq \frac{e}{\left(1+\frac{1}{m}\right)^{\alpha}} \tag{2.4}
\end{equation*}
$$

It is equivalent to

$$
\alpha \leq \frac{1}{\ln \left(1+\frac{1}{m}\right)}-m
$$

Let

$$
f(x)=\frac{1}{\ln (1+x)}-\frac{1}{x} \quad x \in(0,1]
$$

Because the function $f(x)$ is a monotone decreasing function on interval $(0,1]$. Consequently, $\alpha=f(1)=\frac{1}{\ln 2}-1$ is the optimal value of satisfying inequality(2.4), So (2.3) holds. The proof of lemma 2.2 follows.

Theorem 2.3. Let $\left\{a_{i}\right\}_{n=1}^{+\infty}$ is a nonnegative sequence such that $0 \leq \sum_{n=1}^{+\infty} a_{n}<$ $+\infty$, we have

$$
\begin{align*}
& \sum_{n=1}^{+\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq e \sum_{m=1}^{+\infty}\left(1-\frac{1-2 / e}{m}\right) a_{m} \tag{2.5}\\
& \sum_{n=1}^{+\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq e \sum_{m=1}^{+\infty} \frac{a_{m}}{\left(1+\frac{1}{m}\right)^{\frac{1}{\ln 2}-1}} \tag{2.6}
\end{align*}
$$

Proof. Let $c_{i}>0(i=1,2, \cdots)$, according to arithmetic-geometric mean inequality, we have

$$
\left(c_{1} a_{1} c_{2} a_{2} \cdots c_{n} a_{n}\right)^{\frac{1}{n}} \leq \frac{1}{n} \sum_{m=1}^{n} c_{m} a_{m}
$$

Consequently

$$
\begin{aligned}
\sum_{n=1}^{+\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} & =\sum_{n=1}^{+\infty}\left(\frac{c_{1} a_{1} c_{2} a_{2} \cdots c_{n} a_{n}}{c_{1} c_{2} \cdots c_{n}}\right)^{1 / n} \\
& =\sum_{n=1}^{+\infty}\left(c_{1} c_{2} \cdots c_{n}\right)^{-1 / n}\left(c_{1} a_{1} c_{2} a_{2} \cdots c_{n} a_{n}\right)^{1 / n} \\
& \leq \sum_{n=1}^{+\infty}\left(c_{1} c_{2} \cdots c_{n}\right)^{-1 / n} \frac{1}{n} \sum_{m=1}^{n} c_{m} a_{m} \\
& =\sum_{m=1}^{+\infty} c_{m} a_{m} \sum_{n=m}^{+\infty} \frac{1}{n}\left(c_{1} c_{2} \cdots c_{n}\right)^{-1 / n}
\end{aligned}
$$

Let $c_{m}=\frac{(m+1)^{m}}{m^{m-1}}(m=1,2, \cdots, n), c_{1} c_{2} \cdots c_{n}=(n+1)^{n}$, and

$$
\sum_{n=m}^{+\infty} \frac{1}{n}\left(c_{1} c_{2} \cdots c_{n}\right)^{-1 / n}=\sum_{n=m}^{+\infty} \frac{1}{n(n+1)}=\frac{1}{m}
$$

Therefore

$$
\begin{equation*}
\sum_{n=1}^{+\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq \sum_{m=1}^{+\infty} \frac{c_{m}}{m} a_{m}=\sum_{m=1}^{+\infty}\left(1+\frac{1}{m}\right)^{m} a_{m} \tag{2.7}
\end{equation*}
$$

According to lemma 2.1 and lemma 2.2, and substituting for $\left(1+\frac{1}{m}\right)^{m}$ of inequality (2.7), We have

$$
\begin{gathered}
\sum_{n=1}^{+\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq e \sum_{m=1}^{+\infty}\left(1-\frac{1-2 / e}{m}\right) a_{m} \\
\sum_{n=1}^{+\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq e \sum_{m=1}^{+\infty} \frac{a_{m}}{\left(1+\frac{1}{m}\right)^{\frac{1}{\ln 2}-1}}
\end{gathered}
$$

The proof is complete.

3. A Series of Refined Carleman's Inequalities

In this section we give a series of refined Carleman's inequalities with lemma 3.1. First we have

Lemma 3.1. For $m=1,2, \cdots$, the following inequality

$$
\begin{equation*}
\left(1+\frac{1}{m}\right)^{m} \leq \frac{e\left(1-\frac{\beta}{m}\right)}{\left(1+\frac{1}{m}\right)^{\alpha}} \tag{3.1}
\end{equation*}
$$

holds, where $0 \leq \alpha \leq \frac{1}{\ln 2}-1,0 \leq \beta \leq 1-\frac{2}{e}$, and $e \beta+2^{1+\alpha}=e$.
Proof. Inequality (3.1) is equivalent to

$$
\begin{equation*}
\beta \leq m-\frac{m}{e}\left(1+\frac{1}{m}\right)^{m+\alpha} \tag{3.2}
\end{equation*}
$$

Let

$$
f(x)=\frac{1}{x}-\frac{1}{e x}(1+x)^{\frac{1}{x}+\alpha}, x \in(0,1], 0 \leq \alpha \leq \frac{1}{\ln 2}-1
$$

then $f(x)$ is a monotone decreasing function of x. Consequently, $\beta=f(1)=$ $1-\frac{1}{e} 2^{1+\alpha}$ is the optimal value of satisfying inequality (3.2), i.e. $0 \leq \beta \leq 1-\frac{2}{e}$, and $e \beta+2^{1+\alpha}=e$. So (2.3) holds, The proof is complete.
Remark 3.1. If $\alpha=0$, then $\beta=1-\frac{2}{e}$, and we obtain lemma 1 ; if $\beta=0$, then $\alpha=\frac{1}{\ln 2}-1$, and we obtain lemma 2.

Similar to theorem 2.3, according to lemma 3.1, we have
Theorem 3.2. Let $a_{n} \geq 0(n=1,2, \cdots), 0 \leq \sum_{n=1}^{+\infty} a_{n}<+\infty$, we have

$$
\sum_{n=1}^{+\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq e \sum_{m=1}^{+\infty} \frac{\left(1-\frac{\beta}{m}\right)}{\left(1+\frac{1}{m}\right)^{\alpha}} a_{m}
$$

where α, β satisfy $0 \leq \alpha \leq \frac{1}{\ln 2}-1,0 \leq \beta \leq 1-\frac{2}{e}$, and $e \beta+2^{1+\alpha}=e$.

Remark 3.2. Theorem 2.3 are two special cases of theorem 3.2, if $\alpha=0, \beta=1-\frac{2}{e}$, and $\beta=0, \alpha=\frac{1}{\ln 2}-1$, we can obtain (2.5) and (2.6) in theorem 2.3 respectively.

References
[1] Hardy G.H. Littlewood J.E. and Polya G. Inequalities, Cambridge Unv. Press, London, 1952.
[2] Ji-Chang Kuang Applied Inequalities, Hunan Education Press(second edition), Changsha, China, 1993.(Chinese)

Department of Mathematics ,Jiaozuo Institute of Technology Jiaozuo City Henan Province 454000 People's Republic of China, baoquanyuan@chinaren.com

[^0]: 1991 Mathematics Subject Classification. 2000 Subject Classification, 26D15.
 Key words and phrases. Carleman's inequality, Arithmetic-Geometric mean inequality, weight coefficient.

