
DIFFERENCES BETWEEN MEANS WITH BOUNDS FROM A
RIEMANN-STIELTJES INTEGRAL

P. CERONE AND S.S. DRAGOMIR

Abstract. An identity for the difference between two integral means is ob-

tained in terms of a Riemann-Stieltjes integral. This enables bounds to be
procured when the integrand is of bounded variation, Lipschitzian and mono-

tonic. If f is absolutely continuous, bounds are also obtained for f ′ ∈ Lp [a, b],

1 ≤ p < ∞, the usual Lebesgue norms. This supplements earlier results in-
volving f ′ ∈ L∞ [a, b].

1. Introduction

The following theorem was proved in Barnett et al. [2].

Theorem 1. Let f : [a, b] → R be an absolutely continuous mapping with the
property that f ′ ∈ L∞ [a, b], i.e.,

‖f ′‖∞ := ess sup
t∈[a,b]

|f ′ (t)| < ∞.

Then for a ≤ c < d ≤ b, we have the inequality∣∣∣∣∣ 1
b− a

∫ b

a

f (t) dt− 1
d− c

∫ d

c

f (u) du

∣∣∣∣∣(1.1)

≤

1
4

+

[
a+b
2 − c+d

2

(b− a)− (d− c)

]2
 [(b− a)− (d− c)] ‖f ′‖∞

≤ 1
2

[(b− a)− (d− c)] ‖f ′‖∞ .

The constant 1
4 is best possible in the first inequality and 1

2 is best in the second
one.

They utilised the identity

(1.2)
1

b− a

∫ b

a

f (t) dt− 1
d− c

∫ d

c

f (u) du =
∫ b

a

Kc,d (s) f ′ (s) ds,
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where

(1.3) Kc,d (s) :=



a− s

b− a
if s ∈ [a, c] ;

s− c

d− c
+

a− s

b− a
if s ∈ (c, d) ;

b− s

b− a
if s ∈ [d, b] .

It was demonstrated that the Ostrowski inequality [12], represented by the following
theorem, could be recaptured by using some limiting procedure:
Theorem 2. Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b)
and assume that |f ′ (x)| ≤ M for all x ∈ (a, b). Then we have the inequality

(1.4)

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
1

4
+

(
x− a+b

2

b− a

)2
 (b− a) M

for all x ∈ [a, b]. The constant 1
4 is the best possible.

For some generalisations and related results, see the book [11, p. 468 - 484], the
papers [1] – [12] and the website http://rgmia.vu.edu.au/ where many papers
devoted to this inequality can be accessed on line.

It is the aim of the current article to obtain bounds on

(1.5) D (f ; a, c, d, b) := M (f ; a, b)−M (f ; c, d) , a ≤ c < d ≤ b,

where

M (f ; a, b) :=
1

b− a

∫ b

a

f (t) dt,

in terms of the Lebesgue norms ‖f ′‖p, 1 ≤ p < ∞ with f ′ ∈ Lp [a, b] implying(∫ b

a
|f ′ (t)|p dt

) 1
p

< ∞, 1 ≤ p < ∞.
Further bounds on |D (f ; a, c, d, b)| will be obtained under less restrictive assump-

tions than absolute continuity on f . Bounds are obtained for f Hölder continuous
in Section 2 while in Section 3 bounds are obtained for f of bounded variation,
Lipschitzian and monotonic.

2. Results for f ′ ∈ Lp [a, b] , 1 ≤ p < ∞

The following theorem holds (see also Cerone and Dragomir [3]).
Theorem 3. Let f : [a, b] → R be an absolutely continuous mapping. Then for
a ≤ c < d ≤ b the inequalities

|D (f ; a, c, d, b)|(2.1)

≤


b−a

(q+1)
1
q

[
1 +

(
ρ

1−ρ

)q] 1
q [

νq+1 + λq+1
] 1

q ‖f ′‖p ,

f ′ ∈ Lp [a, b] , 1 ≤ p < ∞, 1
p + 1

q = 1;

[1− ρ + |ν + ρ + λ|] ‖f ′‖1 , f ′ ∈ L1 [a, b] ,

where (b− a) ν = c− a, (b− a) ρ = d− c, (b− a)λ = b− d.
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Proof. From (1.2) and (1.5) we have on using Hölder’s integral inequality that

(2.2) |D (f ; a, c, d, b)| ≤

(∫ b

a

|Kc,d (s)|q dt

) 1
q

‖f ′‖p , 1 ≤ p < ∞,
1
p

+
1
q

= 1.

Now,

(2.3)
∫ c

a

|s− a|q ds =
(c− a)q+1

q + 1
and

∫ b

d

|b− s|q ds =
(b− d)q+1

q + 1
.

Further,

M : =
∫ d

c

∣∣∣∣ s− c

d− c
+

a− s

b− a

∣∣∣∣q ds

=
1

(b− a) (d− c)

∫ d

c

|[(b− a)− (d− c)] s− cb + ad|q ds

=
b− a− (d− c)
(b− a) (d− c)

∫ d

c

|s− s0|q ds

since b− a > d− c and

(2.4) s0 =
cb− ad

(b− a)− (d− c)
∈ [c, d] .

Hence, as c− s0 < 0 and d− s0 > 0,

M =
b− a− (d− c)
(b− a) (d− c)

[∫ s0

c

(s0 − s)q
ds +

∫ d

s0

(s− s0)
q
ds

]

=
b− a− (d− c)
(b− a) (d− c)

· (s0 − c)q+1 + (d− s0)
q+1

q + 1
.

Further simplification may be accomplished since

s0 − c =
(c− a) (d− c)
(b− a) (d− c)

and d− s0 =
(d− c) (b− d)
(b− a) (d− c)

,

giving

M =
(d− c)q

(q + 1) (b− a) [(b− a)− (d− c)]q
[
(c− a)q+1 + (b− d)q+1

]
.

Thus, combining the expression for M with (2.3) and using (2.2) gives (2.1) after
some algebra.

Now, for the second inequality

|D (f ; a, c, d, b)| ≤ sup
s∈[a,b]

|Kc,d (s)|
∫ b

a

|f ′ (s)| ds.

From (1.3) it is easily seen that Kc,d (s) is a piecewise linear and continuous function.
It is negative on (a, s0) and positive on (s0, b). It reaches its extremities at c and
d. Thus,

sup
s∈[a,b]

|Kc,d (s)| = max
{

c− a

b− a
,
b− d

b− a

}
=

1
b− a

{
c− a + b− d

2
+
∣∣∣∣ (c− a)− (b− d)

2

∣∣∣∣} .
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A simple rearrangement gives the result as stated.

Remark 1. If we take q = 1 in (2.1) then the first inequality in (1.1) is recaptured.

3. Some Inequalities for Mappings of Hölder Type

If we drop the assumption of absolute continuity and allow f to be Hölder con-
tinuous, then the following result is valid.

Theorem 4. Assume that the mapping f : [a, b] → R is of r − H−Hölder type,
i.e.,

(3.1) |f (t)− f (s)| ≤ H |t− s|r for all t, s ∈ [a, b] ,

where r ∈ (0, 1] and H > 0 are given.
Then for a < c < d < b, we have the inequality

(3.2)

∣∣∣∣∣ 1
b− a

∫ b

a

f (t) dt− 1
d− c

∫ d

c

f (t) dt

∣∣∣∣∣ ≤ (c− a)r+1 + (b− d)r+1

[(b− a)− (d− c)] (r + 1)
·H.

The inequality (2.2) is best in the sense that we cannot put in the right hand side
a constant K less than 1.

Proof. Write

1
b− a

∫ b

a

f (t) dt =
∫ 1

0

f (ub + (1− u) a) du

and similarly for the second term.
Then

I : =
1

b− a

∫ b

a

f (t) dt− 1
d− c

∫ d

c

f (t) dt

=
∫ 1

0

[f (ub + (1− u) a)− f (ud + (1− u) c)] du.

Using the fact that f is of r −H−Hölder type, we have

|I| ≤
∫ 1

0

|f (ub + (1− u) a)− f (ud + (1− u) c)| du(3.3)

≤ H

∫ 1

0

|ub + (1− u) a− ud− (1− u) c|r du

= H

∫ 1

0

|u [b− a− (d− c)]− (c− a)|r du.
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Now, as b− a > d− c, then u0 := c−a
(b−a)−(d−c) ∈ (0, 1) and∫ 1

0

|u [b− a− (d− c)]− (c− a)|r du

=
∫ u0

0

[(c− a)− u [b− a− (d− c)]]r du +
∫ 1

u0

[u [b− a− (d− c)]− (c− a)]r du

= − 1
b− a− (d− c)

((c− a)− u [(b− a)− (d− c)])r+1

r + 1

∣∣∣∣∣
u0

0

+
1

b− a− (d− c)
(u [(b− a)− (d− c)]− (c− a))r+1

r + 1

∣∣∣∣∣
1

u0

= − 1
(b− a)− (d− c)

((c− a)− u0 [(b− a)− (d− c)])r+1

r + 1

+
(c− a)r+1

(r + 1) (b− a− (d− c))
+

1
(b− a)− (d− c)

([b− a− (d− c)]− c + a)r+1

r + 1

− (u0 [b− a− (d− c)]− (c− a))r+1

[b− a− (d− c)] (r + 1)

=
(c− a)r+1 + (b− d)r+1

[(b− a)− (d− c)] (r + 1)
.

Using (3.3) we deduce (3.2).
Assume that now, the inequality (2.2) holds with a constant K > 0, i.e.,

(3.4)

∣∣∣∣∣ 1
b− a

∫ b

a

f (t) dt− 1
d− c

∫ d

c

f (t) dt

∣∣∣∣∣ ≤ K · (c− a)r+1 + (b− d)r+1

[(b− a)− (d− c)] (r + 1)
H.

Choose f0 : [0, 1] → R, f0 (t) = tr, r ∈ (0, 1]. Then

|f0 (t)− f0 (s)| ≤ |t− s|r for all t, s ∈ [0, 1] ,

which shows that f0 is of r −H−Hölder type with H = 1.
Now, choose in (3.4) a = 0, b = 1, c ∈ (0, 1), d = c + ε, ε small and such that

c + ε ∈ (0, 1). Then we get∣∣∣∣∣ 1
r + 1

− (c + ε)r+1 − cr+1

ε (r + 1)

∣∣∣∣∣ ≤ K · cr+1 + (1− c− ε)r+1

(1− ε) (r + 1)
,

which is clearly equivalent with

(3.5)

∣∣∣∣∣1− (c + ε)r+1 − cr+1

ε

∣∣∣∣∣ ≤ K · cr+1 + (1− c− ε)r+1

1− ε
.

Now, if in (3.5) we let ε → 0+, then we get

(3.6) |1− (r + 1) cr| ≤ K
[
cr+1 + (1− c)r+1

]
for all c ∈ (0, 1) .

If in (3.6) we let c → 0+, then we get 1 ≤ K, and the theorem is completely
proved.
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4. Results for the Riemann-Stieltjes Integral

The results obtained to date for bounds for differences of integral means assume
that f is differentiable. That is, f is absolutely continuous. This assumption may
be relaxed somewhat and bounds on D (f ; a, c, d, b) may still be procured. The
following lemma holds.
Lemma 1. Let f : [a, b] → R be of bounded variation on [a, b], then

(4.1) D (f ; a, c, d, b) =
∫ b

a

Kc,d (s) df (s) ,

where Kc,d is as given by (1.3) and D (f ; a, c, d, b) is as defined by (1.5).

Proof. The proof follows closely that used in obtaining (1.2). The integration by
parts formula is used for Riemann-Stieltjes integrals to give

(b− a) (d− c)
∫ b

a

Kc,d (s) df (s)

= (d− c)
∫ c

a

(a− s) df (s) +
∫ d

c

[(b− a) (s− c)− (d− c) (s− a)] df (s)

+ (d− c)
∫ b

d

(b− s) df (s)

= (d− c)
{

(a− s) f (s)
]c
a

+
∫ c

a

f (s) ds

}
+ [(b− a) (s− c)− (d− c) (s− a)] f (s)

]d
c

− [(b− a)− (d− c)]
∫ d

c

f (s) ds + (d− c)

{
(b− s) f (s)

]b
d

+
∫ b

d

f (s) ds

}

= (d− c)
{

(a− c) f (c) +
∫ c

a

f (s) ds

}
+ [(b− a) (d− c)− (d− c) (d− a)] f (d)

+ (d− c) (c− a) f (c)− [(b− a)− (d− c)]
∫ d

c

f (s) ds

+(d− c)

[∫ d

c

f (s) ds− (b− d) f (d)

]

= (d− c)
∫ d

c

f (s) ds− (b− a)
∫ d

c

f (s) ds.

Division by (b− a) (d− c) produces (4.1) on noting the definition (1.5).

The following well known lemmas involving Riemann-Stieltjes integrals are well
known. They are stated here for clarity. (See Cerone and Dragomir [4] where they
were applied to three point rules in numerical integration.)
Lemma 2. Let g, v : [a, b] → R be such that g is continuous on [a, b] and v is of
bounded variation on [a, b] . Then the Riemann-Stieltjes integral

∫ b

a
g (t) dv (t) exists

and is such that

(4.2)

∣∣∣∣∣
∫ b

a

g (t) dv (t)

∣∣∣∣∣ ≤ sup
t∈[a,b]

|g (t)|
b∨
a

(v) ,

where
∨b

a (v) is the total variation of v on [a, b] .
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Lemma 3. Let g, v : [a, b] → R be such that g is Riemann integrable on [a, b] and
v is L-Lipschitzian on [a, b] . Then

(4.3)

∣∣∣∣∣
∫ b

a

g (t) dv (t)

∣∣∣∣∣ ≤ L

∫ b

a

|g (t)| dt

with v being L−Lipschitzian if it satisfies

|v (x)− v (y)| ≤ L |x− y|

for all x, y ∈ [a, b].
Lemma 4. Let g, v ∈ [a, b] → R be such that g is Riemann integrable on [a, b] and
v is monotonic nondecreasing on [a, b] . Then

(4.4)

∣∣∣∣∣
∫ b

a

g (t) dv (t)

∣∣∣∣∣ ≤
∫ b

a

|g (t)| dv (t) .

Theorem 5. Let f : [a, b] → R be of bounded variation on [a, b]. The following
bounds hold

|D (f ; a, c, d, b)|(4.5)

≤



[
b− a− (d− c)

2
+
∣∣∣∣c + d

2
− a + b

2

∣∣∣∣] ∨b
a (f)

b− a
,

(c− a)2 + (b− d)2

2 [(b− a)− (d− c)]
L, for f L− Lipschitzian;

(
b− d

b− a

)
f (b)−

(
c− a

b− a

)
f (a)

+
[
c + d− (a + b)

b− a

]
f (s0) , for f monotonic

nondecreasing,

where S0 = cb−ad
(b−a)−(d−c) .

Proof. Using Lemma 2, we have from (4.2)

(4.6)

∣∣∣∣∣
∫ b

a

Kc,d (s) df (s)

∣∣∣∣∣ ≤ sup
s∈[a,b]

|Kc,d (s)|
b∨
a

(f) .

Now, Kc,d (a) = Kc,d (b) = Kc,d (s0) = 0. Further, Kc,d (s) consists of straight line
segments on [a, c], [c, d] and [d, b]. The extreme values occur at c and d. Thus,

sup
s∈[a,b]

|Kc,d (s)| = max {|Kc,d (c)| , |Kc,d (d)|} = max
{

c− a

b− a
,
b− d

b− a

}
=

1
b− a

[
c− a + b− d

2
+
∣∣∣∣c− a− (b− d)

2

∣∣∣∣] ,

which on rearrangement and using (4.6) gives the first inequality in (4.5).
Now, for the second inequality, we use Lemma 3 and so from (4.3)

(4.7)

∣∣∣∣∣
∫ b

a

Kc,d (s) df (s)

∣∣∣∣∣ ≤ L

∫ b

a

|Kc,d (s)| ds,
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where ∫ b

a

|Kc,d (s)| ds(4.8)

=
1

b− a

∫ c

a

(s− a) ds +
(b− a)− (d− c)
(b− a) (d− c)

∫ d

c

|s− s0| ds +
1

b− a

∫ b

d

(b− s) ds

with S0 as given by (2.4).
Now,

1
b− a

∫ c

a

(s− a) ds =
(c− a)2

2 (b− a)
,

1
b− a

∫ b

d

(b− s) ds =
(b− d)2

2 (b− a)

and ∫ d

c

|s− s0| ds =
∫ s0

c

(s0 − s) ds +
∫ d

s0

(s− s0) ds

=
(s0 − c)2 + (d− s0)

2

2
.

That is, using (2.4), we have

(b− a)− (d− c)
(b− a) (d− c)

∫ d

c

|s− s0| ds

=
(d− c)

2 (b− a) [(b− a)− (d− c)]

[
(c− a)2 + (b− d)2

]
,

and so combining the above results and using (4.7) and (4.8) gives the second
inequality.

For the final inequality in (4.5) we use Lemma 4 giving from (4.4), for f mono-
tonic nondecreasing,

(4.9)

∣∣∣∣∣
∫ b

a

Kc,d (s) df (s)

∣∣∣∣∣ ≤
∫ b

a

|Kc,d (s)| df (s) .

Using the properties of Kc,d (S) discussed earlier that Kc,d (S) < 0 for S ∈ (c, s0)
and Kc,d (S) > 0 for S ∈ (s0, b) and zero at a, s0 and b, then from (1.3)∫ b

a

|Kc,d (s)| df (s)(4.10)

=
∫ c

a

(
s− a

b− a

)
df (s) +

∫ s0

c

(
s− a

b− a
+

s− c

d− c

)
df (s)

+
∫ d

s0

(
s− c

d− c
+

a− s

b− a

)
df (s) +

∫ b

d

(
b− s

b− a

)
df (s) .



DIFFERENCES BETWEEN MEANS 9

Now, integration by parts of the Riemann-Stieltjes integrals on the right of (4.10)
produces, after some simplification,∫ b

a

|Kc,d (s)| df (s) = − 1
b− a

∫ c

a

f (s) ds +
(

1
d− c

− 1
b− a

)∫ s0

c

f (s) ds

−
(

1
d− c

− 1
b− a

)∫ d

s0

f (s) ds +
1

b− a

∫ b

d

f (s) ds

≤ −
(

c− a

b− a

)
f (a) +

(
1

d− c
− 1

b− a

)
(s0 − c) f (s0)

−
(

1
d− c

− 1
b− a

)
(d− s0) f (s0) +

(
b− d

b− a

)
f (b) ,

where we have used the fact that f is monotonic nondecreasing to obtain the last
inequality. Thus, from (3.5) we obtain the third inequality in (4.5) on grouping
terms and simplifying.

Remark 2. From (4.10) we may use the fact that sup
s∈[a,b]

|Kc,d (S)| occurs at c for

s ∈ [a, s0] and at d for s ∈ [s0, b] to give for f monotonic nondecreasing:∣∣∣∣∣
∫ b

a

Kc,d (s) df (s)

∣∣∣∣∣
≤

(
c− a

b− a

)
(f (c)− f (a)) +

(
c− a

b− a

)
(f (s0)− f (c))

+
(

1− d− a

b− a

)
(f (d)− f (s0)) +

(
b− d

b− a

)
(f (b)− f (d))

=
(

c− a

b− a

)
(f (s0)− f (a)) +

(
b− d

b− a

)
(f (b)− f (s0))

=
(

b− d

b− a

)
f (b)−

(
c− a

b− a

)
f (a) +

c + d− (a + b)
b− a

f (s0) .

Remark 3. If we put r = 1 and H = L in (4.2), then we obtain the second
inequality in (4.5). It should also be noted that if the parallelogram identity

2
(
x2 + y2

)
= (x− y)2 + (x + y)2 , x, y ∈ R

is used then

(c− a)2 + (b− d)2

2 [(b− a)− (d− c)]
=

1
4

+

 a + b

2
− c + d

2
(b− a)− (d− c)


2
 [(b− a)− (d− c)] ,

with 1
4 being the best constant attained when a+b

2 = c+d
2 .

Remark 4. If we assume that there is a point x ∈ (a, b) for which the functions is
continuous, then we may recapture bounds for the Ostrowski functional

θ (f) (x) := f (x)−M (f) .
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Indeed, if we assume that c = x ∈ (a, b), d = x + ε where x + ε ∈ (a, b), then from
(2.1) for example

|D (f ; a, x, x + ε, b)|

=
∣∣∣∣M (f ; a, b)− 1

ε

∫ x+ε

x

f (u) du

∣∣∣∣
≤ b− a

(q + 1)
1
q

[
1 +

(
ε

b− a− ε

)q][(
x− a

b− a

)q+1

+
(

b− x− ε

b− a

)q+1
] 1

q

‖f ′‖p .

Now, taking the limit as ε → 0+ gives

|θ (f) (x)| ≤ b− a

(q + 1)
1
q

[(
x− a

b− a

)q+1

+
(

b− x

b− a

)q+1
] 1

q

‖f ′‖p ,

f ′ ∈ Lp [a, b] , 1 ≤ p < ∞,

recapturing a result of Dragomir and Wang [9].
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