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Abstract. In this paper, we obtain a series of refined Carleman’s Inequalies
with Arithmetic-Geometric mean inequality by decreasing their weight coeffi-
cient.

1. Introduction

Let {ai}+∞n=1 is a nonnegative sequence such that 0 ≤
∑+∞

n=1 an < +∞,then, we
have

+∞
∑

n=1

(a1a2 · · · an)1/n ≤ e
+∞
∑

n=1

an(1.1)

The equality in (1.1) holds if and only if an = 0, n = 1, 2, · · · . the coefficient e is
optimal

Inequality (1.1) is called Carleman’s Inequality, for details please refer to [1,
2]. Though the coefficient e is optimal, we can refine its weight coefficient. In this
article we give a series of improved Carleman’s inequalities by decreasing the weight
coefficient with the arithmetic-geometric mean inequality.

2. The Two Special Cases

In this section, we give two special cases of refined Carleman’s inequality .First
we prove two lemmas.

Lemma 2.1. For m = 1, 2, · · · , the following inequality
(

1 +
1
m

)m

≤ e
(

1− 1− 2/e
m

)

(2.1)

holds, where 1− 2
e ≈ 0.2642411 is best possible.

Proof. Let
(

1 +
1
m

)m

≤ e
(

1− β
m

)

(2.2)

Then, it is equivalent to

β ≤ m− m
e

(

1 +
1
m

)m

,

Let f(x) = 1
x −

1
ex (1 + x)

1
x x ∈ (0, 1]
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It’s obvious that the function f(x) is a monotone decreasing function on interval
(0, 1]. Consequently, β = f(1) = 1− 2

e is the optimal value of satisfying inequality
(2.2), So (2.1) holds. The proof of lemma 2.1 follows.

Lemma 2.2. For m = 1, 2, · · · , the following inequality
(

1 +
1
m

)m

≤ e
(

1 + 1
m

) 1
ln 2−1

(2.3)

holds, where 1
ln 2 − 1 ≈ 0.442695 is the best possible.

Proof. Let
(

1 +
1
m

)m

≤ e
(

1 + 1
m

)α(2.4)

It is equivalent to

α ≤ 1
ln

(

1 + 1
m

) −m

Let

f(x) =
1

ln(1 + x)
− 1

x
x ∈ (0, 1]

Because the function f(x) is a monotone decreasing function on interval (0, 1].
Consequently, α = f(1) = 1

ln 2 − 1 is the optimal value of satisfying inequality(2.4),
So (2.3) holds. The proof of lemma 2.2 follows.

Theorem 2.3. Let {ai}+∞n=1 is a nonnegative sequence such that 0 ≤
∑+∞

n=1 an <
+∞, we have

+∞
∑

n=1

(a1a2 · · · an)1/n ≤ e
+∞
∑

m=1

(

1− 1− 2/e
m

)

am(2.5)

+∞
∑

n=1

(a1a2 · · · an)1/n ≤ e
+∞
∑

m=1

am
(

1 + 1
m

) 1
ln 2−1

.(2.6)

Proof. Let ci > 0 (i = 1, 2, · · · ), according to arithmetic-geometric mean inequality,
we have

(c1a1c2a2 · · · cnan)
1
n ≤ 1

n

n
∑

m=1

cmam

Consequently
+∞
∑

n=1

(a1a2 · · · an)1/n =
+∞
∑

n=1

(

c1a1c2a2 · · · cnan

c1c2 · · · cn

)1/n

=
+∞
∑

n=1

(c1c2 · · · cn)−1/n(c1a1c2a2 · · · cnan)1/n

≤
+∞
∑

n=1

(c1c2 · · · cn)−1/n 1
n

n
∑

m=1

cmam

=
+∞
∑

m=1

cmam

+∞
∑

n=m

1
n

(c1c2 · · · cn)−1/n
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Let cm = (m+1)m

mm−1 (m = 1, 2, · · · , n), c1c2 · · · cn = (n + 1)n, and
+∞
∑

n=m

1
n

(c1c2 · · · cn)−1/n =
+∞
∑

n=m

1
n(n + 1)

=
1
m

Therefore
+∞
∑

n=1

(a1a2 · · · an)1/n ≤
+∞
∑

m=1

cm

m
am =

+∞
∑

m=1

(

1 +
1
m

)m

am(2.7)

According to lemma 2.1 and lemma 2.2, and substituting for
(

1 + 1
m

)m
of inequality

(2.7),We have
+∞
∑

n=1

(a1a2 · · · an)1/n ≤ e
+∞
∑

m=1

(

1− 1− 2/e
m

)

am

+∞
∑

n=1

(a1a2 · · · an)1/n ≤ e
+∞
∑

m=1

am
(

1 + 1
m

) 1
ln 2−1

The proof is complete.

3. A Series of Refined Carleman’s Inequalities

In this section we give a series of refined Carleman’s inequalities with lemma 3.1.
First we have

Lemma 3.1. For m = 1, 2, · · · ,the following inequality
(

1 +
1
m

)m

≤
e
(

1− β
m

)

(

1 + 1
m

)α(3.1)

holds, where 0 ≤ α ≤ 1
ln 2 − 1, 0 ≤ β ≤ 1− 2

e , and eβ + 21+α = e.

Proof. Inequality (3.1) is equivalent to

β ≤ m− m
e

(

1 +
1
m

)m+α

(3.2)

Let

f(x) =
1
x
− 1

ex
(1 + x)

1
x +α , x ∈ (0, 1], 0 ≤ α ≤ 1

ln 2
− 1

then f(x) is a monotone decreasing function of x. Consequently, β = f(1) =
1 − 1

e21+α is the optimal value of satisfying inequality (3.2), i.e. 0 ≤ β ≤ 1 − 2
e ,

and eβ + 21+α = e. So (2.3) holds, The proof is complete.

Remark 3.1. If α = 0, then β = 1 − 2
e , and we obtain lemma 1; if β = 0, then

α = 1
ln 2 − 1, and we obtain lemma 2.

Similar to theorem 2.3, according to lemma 3.1, we have

Theorem 3.2. Let an ≥ 0(n = 1, 2, · · · ), 0 ≤
∑+∞

n=1 an < +∞,we have

+∞
∑

n=1

(a1a2 · · · an)1/n ≤ e
+∞
∑

m=1

(

1− β
m

)

(

1 + 1
m

)α am

where α, β satisfy 0 ≤ α ≤ 1
ln 2 − 1, 0 ≤ β ≤ 1− 2

e , and eβ + 21+α = e.
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Remark 3.2. Theorem 2.3 are two special cases of theorem 3.2, if α = 0, β = 1− 2
e ,

and β = 0, α = 1
ln 2 − 1, we can obtain (2.5) and (2.6) in theorem 2.3 respectively.
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