ON THE OSTROWSKI INEQUALITY FOR THE RIEMANN-STIELTJES INTEGRAL $\int_{a}^{b} f(t) d u(t)$, WHERE f IS OF HÖLDER TYPE AND u IS OF BOUNDED VARIATION AND APPLICATIONS

S. S. DRAGOMIR

Abstract

In this paper we point out an Ostrowski type inequality for the Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$, where f is of $p-H$-Hölder type on $[a, b]$, and u is of bounded variation on $[a, b]$. Applications for the approximation problem of the Riemann-Stieltjes integral in terms of Riemann-Stieltjes sums are also given.

1. Introduction

In 1938, A. Ostrowski proved the following integral inequality [1, p. 468]:
Theorem 1. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$, differentiable on (a, b), with its first derivative $f^{\prime}:(a, b) \rightarrow \mathbb{R}$ bounded on (a, b), that is, $\left\|f^{\prime}\right\|_{\infty}:=$ $\sup _{t \in(a, b)}\left|f^{\prime}(t)\right|<\infty$. Then

$$
\begin{equation*}
\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \leq\left[\frac{1}{4}+\left(\frac{x-\frac{a+b}{2}}{b-a}\right)^{2}\right]\left\|f^{\prime}\right\|_{\infty}(b-a), \tag{1.1}
\end{equation*}
$$

for all $x \in[a, b]$.
The constant $\frac{1}{4}$ is sharp in the sense that it cannot be replaced by a smaller one.
For a different proof than the original one provided by Ostrowski in 1938 as well as applications for special means (identric mean, logarithmic mean, p-logarithmic mean, etc.) and in Numerical Analysis for quadrature formulae of Riemann type, see the recent paper [2].

In [3], the following version of Ostrowski's inequality for the 1-norm of the first derivatives has been given.
Theorem 2. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$, differentiable on (a, b), with its first derivative $f^{\prime}:(a, b) \rightarrow \mathbb{R}$ integrable on (a, b), that is, $\left\|f^{\prime}\right\|_{1}:=$ $\int_{a}^{b}\left|f^{\prime}(t)\right| d t<\infty$. Then

$$
\begin{equation*}
\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \leq\left[\frac{1}{2}+\frac{\left|x-\frac{a+b}{2}\right|}{b-a}\right]\left\|f^{\prime}\right\|_{1} \tag{1.2}
\end{equation*}
$$

for all $x \in[a, b]$.
The constant $\frac{1}{2}$ is sharp.

[^0]Note that the sharpness of the constant $\frac{1}{2}$ in the class of differentiable mappings whose derivatives are integrable on (a, b) has been proven in the paper [5].

In [3], the authors applied (1.2) for special means and for quadrature formulae of Riemann type.

The following natural extension of Theorem 2 has been pointed out by S.S. Dragomir in [6].
Theorem 3. Let $f:[a, b] \rightarrow \mathbb{R}$ be a mapping of bounded variation on $[a, b]$ and $\underset{a}{\bigvee}(f)$ its total variation on $[a, b]$. Then

$$
\begin{equation*}
\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \leq\left[\frac{1}{2}+\frac{\left|x-\frac{a+b}{2}\right|}{b-a}\right] \bigvee_{a}^{b}(f), \tag{1.3}
\end{equation*}
$$

for all $x \in[a, b]$. The constant $\frac{1}{2}$ is sharp.
In [6], the author applied (1.3) for quadrature formulae of Riemann type as well as for Euler's Beta mapping.

In this paper we point out some generalizations of (1.3) for the Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$ where f is of Hölder type and u is of bounded variation. Applications to the problem of approximating the Riemann-Stieltjes integral in terms of Riemann-Stieltjes sums are also given.

2. Some Integral Inequalities

The following theorem holds.
Theorem 4. Let $f:[a, b] \rightarrow \mathbb{R}$ be a $p-H-H o ̈ l d e r ~ t y p e ~ m a p p i n g, ~ t h a t ~ i s, ~ i t ~ s a t i s f i e s ~$ the condition

$$
\begin{equation*}
|f(x)-f(y)| \leq H|x-y|^{p}, \text { for all } x, y \in[a, b] \tag{2.1}
\end{equation*}
$$

where $H>0$ and $p \in(0,1]$ are given, and $u:[a, b] \rightarrow \mathbb{R}$ is a mapping of bounded variation on $[a, b]$. Then we have the inequality

$$
\begin{align*}
& \left|f(x)(u(b)-u(a))-\int_{a}^{b} f(t) d u(t)\right| \tag{2.2}\\
\leq & H\left[\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|\right]^{p} \bigvee_{a}^{b}(u),
\end{align*}
$$

for all $x \in[a, b]$, where $\bigvee_{a}^{b}(u)$ denotes the total variation of u on $[a, b]$. Furthermore, the constant $\frac{1}{2}$ is the best possible, for all $p \in(0,1]$.

Proof. It is well known that if $g:[a, b] \rightarrow \mathbb{R}$ is continuous and $v:[a, b] \rightarrow \mathbb{R}$ is of bounded variation, then the Riemann-Stieltjes integral $\int_{a}^{b} g(t) d v(t)$ exists and the following inequality holds:

$$
\begin{equation*}
\left|\int_{a}^{b} g(t) d v(t)\right| \leq \sup _{t \in[a, b]}|g(t)| \bigvee_{a}^{b}(v) \tag{2.3}
\end{equation*}
$$

Using this property, we have

$$
\begin{align*}
\left|f(x)(u(b)-u(a))-\int_{a}^{b} f(t) d u(t)\right| & =\left|\int_{a}^{b}(f(x)-f(t)) d u(t)\right| \tag{2.4}\\
& \leq \sup _{t \in[a, b]}|f(x)-f(t)| \bigvee_{a}^{b}(u) .
\end{align*}
$$

As f is of $p-H$-Hölder type, we have

$$
\begin{aligned}
\sup _{t \in[a, b]}|f(x)-g(t)| & \leq \sup _{t \in[a, b]}\left[H|x-t|^{p}\right] \\
& =H \max \left\{(x-a)^{p},(b-x)^{p}\right\} \\
& =H[\max \{x-a, b-x\}]^{p} \\
& =H\left[\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|\right]^{p} .
\end{aligned}
$$

Using (2.4), we deduce (2.2).
To prove the sharpness of the constant $\frac{1}{2}$ for any $p \in(0,1]$, assume that (2.2) holds with a constant $C>0$, that is,

$$
\begin{align*}
& \left|f(x)(u(b)-u(a))-\int_{a}^{b} f(t) d u(t)\right| \tag{2.5}\\
\leq & H\left[C(b-a)+\left|x-\frac{a+b}{2}\right|\right]^{p} \bigvee_{a}^{b}(u),
\end{align*}
$$

for all $f, p-H$-Hölder type mappings on $[a, b]$ and u of bounded variation on the same interval.
Choose $f(x)=x^{p}(p \in(0,1]), x \in[0,1]$ and $u:[0,1] \rightarrow[0, \infty)$ given by

$$
u(x)=\left\{\begin{array}{c}
0 \text { if } x \in[0,1) \\
1 \text { if } x=1
\end{array}\right.
$$

As

$$
|f(x)-f(y)|=\left|x^{p}-y^{p}\right| \leq|x-y|^{p}
$$

for all $x, y \in[0,1], p \in(0,1]$, it follows that f is of $p-H$-Hölder type with the constant $H=1$.
By using the integration by parts formula for Riemann-Stieltjes integrals, we have:

$$
\begin{aligned}
\int_{0}^{1} f(t) d u(t) & =f(t) u(t)]_{0}^{1}-\int_{0}^{1} u(t) d f(t) \\
& =1-0=1
\end{aligned}
$$

and

$$
\bigvee_{0}^{1}(u)=1
$$

Consequently, by (2.5), we get

$$
\left|x^{p}-1\right| \leq\left[C+\left|x-\frac{1}{2}\right|\right]^{p}, \text { for all } x \in[0,1]
$$

For $x=0$, we get $1 \leq\left(C+\frac{1}{2}\right)^{p}$, which implies that $C \geq \frac{1}{2}$, and the theorem is completely proved.

The following corollaries are natural.
Corollary 1. Let u be as in Theorem 4 and $f:[a, b] \rightarrow \mathbb{R}$ an L-Lipschitzian mapping on $[a, b]$, that is,

$$
\begin{equation*}
|f(t)-f(s)| \leq L|t-s| \text { for all } t, s \in[a, b] \tag{L}
\end{equation*}
$$

where $L>0$ is fixed.
Then, for all $x \in[a, b]$, we have the inequality

$$
\begin{align*}
& |\Theta(f, u, a, b)| \tag{2.6}\\
\leq & L\left[\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|\right] \bigvee_{a}^{b}(u)
\end{align*}
$$

where

$$
\Theta(f, u, x, a, b)=f(x)(u(b)-u(a))-\int_{a}^{b} f(t) d u(t)
$$

is the Ostrowski's functional associated to f and u as above. The constant $\frac{1}{2}$ is the best possible.
Remark 1. If u is monotonic on $[a, b]$ and f is of $p-H$-Hölder type, then, by (2.2) we get

$$
\begin{align*}
& |\Theta(f, u, a, b)| \tag{2.7}\\
\leq & H\left[\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|\right]|u(b)-u(a)|, x \in[a, b],
\end{align*}
$$

and if we assume that f is L-Lipschitzian, then (2.6) becomes

$$
\begin{align*}
& |\Theta(f, u, a, b)| \tag{2.8}\\
\leq & L\left[\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|\right]|u(b)-u(a)|, x \in[a, b] .
\end{align*}
$$

Remark 2. If u is K-Lipschitzian, then obviously u is of bounded variation on

$$
\begin{align*}
& |\Theta(f, u, a, b)| \tag{2.9}\\
\leq & H K\left[\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|\right]^{p}(b-a), x \in[a, b]
\end{align*}
$$

and if f is L-Lipschitzian, then

$$
\begin{align*}
& |\Theta(f, u, a, b)| \tag{2.10}\\
\leq & L K\left[\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|\right](b-a), x \in[a, b]
\end{align*}
$$

The following corollary concerning a generalization of the mid-point inequality holds:

Corollary 2. Let f and u be as defined in Theorem 4. Then we have the generalized mid-point formula

$$
\begin{equation*}
|\Upsilon(f, u, a, b)| \leq \frac{H}{2^{p}}(b-a)^{p} \bigvee_{a}^{b}(u) \tag{2.11}
\end{equation*}
$$

where

$$
\Upsilon(f, u, a, b)=f\left(\frac{a+b}{2}\right)(u(b)-u(a))-\int_{a}^{b} f(t) d u(t)
$$

is the mid point functional associated to f and u as above. In particular, if f is L-Lipschitzian, then

$$
\begin{equation*}
|\Upsilon(f, u, a, b)| \leq \frac{L}{2}(b-a) \bigvee_{a}^{b}(u) \tag{2.12}
\end{equation*}
$$

Remark 3. Now, if in (2.11) and (2.12) we assume that u is monotonic, then we get the midpoint inequalities

$$
\begin{equation*}
|\Upsilon(f, u, a, b)| \leq \frac{H}{2^{p}}(b-a)^{p}|u(b)-u(a)| \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
|\Upsilon(f, u, a, b)| \leq \frac{L}{2}(b-a)|u(b)-u(a)| \tag{2.14}
\end{equation*}
$$

respectively.
In addition, if in (2.11) and (2.12) we assume that u is K-Lipschitzian, then we obtain the inequalities

$$
\begin{equation*}
|\Upsilon(f, u, a, b)| \leq \frac{H K}{2^{p}}(b-a)^{p+1} \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
|\Upsilon(f, u, a, b)| \leq \frac{L K}{2}(b-a)^{2} \tag{2.16}
\end{equation*}
$$

The following inequalities of "rectangle type" also hold:
Corollary 3. Let f and u be as in Theorem 4. Then we have the generalized"left rectangle" inequality

$$
\begin{equation*}
\left|f(a)(u(b)-u(a))-\int_{a}^{b} f(t) d u(t)\right| \leq H(b-a)^{p} \bigvee_{a}^{b}(u) \tag{2.17}
\end{equation*}
$$

and the"right rectangle" inequality

$$
\begin{equation*}
\left|f(b)(u(b)-u(a))-\int_{a}^{b} f(t) d u(t)\right| \leq H(b-a)^{p} \bigvee_{a}^{b}(u) \tag{2.18}
\end{equation*}
$$

Remark 4. If we add (2.17) and (2.18), then, by the triangle inequality, we end up with the following generalized trapezoidal inequality

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}(u(b)-u(a))-\int_{a}^{b} f(t) d u(t)\right| \leq H(b-a)^{p} \bigvee_{a}^{b}(u) \tag{2.19}
\end{equation*}
$$

In what follows, we point out some results for the Riemann integral of a product. Corollary 4. Let $f:[a, b] \rightarrow \mathbb{R}$ be a $p-H$-Hölder type mapping and $g:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$. Then we have the inequality

$$
\begin{align*}
& \left|f(x) \int_{a}^{b} g(s) d s-\int_{a}^{b} f(t) g(t) d t\right| \tag{2.20}\\
\leq & H\left[\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|\right]^{p} \int_{a}^{b}|g(s)| d s
\end{align*}
$$

for all $x \in[a, b]$.
Proof. Define the mapping $u:[a, b] \rightarrow \mathbb{R}, u(t)=\int_{a}^{t} g(s) d s$. Then u is differentiable on (a, b) and $u^{\prime}(t)=g(t)$. Using the properties of the Riemann-Stieltjes integral, we have

$$
\int_{a}^{b} f(t) d u(t)=\int_{a}^{b} f(t) g(t) d t
$$

and

$$
\bigvee_{a}^{b}(u)=\int_{a}^{b}\left|u^{\prime}(t)\right| d t=\int_{a}^{b}|g(t)| d t
$$

Therefore, by the inequality (2.2), we deduce (2.20).
Remark 5. The best inequality we can get from (2.20) is that one for which $x=$ $\frac{a+b}{2}$, obtaining the midpoint inequality

$$
\begin{equation*}
\left|f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(s) d s-\int_{a}^{b} f(t) g(t) d t\right| \leq \frac{1}{2^{p}} H(b-a)^{p} \int_{a}^{b}|g(s)| d s \tag{2.21}
\end{equation*}
$$

We now give some examples of weighted Ostrowski inequalities for some of the most popular weights.
Example 1. (Legendre) If $g(t)=1$, and $t \in[a, b]$, then we get the following Ostrowski inequality for Hölder type mappings $f:[a, b] \rightarrow \mathbb{R}$

$$
\begin{equation*}
\left|(b-a) f(x)-\int_{a}^{b} f(t) d t\right| \leq H\left[\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|\right]^{p}(b-a) \tag{2.22}
\end{equation*}
$$

for all $x \in[a, b]$, and, in particular, the mid-point inequality

$$
\begin{equation*}
\left|(b-a) f\left(\frac{a+b}{2}\right)-\int_{a}^{b} f(t) d t\right| \leq \frac{1}{2^{p}} H(b-a)^{p+1} . \tag{2.23}
\end{equation*}
$$

Example 2. (Logarithm) If $g(t)=\ln \left(\frac{1}{t}\right), t \in(0,1], f$ is of p-Hölder type on $[0,1]$ and the integral $\int_{0}^{1} f(t) \ln \left(\frac{1}{t}\right) d t$ is finite, then we have

$$
\begin{equation*}
\left|f(x)-\int_{0}^{1} f(t) \ln \left(\frac{1}{t}\right) d t\right| \leq H\left[\frac{1}{2}+\left|x-\frac{1}{2}\right|\right]^{p} \tag{2.24}
\end{equation*}
$$

for all $x \in[0,1]$ and, in particular,

$$
\begin{equation*}
\left|f\left(\frac{1}{2}\right)-\int_{0}^{1} f(t) \ln \left(\frac{1}{t}\right) d t\right| \leq \frac{1}{2^{p}} H \tag{2.25}
\end{equation*}
$$

Example 3. (Jacobi) If $g(t)=\frac{1}{\sqrt{t}}, t \in(0,1], f$ is as above and the integral $\int_{0}^{1} \frac{f(t)}{\sqrt{t}} d t$ is finite, then we have

$$
\begin{equation*}
\left|f(x)-\frac{1}{2} \int_{0}^{1} \frac{f(t)}{\sqrt{t}} d t\right| \leq H\left[\frac{1}{2}+\left|x-\frac{1}{2}\right|\right]^{p} \tag{2.26}
\end{equation*}
$$

for all $x \in[0,1]$ and, in particular,

$$
\begin{equation*}
\left|f\left(\frac{1}{2}\right)-\frac{1}{2} \int_{0}^{1} \frac{f(t)}{\sqrt{t}} d t\right| \leq \frac{1}{2^{p}} H \tag{2.27}
\end{equation*}
$$

Finally, we have the following:
 $(-1,-1)$ and the integral $\int_{-1}^{1} \frac{f(t)}{\sqrt{1-t^{2}}} d t$ is finite, then

$$
\begin{equation*}
\left|f(x)-\frac{1}{\pi} \int_{-1}^{1} \frac{f(t)}{\sqrt{1-t^{2}}} d t\right| \leq H[1+|x|]^{p} \tag{2.28}
\end{equation*}
$$

for all $x \in[-1,1]$, and in particular,

$$
\begin{equation*}
\left|f(0)-\frac{1}{\pi} \int_{-1}^{1} \frac{f(t)}{\sqrt{1-t^{2}}} d t\right| \leq H \tag{2.29}
\end{equation*}
$$

3. An Approximation for the Riemann-Stieltjes Integral

Consider $I_{n}: a=x_{0}<x_{1}<\ldots<x_{n-1}<x_{n}=b$ to be a division of the interval $[a, b], h_{i}:=x_{i+1}-x_{i}(i=0, \ldots, n-1)$ and $\nu(h):=\max \left\{h_{i} \mid i=0, \ldots, n-1\right\}$. Define the general Riemann-Stieltjes sum

$$
\begin{equation*}
S\left(f, u, I_{n}, \xi\right):=\sum_{i=0}^{n-1} f\left(\xi_{i}\right)\left(u\left(x_{i+1}\right)-u\left(x_{i}\right)\right) \tag{3.1}
\end{equation*}
$$

In what follows, we point out some upper bounds for the error approximation of the Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$ by its Riemann-Stieltjes sum $S\left(f, u, I_{n}, \xi\right)$.
Theorem 5. Let $u:[a, b] \rightarrow \mathbb{R}$ be a mapping of bounded variation on $[a, b]$ and $f:[a, b] \rightarrow \mathbb{R}$ a p-H-Hölder type mapping. Then

$$
\begin{equation*}
\int_{a}^{b} f(t) d u(t)=S\left(f, u, I_{n}, \xi\right)+R\left(f, u, I_{n}, \xi\right) \tag{3.2}
\end{equation*}
$$

where $S\left(f, u, I_{n}, \xi\right)$ is as given in (3.1) and the remainder $R\left(f, u, I_{n}, \xi\right)$ satisfies the bound

$$
\begin{align*}
\left|R\left(f, u, I_{n}, \xi\right)\right| & \leq H\left[\frac{1}{2} \nu(h)+\max _{i=\overline{0, n-1}}\left|\xi_{i}-\frac{x_{i}+x_{i+1}}{2}\right|\right]^{p} \bigvee_{a}^{b}(u) \tag{3.3}\\
& \leq H[\nu(h)]^{p} \bigvee_{a}^{b}(u)
\end{align*}
$$

Proof. We apply Theorem 4 on the subintervals $\left[x_{i}, x_{i+1}\right](i=0, \ldots, n-1)$ to obtain

$$
\begin{align*}
& \left|f\left(\xi_{i}\right)\left(u\left(x_{i+1}\right)-u\left(x_{i}\right)\right)-\int_{x_{i}}^{x_{i+1}} f(t) d u(t)\right| \tag{3.4}\\
\leq & H\left[\frac{1}{2} h_{i}+\left|\xi_{i}-\frac{x_{i}+x_{i+1}}{2}\right|\right] \bigvee_{x_{i}}^{p x_{i+1}}(u),
\end{align*}
$$

for all $i \in\{0, \ldots, n-1\}$.
Summing over i from 0 to $n-1$ and using the generalized triangle inequality, we
deduce

$$
\begin{aligned}
\left|R\left(f, u, I_{n}, \xi\right)\right| & \leq \sum_{i=0}^{n-1}\left|f\left(\xi_{i}\right)\left(u\left(x_{i+1}\right)-u\left(x_{i}\right)\right)-\int_{x_{i}}^{x_{i+1}} f(t) d u(t)\right| \\
& \leq H \sum_{i=0}^{n-1}\left[\frac{1}{2} h_{i}+\left|\xi_{i}-\frac{x_{i}+x_{i+1}}{2}\right|\right]^{p} \bigvee_{x_{i}}^{x_{i+1}}(u) \\
& \leq H \sup _{i=0, n-1}\left[\frac{1}{2} h_{i}+\left|\xi_{i}-\frac{x_{i}+x_{i+1}}{2}\right|\right]^{p} \sum_{i=0}^{n-1} \bigvee_{x_{i}}^{x_{i+1}}(u)
\end{aligned}
$$

However,

$$
\sup _{i=\overline{0, n-1}}\left[\frac{1}{2} h_{i}+\left|\xi_{i}-\frac{x_{i}+x_{i+1}}{2}\right|\right]^{p} \leq\left[\frac{1}{2} \nu(h)+\sup \left|\xi_{i}-\frac{x_{i}+x_{i+1}}{2}\right|\right]^{p}
$$

and

$$
\sum_{i=0}^{n-1} \bigvee_{x_{i}}^{x_{i+1}}(u)=\bigvee_{a}^{b}(u)
$$

which completely proves the first inequality in (3.3).
For the second inequality, we observe that

$$
\left|\xi_{i}-\frac{x_{i}+x_{i+1}}{2}\right| \leq \frac{1}{2} \cdot h_{i}
$$

for all $i \in\{0, \ldots, n-1\}$.
The theorem is thus proved.
The following corollaries are natural.
Corollary 5. Let u be as in Theorem 5 and f an L-Lipschitzian mapping. Then we have the formula (3.2) and the remainder $R\left(f, u, I_{n}, \xi\right)$ satisfies the bound

$$
\begin{align*}
\left|R\left(f, u, I_{n}, \xi\right)\right| & \leq L\left[\frac{1}{2} \nu(h)+\max _{i=\overline{0, n-1}}\left|\xi_{i}-\frac{x_{i}+x_{i+1}}{2}\right|\right] \bigvee_{a}^{b}(u) \tag{3.5}\\
& \leq H \nu(h) \bigvee_{a}^{b}(u) .
\end{align*}
$$

Remark 6. If u is monotonic on $[a, b]$, then the error estimate (3.3) becomes

$$
\begin{align*}
& \left|R\left(f, u, I_{n}, \xi\right)\right| \tag{3.6}\\
\leq & H\left[\frac{1}{2} \nu(h)+\max _{i=\overline{0, n-1}}\left|\xi_{i}-\frac{x_{i}+x_{i+1}}{2}\right|\right]^{p}|u(b)-u(a)| \\
\leq & H[\nu(h)]^{p}|u(b)-u(a)|
\end{align*}
$$

and (3.5) becomes

$$
\begin{align*}
& \left|R\left(f, u, I_{n}, \xi\right)\right| \tag{3.7}\\
\leq & L\left[\frac{1}{2} \nu(h)+\max _{i=\overline{0, n-1}}\left|\xi_{i}-\frac{x_{i}+x_{i+1}}{2}\right|\right]|u(b)-u(a)| \\
\leq & L \nu(h)|u(b)-u(a)| .
\end{align*}
$$

Using Remark 2, we can state the following corollary.

Corollary 6. If $u:[a, b] \rightarrow \mathbb{R}$ is Lipschitzian with the constant K and $f:$ $[a, b] \rightarrow \mathbb{R}$ is of $p-H$-Hölder type, then the formula (3.2) holds and the remainder $R\left(f, u, I_{n}, \xi\right)$ satisfies the bound

$$
\begin{align*}
\left|R\left(f, u, I_{n}, \xi\right)\right| & \leq H K \sum_{i=0}^{n-1}\left[\frac{1}{2} h_{i}+\left|\xi_{i}-\frac{x_{i}+x_{i+1}}{2}\right|\right]^{p} h_{i} \tag{3.8}\\
& \leq H K \sum_{i=0}^{n-1} h_{i}^{p+1} \leq H K(b-a)[\nu(h)]^{p} .
\end{align*}
$$

In particular, if we assume that f is L-Lipschitzian, then

$$
\begin{align*}
\left|R\left(f, u, I_{n}, \xi\right)\right| & \leq \frac{1}{2} L K \sum_{i=0}^{n-1} h_{i}^{2}+L K \sum_{i=0}^{n-1}\left|\xi_{i}-\frac{x_{i}+x_{i+1}}{2}\right| h_{i} \tag{3.9}\\
& \leq L K \sum_{i=0}^{n-1} h_{i}^{2} \leq L K(b-a) \nu(h)
\end{align*}
$$

The best quadrature formula we can get from Theorem 5 is that one for which $\xi_{i}=\frac{x_{i}+x_{i+1}}{2}$ for all $i \in\{0, \ldots, n-1\}$. Consequently, we can state the following corollary.
Corollary 7. Let f and u be as in Theorem 5. Then

$$
\begin{equation*}
\int_{a}^{b} f(t) d u(t)=S_{M}\left(f, u, I_{n}\right)+R_{M}\left(f, u, I_{n}\right) \tag{3.10}
\end{equation*}
$$

where $S_{M}\left(f, u, I_{n}\right)$ is the generalized midpoint formula, that is;

$$
S_{M}\left(f, u, I_{n}\right):=\sum_{i=0}^{n-1} f\left(\frac{x_{i}+x_{i+1}}{2}\right)\left(u\left(x_{i+1}\right)-u\left(x_{i}\right)\right)
$$

and the remainder satisfies the estimate

$$
\begin{equation*}
\left|R_{M}\left(f, u, I_{n}\right)\right| \leq \frac{H}{2^{p}}[\nu(h)]^{p} \bigvee_{a}^{b}(u) \tag{3.11}
\end{equation*}
$$

In particular, if f is L-Lipschitzian, then we have the bound:

$$
\begin{equation*}
\left|R_{M}\left(f, u, I_{n}\right)\right| \leq \frac{H}{2} \nu(h) \bigvee_{a}^{b}(u) \tag{3.12}
\end{equation*}
$$

Remark 7. If in (3.11) and (3.12) we assume that u is monotonic, then we get the inequalities

$$
\begin{equation*}
\left|R_{M}\left(f, u, I_{n}\right)\right| \leq \frac{H}{2^{p}}[\nu(h)]^{p}|f(b)-f(a)| \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|R_{M}\left(f, u, I_{n}\right)\right| \leq \frac{H}{2} \nu(h)|f(b)-f(a)| \tag{3.14}
\end{equation*}
$$

The case where f is K-Lipschitzian is embodied in the following corollary.

Corollary 8. Let u and f be as in Corollary 6. Then we have the quadrature formula (3.10) and the remainder satisfies the estimate

$$
\begin{equation*}
\left|R_{M}\left(f, u, I_{n}\right)\right| \leq \frac{H K}{2^{p}} \sum_{i=0}^{n-1} h_{i}^{p+1} \leq \frac{H K}{2^{p}}[\nu(h)]^{p} \tag{3.15}
\end{equation*}
$$

In particular, if f is L-Lipschitzian, then we have the estimate

$$
\begin{equation*}
\left|R_{M}\left(f, u, I_{n}\right)\right| \leq \frac{1}{2} L K \sum_{i=0}^{n-1} h_{i}^{2} \leq \frac{1}{2} L K(b-a) \nu(h) \tag{3.16}
\end{equation*}
$$

References

[1] D.S. MITRINOVIĆ, J.E. PEČARIĆ and A.M. FINK, Inequalities for Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, 1994.
[2] S.S. DRAGOMIR and S. WANG, Applications of Ostrowski's inequality to the estimation of error bounds for some special means and some numerical quadrature rules, Appl. Math. Lett., 11(1998), 105-109.
[3] S.S. DRAGOMIR and S. WANG, A new inequality of Ostrowski's type in L_{1} norm and applications to some special means and to some numerical quadrature rules, Tamkang J. of Math., 28(1997), 239-244.
[4] S.S. DRAGOMIR and S. WANG, A new inequality of Ostrowski's type in L_{p} norm, Indian Journal of Mathematics, 40 (1998), No. 3, 299-304.
[5] T. C. PEACHEY, A. MC ANDREW and S.S DRAGOMIR, The best constant in an equality of Ostrowski type, Tamkang J. of Math., 30 (1999), No. 3, 219-222.
[6] S.S. DRAGOMIR, On the Ostrowski's integral inequality for mappings with bounded variation and applications, Preprint, RGMIA Research Report Collection, 2(1)(1999), 63-69, http://matilda.vu.edu.au/~rgmia/

School of Communications and Informatics, Victoria University of Technology, PO Box 14428, Melbourne City, MC 8001 Australia

E-mail address: sever@matilda.vu.edu.au
URL: http://melba.vu.edu.au/dragomirweb.html

[^0]: Date: April, 1999.
 1991 Mathematics Subject Classification. Primary 26D15, 26D20. Secondary 41A55.
 Key words and phrases. Ostrowski inequality, Riemann-Stieltjes integral.

